
Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

Fabrication-Aware Reverse Engineering for Carpentry

James Noeckel1 Haisen Zhao1,2 Brian Curless1 and Adriana Schulz1

1University of Washington
2Shandong University

Input images MVS point cloud Parts-based model Fabricated result Edited result

Figure 1: Given a set of images of a carpentered object and the resulting multi-view stereo (MVS) reconstruction, we produce a concise,
part-based assembly that can be fabricated, producing a physical replica nearly identical to the original. Our model is easily edited in CAD
software, allowing for the fabrication of modified versions of captured designs (right).

Abstract
We propose a novel method to generate fabrication blueprints from images of carpentered items. While 3D reconstruction from
images is a well-studied problem, typical approaches produce representations that are ill-suited for computer-aided design and
fabrication applications. Our key insight is that fabrication processes define and constrain the design space for carpentered
objects, and can be leveraged to develop novel reconstruction methods. Our method makes use of domain-specific constraints to
recover not just valid geometry, but a semantically valid assembly of parts, using a combination of image-based and geometric
optimization techniques. We demonstrate our method on a variety of wooden objects and furniture, and show that we can
automatically obtain designs that are both easy to edit and accurate recreations of the ground truth. We further illustrate how
our method can be used to fabricate a physical replica of the captured object as well as a customized version, which can be
produced by directly editing the reconstructed model in CAD software.

1. Introduction

Carpentered, wooden furniture and objects abound in our everyday
lives, from stools to bookshelves to trays for carrying food. Imagine
though you find a piece you like at a friend’s house, but you are un-
able to find it for purchase, or perhaps you even want a slightly dif-
ferent version of it, wider or with changes to the curves in its shape.
Suppose then you could simply take some photos of the piece, run
some software, and generate a CAD model that represents how the
object was made—one that is easy to edit, if desired—and then
build just by cutting parts out of sheets of wood and assembling
them, which you could even do yourself. In this paper, we propose
to tackle just this problem, taking as input a set of images of a
carpentered object and generating a CAD model that is ready for
building a replica of the object, or an edited version of it.

Typical methods for object capture from images perform
structure-from-motion to recover camera poses and sparse scene

points, followed by multi-view stereo to densify the reconstruc-
tion. The result is usually a point cloud or, with some processing,
a dense triangle mesh, exhibiting noise and incomplete coverage.
These representations are far from being complete, concise, ed-
itable CAD models and further tell us nothing about how to cut
and assemble parts to build the model.

In this work, we propose a novel direction for recovering repre-
sentations of fabricated objects: describing the fabrication process
itself. By framing this as a reverse engineering problem in a spe-
cific fabrication domain, we introduce constraints that significantly
reduce the search space of viable 3D models. In particular, we op-
erate on carpentered objects consisting of parts that are cut from
sheets of wood and then connected together. The space of fabrica-
tion instructions in this domain is still highly expressive, covering
a variety of everyday objects, as we will show, while also adhering

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

to the real-world constraints governing the construction process, so
that the output is by definition ready to build.

This reverse engineering problem introduces its own set of chal-
lenges: arriving at a fabricable solution requires identifying the
parts, and optimizing for their precise shapes and the part-to-part
connections constraining those shapes. This mixture of discrete and
continuous degrees of freedom makes for a challenging optimiza-
tion problem; to make this more tractable, we propose a multi-stage
algorithm in which we first select the initial geometry and posi-
tions of parts in the assembled object, progressively detect assem-
bly constraints (i.e. connections between parts), and then refine the
geometry subject to these new constraints. The input images, cap-
tured by simply walking around an object and taking photos with a
smartphone, guide this process at multiple stages. First, we use the
images to recover a multi-view stereo point cloud that, though in-
complete, drives the initial CAD part recovery. Second, the images
provide evidence of seams – discontinuities in appearance – that in-
dicate how different pieces of wood fit together when the connec-
tions are otherwise ambiguous based on geometry alone. Finally,
by rectifying the images to each part plane, we can co-segment
the part faces to obtain more accurate contours, i.e., cut paths for
fabrication. Each of these co-segmented contours, extracted at the
pixel level, is not concise and may not respect assembly constraints;
we additionally propose an algorithm to find a simple parametric
boundary that accurately represents the cut path of each part while
respecting contact constraints between parts.

Our key contributions are:

• A fabrication-aware pipeline for selecting a plausible part struc-
ture representing the input object
• An algorithm for recovering contacts between connected parts

using geometric and image evidence
• A method for extracting cut paths representing part shapes using

multiple image views
• A method for incorporating assembly constraints into fitting of

regularized, parametric contours to imperfect data

We note that, since our approach is based on features observed in
images, we assume that the carpentered objects are textured, which
is typical for wood that is unfinished or varnished, but not painted
a uniform color. Further, though we don’t require complete recon-
struction of the surface, we do require that the wood sheet surface
of each part be at least partially visible. Finally, we restrict the class
of objects reconstructed to those that can be assembled with parts
cut from sheets of wood. We demonstrate results on a variety of
objects of different size and complexity, and show the efficacy of
our method by fabricating two of our results, along with edited ver-
sions.

2. Related Work

Reverse Engineering (RE) aims to recover CAD models from
measured data [BCF*18], concisely representing the various parts
and geometric features using parametric primitives and surfaces.
RE methods can be labeled according to their target CAD rep-
resentation, which contain varying levels of structure. We can
classify these as low-level (volumetric models [CJ93], meshes
[XZZ*11]), medium-level (primitives [LSD*19], B-Rep surfaces

[BMV01], surface patch-based representations [EH96], procedu-
ral shape structures [DIP*18]) and high-level (parametric CAD
models [SFK*19], and multi-component 3D models with geomet-
ric constraints [XLX*16; LOMI11]). The distinction we make be-
tween mid- and high-level representations is that high-level con-
tains both full geometric information and some additional structure
relating to the semantics of the object, such as shape parameters
corresponding to degrees of freedom in the design and relationships
between assembled 3D parts. While Mid-level representations such
as primitives, B-Reps, surface patches, and CSG trees may cap-
ture the geometry more concisely than low-level, they do not in-
herently encode these global semantics. Since our target is a CAD
model complete with parts and connections that would allow us to
physically reproduce the object, we focus on high-level representa-
tions. For a survey of works related to optimizing rigid assemblies
of parts, see WANG, SONG, and PAULY [WSP21].

Retrieval-based Reconstruction One approach to reverse engi-
neering is to retrieve plausible objects from a shape library and
align them with the input. AVETISYAN, DAHNERT, DAI, et al.
[ADD*19] and LIM, PIRSIAVASH, and TORRALBA [LPT13] detect
and align representative objects from a known database with an in-
put 3D scan or image, respectively. SCHULZ, SHAMIR, BARAN,
et al. [SSB*17] and UY, HUANG, SUNG, et al. [UHS*20] pro-
posed strategies for deformation-aware retrieval of single CAD
shapes. XU, ZHENG, ZHANG, et al. [XZZ*11] present an inter-
active method for using predefined 3D models as templates to
deform to match an input photograph, and HUANG, WANG, and
KOLTUN [HWK15] retrieves individual parts from a small 3D
model database to reverse engineer the object from a single im-
age. Because these methods rely on a database containing examples
that sufficiently resemble the query object, they do not generalize
to unseen classes of objects. While we recognize the need to limit
the scope to ensure that the problem is tractable, we wish to do this
by restricting the fabrication process instead of the types of allowed
objects, which permits a variety of input beyond what can be mem-
orized in a database, so retrieval-based methods are not suited to
our task.

Classical Reverse Engineering Obtaining CAD models from
measured data is a well-studied problem. Many works con-
cerned with reconstructing CAD models follow a similar strategy,
with the common features being segmentation of the input point
cloud/mesh, fitting analytical surfaces to the segmented regions,
and stitching the disjoint surfaces into a complete CAD model
[BCF*18; WGY*12]. The goal of these methods is accurate re-
covery of CAD surface primitives, which lack the high-level as-
sembly information that we require. Nevertheless, the techniques
of feature-based reverse-engineering are widely useful tools for in-
ferring geometry from dense 3D data; we build our model in part
based on detected plane and cylinder features.

Interactive Reverse Engineering In solving the difficult inverse
problem of reverse engineering, some works allow for user inter-
action to resolve ambiguities and provide hints for reconstruction.
CHEN, ZHU, SHAMIR, et al. [CZS*13] recovers interactive ma-
nipulable 3D shapes from a single photograph, guided by user-
supplied sketches of generalized cylinders and other primitives.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

XU, LI, XU, et al. [XLX*16] recovers dynamic mechanical struc-
tures from a single image, where the user sketches part profiles
and supplies hints for how detected parts should snap to their sur-
roundings. XU, ZHENG, ZHANG, et al. [XZZ*11], which deforms
retrieved models to match a target image, relies on the user to aid in
semantic segmentation of the input image, as well as for selecting
the candidate shape to deform. ARIKAN, SCHWÄRZLER, FLÖRY,
et al. [ASF*13] reconstructs architectural models from point clouds
by first automatically fitting a coarse 3D model, then using a sketch-
based interface to allow users to add additional geometric details
while optimizing the consistency and accuracy of the model. Our
proposed reverse engineering method, once provided with a 3D re-
construction of the object, is fully automatic.

Learning-based Reverse Engineering Some existing works infer
high-level abstract 3D structures from images [NLX18], 3d meshes
[TSG*17] and shape structures [JBX*20]. In these works, the out-
put structures are represented using coarse cuboids, which fall short
of our goal of a full part-based CAD representation, while some re-
quire segmented part hierarchies as input [JBX*20]. In [GDP*18],
hand-crafted abstract structures, consisting of a tree of axis-aligned
cuboids and connectors, are fitted to incomplete 3D scans to aid
in classification and shape completion. Inferred abstract structures
can be used to aid in retrieval of complete CAD models, but this
again is limited by what is recorded in a database, along with a
learned template for the corresponding object class. In a recent
work, SMIRNOV, FISHER, KIM, et al. [SFK*19] introduce a unified
learning framework in which parametric 2D and 3D primitives can
be inferred from raster or voxel representations. Using this frame-
work, it is possible to learn primitives in 2D and 3D that encode
certain semantics of reconstructed objects, for example particular
CSG primitives might correspond to the armrests of chairs. How-
ever, as with many learning-based works, these semantics are spe-
cific to the class of objects on which the method is trained, and for
each such class, a template encoding these semantics is a prerequi-
site for training. If we wished to reconstruct a unique type of object
whose only familiar feature is the carpentry construction process, it
would be difficult to acquire the data to produce meaningful shape
and structure predictions using any of the aforementioned learning-
or retrieval-based methods. Conversely, our method can recover the
shape and structure of such an unknown object, as we only assume
that objects obey the geometric constraints imposed by carpentry.

Grammar- and program-based Reverse Engineering A num-
ber of domain-specific reverse engineering methods exist which
utilize known structures and semantics of a narrow class of ob-
jects. [LOMI11] infers a rich fabricable design consisting of parts
and connectors, but it does not generalize beyond a few furni-
ture classes for which specific hand-crafted grammars are defined.
[FW16] models the exterior of residential buildings by learning a
probabilistic model from street-view images. This enables them to
infer plausible building geometry using (potentially occluded) sin-
gle views as input, but it is inherently limited in how accurately it
can model the input due to its non-determinism and the lack of
additional evidence to constrain the result. [TLS*19] Presents a
domain-specific language and neural program executor for learning
to synthesize CAD models, with the ability to represent symmetries
and repeated structures through programmatic loops. Their neural

program executor allows for differentiable rendering of varying-
length programs, facilitating unsupervised fine-tuning on unanno-
tated shapes, which helps the method to generalize beyond training
categories. However, the design of the DSL incorporates furniture-
specific semantic annotations, so it is still limited to classes of ob-
jects where such labels apply.

In the carpentry domain, grammars have also been used out-
side of reverse engineering tasks, including interactive design sys-
tems [UIM12; KLY*14; SFJ*17; GJG16; FSY*15] and optimiza-
tion of fabrication plans [YWM15; KHLM17; LVLR19; LOMI11;
WZN*19]. Our work uses similar fabrication-aware representa-
tions for reverse-engineering.

[LSZ*18] solves a different but related problem, and employs
similar ideas to ours for reverse engineering functional mechanical
assemblies from raw scans, in that their general approach consists
of detecting parts from input scans, determining interactions be-
tween parts, and globally optimizing the model geometry to satisfy
the resulting constraints. However, the parts they consider are lim-
ited to a set of predefined templates suited to their domain.

Decomposition-based Methods The goal of these methods is to
convert a 3D surface representation into solid, fabricable parts that
recreate the desired surface [ACA*19; FAG*20; YKGA17]. A re-
lated method is to segment structured 3D models into repeated sub-
components [DAB15]. However, these methods do not directly ap-
ply to the problem of reverse engineering from images.

Model-based Reconstruction from Images Many works in re-
construction from images seek to make use of model-based as-
sumptions, dating back to early “blocks world” work for recov-
ering 3D edges in an image [Rob63]. A large body of work in
model-based reconstruction from images has focused on architec-
ture, making use of vanishing points [CRZ00] and repeated struc-
tures such as windows [DTC04] that can be exploited for geo-
metric information. This has given rise to interactive modeling sys-
tems for recovering building facades [SSS*08; DTM96], as well
as fully automatic systems [WZ02]. Such systems typically exploit
architectural assumptions of abutting cuboids sitting on the ground
and sloped roofs which hold for the structures they model, while
we seek to accurately reconstruct individual, solid parts of objects
with arbitrary curved shapes in potentially complex arrangements.

3. Overview

The input to our algorithm is a set of images of a carpentered object
taken from different viewpoints. The output is a fabricable model
describing the set of parts along with how they should be con-
nected. Parts are assumed to be cut from wood sheets, so that their
boundary contains two sheet planes (from the front and back of the
sheet). Parts are represented as a triplet of the wood sheet position T
(a rigid transformation), the sheet thickness d, and cut path Θ rep-
resented in the 2D plane of the sheet. We allow individual straight
cuts to be made at arbitrary angles against the wood plane to allow
for slanted contacts between parts; Θ also contains these bevel an-
gles. Note that the cut path may include holes in the interior of the
shape. The assembly information specifies a list of part pairs that
are joined, and the surfaces along which these connections occur,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

Input Part Identi�cation Assembly Re�nement Geometry Re�nement

Segmentation &
Curve �tting

Figure 2: Overview of our method: Given input images, we recover an oriented point cloud with 3D reconstruction software. The images,
camera poses, and point cloud are inputs to our system. We then identify an overcomplete set of parts based on plane fits to the point cloud,
along with the part’s cut path and thickness. These are pruned to minimize volume overlap while still adhering to the point cloud. The
resulting part set is then refined in the assembly stage that determines how parts connect, resolves remaining volume conflicts (based on
visible evidence of seams), and re-aligns the parts. The geometry refinement stage then uses multi-view image segmentation followed by
concise curve fitting, both constrained by part connections, to obtain more accurate and more CAD-like cut paths. The geometry refinement
can lead to cut paths that imply new part contacts, and thus we alternate between assembly and geometry refinement until the final model is
complete.

which we represent using interfaces that we assume to be planar,
as planar contacts are common in carpentry assembly. We say the
model is fabricable if, in their assembled configuration, the parts
do not overlap and meet snugly at the joints. We refer to the pair-
wise contact constraints implied by this requirement as assembly
constraints.

While assembly constraints assist in recovering partially unob-
served parts, the need to infer both the set of parts and the assembly
constraints from incomplete data presents a challenge: Inferring the
shapes and positions of parts depends on how they are connected,
and likewise finding probable connections depends on the part ge-
ometry. This interdependence implies that these properties should
be considered jointly in order to arrive at a feasible solution. To
address the complex search space of possible part assemblies, we
adopt a multi-stage approach in which we first detect an approxi-
mate set of parts absent any connections, then iteratively refine the
model by alternately optimizing for the connection contacts and the
part geometry subject to the new contact constraints. Finally, we
approximate each cut path with a concise, piecewise-smooth curve
that balances simplicity and accuracy. Our approach is illustrated
in Figure 2.

Preparing the Input. Given our images, we use 3D reconstruc-
tion software [Cap20] to obtain camera poses and a semi-dense,
oriented, point cloud S (positions and normals) for the observed
surfaces. The point cloud is not expected to capture every sur-
face; entire sides of the input model may be missed. The images
are acquired by walking around the model and taking photos, with
enough coverage that at least one sheet plane per part is observed
well enough to be partially reconstructed. The point cloud is ex-
pected to have the model separated from background points as
well as being oriented so that the object is approximately verti-
cal, which in practice means the user indicates a ground plane and
rough bounding volume for the object.

Part Identification. The goal of the first stage is to recover a set
of parts, each with a rough approximation of T , d, Θ. These parts
should closely match S and, although they may not strictly satisfy
assembly constraints, they should maximise assembly feasibility in
order to serve as a plausible basis for subsequent refinement. Our
approach is to initially detect an over-complete set of candidate
parts by searching for planes that could be wooden sheets in the
point cloud and extracting initial thickness and shape from point
cloud features. We merge candidate parts when they are better rep-
resented as single sheets, e.g. when they originate from disparate
points observed from opposite sides of the sheet. From among these
candidates, we extract a subset P of the parts with the best cover-
age of S that is also plausible from a fabrication standpoint; parts
should not represent cuts through implausibly thick wood planes,
and every part should subtend a minimum volume free of overlaps
with other parts.

Model Assembly Having decided on an initial set of parts P from
the part identification stage, we can proceed to infer the assem-
bly—defined by the connections between parts—and refine the part
orientations to regularize the angles in the design. Detecting the
correct joinery between parts is challenging since it is “hidden” be-
neath the surface geometry of the model; we address this problem
with two key insights. First, we can identify a small set of types
of connections possible with our fabrication assumptions, which
significantly reduces the search space. Second, we can use image
cues, such as the presence of seams or material changes visible in
the wood, to identify regions where a connection interface is likely
to exist (if geometric cues are insufficient). We use these ideas to
disambiguate connections, followed by a global optimization step
that aligns near-orthogonal connected parts while staying close to
the point cloud.

Geometry Refinement. The final step is to refine the geometry
of the parts to obtain a fabricable model consisting of concise

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

parametric curves, ensuring that the final model is consistent with
the assembly constraints and represented using only the necessary
number of primitives. We strive for simplicity to facilitate editing
and because it is also usually consistent with how objects are de-
signed. We utilize the shapes visible in the input images to obtain
more accurate cut path contours: Since the sheet plane position T
has already been identified for every part, we can use it as a ref-
erence to drive a multi-view image segmentation after projecting
each image into this plane. We then apply a curve fitting algorithm
over the resulting segmentation mask boundary which preserves the
assembly constraints while globally minimizing an energy function
that balances complexity and accuracy. Our final result is regular-
ized by aligning curves and lines in the resulting shapes. In practice,
the refined shapes may reveal new connections, so we iterate model
assembly and refinement until no new connections are found.

4. Technique

4.1. Parameters

Given oriented point cloud S, we define the global diameter D as
the points’ maximum bounding box dimension. Our method has
many parameters which depend on the scale of the model, which
is arbitrary; we therefore define these parameters in terms of D.
For detecting orthogonality and parallel features throughout our
pipeline, we have a global angle threshold α.

4.2. Part Identification

In this stage, we both identify parts that comprise the model and
estimate each part’s rigid pose and rough shapes, as a basis for
subsequent refinement. Our strategy for identifying the set of parts
builds on the assumption that they are cut-outs from flat sheets and
the fact that planes can be easily detected from 3D point clouds.
Based on this insight, we can begin with primitive detection on the
point cloud, followed by generating 3D parts from extrusions of
paths in those planes, which amounts to detecting a cut path Θ and
the sheet thickness d. Note that using all detected planes as poten-
tial part planes results in many more parts than are actually in the
model, as any given part has at least two planar surfaces, and more
for straight line cuts; ultimately, only a subset of planes should be
used. Our approach is to first generate part geometry for all de-
tected planes to form an over-complete set of candidate parts, then
optimize for the subset that best approximates the model while rep-
resenting a feasible construction.

4.2.1. Primitive Detection and Adjacency

We employ Efficient RANSAC [SWK07] to segment the oriented
point cloud into clusters of points that fit planes and cylinders; the
points are roughly contiguous sets on those primitives. The planes
correspond to wood sheets, as well as any straight line cuts. The
points that fit better to cylinders tend to lie only on curved cut paths.
We used an inlier threshold of τ = D/300 for the RANSAC algo-
rithm.

We say that two primitives are adjacent if the minimum distance
between their respective point sets is less than τ. We track adja-
cency between plane primitives and other primitives; let Adji be

the set of primitives adjacent to plane primitive i. We later use ad-
jacency to guide part depth estimation and to help bound the cut
path for each part.

At this stage, every plane primitive now corresponds to a part
Pi with transformation Ti that maps the x-y plane to that primitive
plane. This set of parts is highly redundant; e.g., a fully observed
cuboid part would have six planes corresponding to the sides of the
part, and thus this one part would initially be over-represented by
six parts. We address part redundancy in the part selection phase
at the end of this section. First, we estimate the cut path Θ and
thickness d for every candidate part.

4.2.2. Cut Region Approximation

Each detected plane is a candidate to be a part’s wood sheet plane.
We approximate its cut path as follows: collect the plane’s asso-
ciated points, transform them by T−1 and project them onto the
x− y plane, convolve (in 2D) with a Gaussian kernel (σ = D/400),
sample the resulting field over a regular grid, and extract a set of
isocontours (isovalue of 1/

√
e where e is Euler’s number). We as-

sign the contour with the largest enclosed region, along with any
countours inside that region, to be the approximate cut path. Note
that interior contours enable parts to have holes cut into them. For
more details, see the supplementary material.

4.2.3. Initial Sheet Thickness Estimation

The thickness of a part can be determined in two ways: by mea-
suring the cut surface or by the distance between its front and back
sheet planes. As we may not always see the back face (e.g., a part
facing downward near the floor that happens to be missed during
capture), we initially estimate the cut surface width to determine
thickness.

For each candidate part Pi, we estimate the cut surface width
using a discrete plane sweep approach. Specifically, we collect the
points associated with the part plane’s adjacent primitives Adji. We
then move the plane of Pi in the direction opposite its normal in
discrete jumps ∆d and form a histogram h(k) of adjacent points
within ∆d/2 of the plane offset by k∆d. We set ∆d = D/100.

When the plane sweeps past its cut surface, we expect a sharp
discontinuity in the histogram, i.e., a peak in −h′(k). We compute
−h′(k) using finite differences and identify robust peaks with non-
maximum suppression. The largest peak may not correspond to the
correct thickness; peaks closer to the part plane should take prece-
dence (see Figure 3 (b)). To address this, we weight the peak magni-
tudes with a spatial discounting factor, γ(k) = exp(−cfalloff · k∆d).
We set cfalloff = 5/D. The part thickness after this stage is set to
d = kpeak∆d, where kpeak is the bin of the largest robust, spatially-
weighted peak.

We additionally estimate thickness by considering planes that
could be the opposite side of a part’s wood sheet. Given part Pi, for
each part Pj with opposite sheet normal, we transform its cut path
Θ j by T−1

j and project it onto the plane of Pi. If Θi and Θ j overlap,
we consider the distance between the planes of Pi and Pj to be a
candidate thickness; we take the min over all of these thicknesses,
call it dopposite. If dopposite is within ∆d of di computed above, we
then set di = dopposite. During this step, we also record all other

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

d

-h’(k)

h(k)

-h’(k)*γ

(a) (b) (c)

Figure 3: Overview of part identification. (a) We begin by detect-
ing primitives and adjacencies between them, along with initial
shapes for each plane. (In this example, the far side was not ob-
served, thus the red curve does not have a symmetric counterpart).
(b) We illustrate finding the thickness of the blue part by sweep-
ing its plane and counting points on adjacent primitives near the
sweep plane, forming histogram h(k). We identify the plane-sweep
thickness as the largest robustly identify peak, weighted by a spa-
tial discount factor γ(k). (c) shows the selected subset of generated
candidate parts for the final model.

opposing parts j with cut path overlap that are within ∆d of the
final thickness (not just the closest part); call this set Oi, to be used
later for merging parts.

4.2.4. Part Selection

The final step in the part identification stage is to select a subset of
parts to be assembled and refined in the next stages. We first reduce
the number of parts through pruning and merging steps, and then
perform a global optimization to give a set of parts that covers S
well without too much overlap between parts.

To prune the part set, we first adopt a heuristic: parts are unlikely
to be much deeper (thicker) than they are wide. For example, if we
have a cuboid part that is 30cm x 30cm x 1cm, we will prefer a
30cm x 30cm face cut into a sheet 1cm thick over a 1cm x 30cm
face cut into sheet 30cm thick. We prune as follows: if the estimated
thickness of a Pi yields a cut surface with total surface area greater
than five times the area of Θi, we discard it. In Figure 3, the red part
is one such candidate and is thus discarded.

Next, we merge part candidates if we have evidence they corre-
spond to a single cut of the same wood sheet. In particular, for part
Pi, the set Oi contains parts with opposite faces, cut paths over-
lapping Pi’s, and with planes roughly di away from the plane of
Pi. These opposing parts are likely part of the same cut from the
same sheet, and thus we transform and project the cut path Θ j for
each part Pj ∈ Oi into the plane of Pi and take its union with Θi,
after which we discard part Pj. This step is useful to recover parts
only reconstructed partially from different sides due to occlusions.
We perform this process recursively until no such opposite-and-
overlapping candidates remain. Note that, when merging Pj into Pi,
we also merge the adjacency sets, i.e., Adji ← Adji ∪Adj j, useful
later for geometry refinement.

Among the remaining parts, we generally still have over-

1 2 3 4

a

b

a b

a

b

a

b

Figure 4: Types of unique connections based on which surfaces
make contact. Connection interfaces are shown in blue. Each part’s
sheet plane is highlighted in pink. (1) cut to center face ; (2) cut to
corner face ; (3) face-only; (4) cut-only. In (1), we illustrate that the
sheet planes need not be orthogonal, made possible with a bevel cut
to b.

representation, i.e., parts that overlap each other heavily. Some
amount of overlap is tolerable. E.g., two cuboid parts that meet at a
corner may overlap because it is unclear which part goes all the way
to the corner and which has a cut face that abuts that other part; we
will allow this small overlap and disambiguate it in the next section.
We now pose a (non-trivial) discrete optimization problem: select
the set of partsP that minimizes distance between S andP without
conflict. We say that a part is in conflict if more than half of its vol-
ume overlaps with other parts in P . We use simulated annealing to
optimize for the final subset, where our energy function is the total
squared distance between points in S and P . We scale down all di-
mensions by 1/D to ensure consistent behavior regardless of scale.
To solve this problem, we employ the Metropolis-Hastings (MH)
algorithm with transitions consisting of either adding or removing
parts from the solution set, while prohibiting changes that lead to
conflicts. Simply adding or removing individual parts at each step,
however, results in poor convergence due to the large number of
potential conflicts, so we additionally permit “replacement” transi-
tions in which a part in the set may be swapped for another outside
the set if adding the outside part would have otherwise caused it
to be in conflict. To be precise, our proposal distribution is the re-
sult of the following decision process: with equal probability, either
choose a part uniformly at random to add or remove from the set, or
perform a replacement move between two parts as discussed above.
We run MH for 1000 iterations with start and end temperatures of
10 and 0.1, respectively, and find that results typically converge
within 10 seconds.

4.3. Assembly Refinement

Model assembly involves determining which pairs of parts are con-
nected and the surfaces at which parts make contact, known as in-
terfaces. Our approach is to first identify the connections for indi-
vidual pairs of parts followed by a global alignment step that en-
sures manufacturability constraints over the graph of connections.
The result of finding and classifying the connections between parts
is a set of planar interface surfaces along which the pairs of parts
join, shown in blue in Figure 4.

4.3.1. Connections

First, we identify pairs of parts to connect. Specifically, if the
minimum distance between the surfaces of two parts is less than
τc = D/30, then they are connected.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

a) c)

b)

Figure 5: Two competing corner configurations (left), and the
seams in the image used to disambiguate them. The color differ-
ence suggests that the green line is the boundary between parts,
rather than the red line.

Next, we determine the type of connection between the parts.
Based on our fabrication assumptions we identify 4 possible types
of unique connections according to the types of surfaces that make
contact, illustrated in Figure 4. We exclusively deal with connec-
tion types 1 and 2, as we did not observe the other types in any of
our example models. If the sheet planes of parts a and b are not
orthogonal, as shown in Figure 4 (1), we use bevel cuts to satisfy
the planar contact. To detect type 1 connections between two parts
a and b, we determine whether a and b form a T-junction by check-
ing if b terminates at a’s sheet plane, and in the reverse case, if a
terminates at b’s sheet plane. If both a and b terminate at the other
part’s sheet plane, we say they meet at a corner and classify the
connection as type 2. For more details on the geometry involved,
see the supplementary material.

4.3.2. Disambiguating corners

A type 2 connection has two equally viable solutions for how the
two parts meet. To resolve this ambiguity, we look for evidence of
a seam in the images that may indicate which part extends to the
corner (see Figure 5 (a) and (b)). Given the approximate part ge-
ometry, we can determine which images have an unoccluded view
of the (possible) seam. For each such image Ii, we compute two
measures of visual discontinuity. First, we compute the gradient in
the direction orthogonal to the seam at each pixel along the seam
and average their magnitudes; call this value gi. We additionally
compute a very coarse gradient across the seam by computing the
average color within a rectangle of width τc on either side of the
seam (see Figure 5 (c)) and compute the magnitude of the differ-
ence of the colors, call it ḡi. The seam score for this view is just
gi + ḡi. We then average this score across all views of the seam to
compute the final seam score and choose the type 2 configuration
with the higher seam score. If there are no views of a seam (e.g.,
if it is against the floor and thus not viewable), then we assign it a
seam score of 0.01 (where pixel intensities range form 0.0 to 1.0)
so that it can still be chosen if the other seam score is low (not a
seam).

4.3.3. Interface surfaces & constraints

After determining the connection types, we compute the finite in-
terface surfaces within each interface plane indicating where the
parts make contact. These give an estimate of where the final parts
will make contact for purposes of constraining their shapes. In both
cases 1 and 2, we find this by intersecting the solid shape of part

Figure 6: Several rectified images (left) used to obtain a segmenta-
tion mask of the cut region of a part (right). The regions where
M = 1 are shaded dark. Interface constraints are shown as the
red regions; other surface constraints, such as those arising from
neighboring detected planes, are shown as orange lines.

b with the abutting plane of part a, offset by τc toward part b to
correct for any gaps between parts caused by Θ

0. This interface
can only take the form of one or more rectangles, each with width
equal to the thickness of part b.

The constraints imposed by an interface surface on part b’s cut
shape are line segments that the shape cannot cross (without butting
into another part), formed by the projection of the above surfaces
onto the plane of part b. There are also additional constraints im-
posed by type 2 connections: In our final shape, the parts should
meet perfectly at the corner determined by the line of intersection
of the sheet planes from a and b on the outer surface of the corner.
Finally, aside from connections, we have the constraints implied by
adjacent plane primitives in Adji that meet the part plane with a
convex interior angle, since neighboring cut surfaces are evidence
of the shape boundary. We exclude adjacent planes associated with
connected parts, as satisfying the interface constraints should take
precedence. These planes only correspond to planar cut faces; we
do not include adjacent cylinder primitives, as we found their fits to
be less faithful to the curves that they tend to fit. These constraint
segments in each part’s sheet plane are used during geometry re-
finement so that the result conforms to detected surfaces and the
precise connections inferred above. They define a half-space in the
plane that belongs outside the cut region, for points that project to
the line within the segment boundaries. For each constraint seg-
ment, we also make note of the angle of the interface surface rela-
tive to the part so that we can accurately define the bevel cut angle
to enable this contact later.

We also expect the final model to lie flat against the ground. To
incorporate this constraint, we add a ground plane, positioned at the
lowest point of the input geometry, and form a fake "part" which we
include in the above assembly analysis above to obtain additional
contact constraints for any parts in contact with the floor.

4.4. Geometry Refinement

In the final stage of our pipeline, we refine the cut path for each
part to be consistent with assembly constraints and image evidence
and to be represented with concise, piecewise smooth curves. We
do this in two stages: Image co-segmentation and constrained curve
fitting.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

4.4.1. Joint Image-Based Segmentation

We leverage multiple views to optimize for a binary segmentation
mask M in the sheet plane representing the cut region for each part.
Taking inspiration from [KSS12], aimed at segmentation and plane
reconstruction, we pose our multi-view segmentation problem as an
MRF optimization. Unlike [KSS12], we use the known part plane
as reference, leverage visibility cues in the rest of the reconstruc-
tion, and incorporate assembly constraints in the segmentation.

In particular, for part Pi, we project each image I j from its cam-
era viewpoint onto the nearest part plane of Pi. We resample the
projection in the plane to form rectified image Ĩ j. We then optimize
for M by defining a binary MRF on the set of pixels V in M with
4-connected grid edges denoted by E , with the energy

EMRF = ∑
x∈V

Ed(x)+λs ∑
(x,y)∈E

Es(x,y) (1)

where Ed is an appearance-based cost, and Es is a pairwise edge-
sensitive smoothness term. These energy terms depend on the per
pixel mask labels M(x) (1 for inside the cut path, 0 for outside),
and we seek the lowest energy labeling with respect to all views
together. We set λs = 50.

Data term We model appearance using Gaussian Mixture Models
(GMMs) with 5 components for the colors (in LAB space) inside
and outside the part’s current cut region for each view, which gives
us probabilities P1

j and P0
j that a pixel belongs inside or outside,

respectively, for view j. For the interior, we erode the cut region by
τc (multiplied by the world-to-pixel scale factor) since the pixels
near the boundary of the initial cut region are uncertain, and then
consider only the subset of those pixels potentially visible to view
j; for this purpose we construct a visibility mask V j(x) which is 0 if
a ray from view j to pixel x intersects another part before reaching
the part plane and 1 otherwise. For the exterior, we similarly dilate
the cut region and consider all pixels outside of it with V j(x) = 1.

We now define the data term as:

Ed(x) =−
1

NV (x)
·

N

∑
j=1

V j(x) · log(PM(x)
j (x)) (2)

where NV (x) = ∑
N
j=1 V j(x) is the number of views that can see

pixel x on the part plane. If NV is 0, we set Ed to 0 regardless of
M(x). In general, some “outside” pixels may belong to other parts
with similar appearance, so we modify Ed to incorporate the con-
straint segments computed earlier: Ed(x) is set to∞ for M(x) = 1
if x is in the excluded region of any of the constraint segments.
The result of using these constraint segments for segmentation is
shown in Figure 6 (b). The red interface constraints prevent the
mask region from including surfaces from adjacent parts, which
purely appearance-based segmentation would do.

Smoothness term We define Es using a contrast-sensitive Potts
model to regularize the result while aligning the mask with high-
contrast regions which we expect at shape boundaries.

Es(x,y)= |M(x)−M(y)|exp

(
− 1

NV (x)σ2
s

N

∑
j=1

V j(x)(Ĩ j(x)− Ĩ j(y))2

)
(3)

where σs (set to 50) controls the strength of the smoothing penalty
falloff as contrast increases. Analogous to how we modify Ed , we
also set Es(x,y) to zero in cases where the 3D locations corre-
sponding to x and y straddle a constraint segment, to encourage
the boundary of M to adhere to these known edges; i.e., there is no
penalty for label change at these boundaries where label changes
are likely.

In practice, for efficiency, we only consider views I j for which
V j(x) = 1 for at least half the pixels inside Θ, and then use the
top seven views sorted by how close their central viewing rays are
aligned with the plane normal. Note that this set of views may come
from one or both sides of the part. We solve the MRF using graph
cuts [BJ01] to obtain the final mask. We also re-use the resulting
M (cut path) to learn more accurate GMM parameters, and re-run
the above algorithm once more to slightly improve results.

Updating model topology It is possible for M to have more than
one connected component after optimizing M with the assembly
constraints, if multiple parts were detected as one in previous steps
(as is the case in Figure 6; the legs are forced into separate pieces by
the assembly constraints). We restructure the model in these cases
by adding each connected component in M as a separate part. Fi-
nally, we rerun the assembly stage to find new connections and con-
straints due to the updated shapes and potentially separated parts.
We repeat the segmentation and assembly steps until no new con-
nections are found (we observe at most 1 or 2 iterations in our ex-
periments).

4.4.2. Global Alignment

Before extracting a final CAD model, we align connected parts that
are close to orthogonal, as right angles are a feature of many man-
made designs. This is important because it simplifies the fabrication
process considerably as well; parts connected at right angles only
require orthogonal cuts, which can be made with a wider variety of
tools. Since this optimization only concerns small perturbations to
the orientation, we represent each part Pi by its sheet plane πi and
optimize over plane parameters (normal ni and offset oi) such that
detected orthogonal connected parts are aligned. We minimize the
total squared distance of the planes to their detected point sets to
regularize the result. We take an approach similar to [LWC*11] for
plane alignment; we find

min
∀n,o∑

i
Ep(Si,πi) (4)

subject to ni ·n j = 0 for all i, j for which Pi and Pj are connected
and the angle between ni n j is within α of 90◦, where Si is plane
i’s point set, and Ep is the total squared distance. To ensure unit
normals, we represent each ni using 2 angle parameters. We solve
this global optimization problem using a sequential least-squares
quadratic programming (SLSQP) solver, and then update Ti to align
the parts with these new plane parameters.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

4.4.3. Thickness Regularization

Typically, an object is constructed by cutting from a small number
of wood sheets, with a small number of thicknesses. However, since
our initial thicknesses are based on analysis of noisy point clouds
(4.2.3), we typically estimate a different thickness for every part.
Minimizing the number of distinct thicknesses in a model makes
it more practical to build and therefore more plausible. Thus, we
cluster thicknesses by averaging any part thicknesses that differ by
less than a threshold τc.

4.4.4. Constrained Curve Fitting

Our curve fitting approach draws ideas from from prior work that
trades-off global fit accuracy with curve complexity [PS83; FF02;
FCS05] as well as prior work that favors straight edges and sharp
corners DOMINICI, SCHERTLER, GRIFFIN, et al. [DSG*20], and
applies them to the context of handling imperfect binary masks,
with certain known edges that the solution must adhere to.

For each part, the output of the segmentation step is a cut path
defined by the raster boundary of a segmentation mask; it is neither
exact nor concise. Our final step is to extract a CAD representation
of this path by fitting a low-dimensional 2D shape representation
that approximates the segmentation boundary while adhering to any
contact constraints. In related works on vectorization, the percep-
tual criteria of accuracy and simplicity, along with continuity and
regularity, are prominent objectives ([HDS*18; KL11; DSG*20]).
We find these objectives to be well-suited to our problem: We desire
a shape that is close to the input boundary while adhering exactly
to the contact constraints, and which also provides a simple, con-
tinuous explanation for the input mask boundary, while capturing
regularity in the man-made objects that are our focus.

We represent cut paths as closed G0 continuous polycurves con-
sisting of connected cubic Bézier curves and straight line segments,
where we call the endpoints between neighboring segments nodes.
For each part, our algorithm takes as input the raster boundary of
the segmentation mask, a (clockwise) ordered set of 2D points X .
We restrict nodes to lie on points in X and therefore have a discrete
set of possible nodes, where each segment is the least-squares best
fit for the range of data points between nodes.

We solve for the curves by building on the dynamic program-
ming approach outlined in [PS83]. Let ei j be the cost of fitting
a curve to the subrange between Xi and X j, which is the sum of
squared point distance error plus a constant curve cost c1. We de-
fine a sub-total energy Ei j as the least total error over all possible
choices of nodes between Xi and X j, giving rise to the recurrence
relation Ei j = mink(Eik + ek j), i < k < j, allowing us to solve for
the optimal node locations using dynamic programming. Support
for G1 continuity at curve transitions is added by pre-computing
tangents at each point in X using curves fit to a local point neighbor-
hoods, and constraining the end tangent directions of curves during
fitting.

We add support for different curve types by extending Ei j to Ei jk,
where k is the type of the curve ending at X j; sub-total energies are
now computed by summing over all previous curve types, as well
as all previous nodes. We now have separate curve costs ck for each
type. We let k = 0 indicate line segments, and set the cost c0 = c1/2

to encode a preference for straight lines. For more implementation
details, we refer the reader to the supplementary material. We also
wish to capture both sharp corners and smooth transitions in our
solution. Because the input may contain artifacts, and furthermore
is not representative of the final boundary that adheres to all the
desired constraints, we do not detect sharp corners in the input as is
usually done in vectorization, but rather incorporate the choice into
our curve fitting algorithm to encourage sharp corners that lead to
a better fit to the data. To allow sharp and smooth tangent behavior
at nodes, neighboring curves must be able to agree on either G1
continuous or unconstrained tangents. To make this possible, we
parameterize right end tangent behavior using two types k = 1 and
k = 2, where each type is a cubic Bézier curve with a constrained
and free right end tangent, respectively. This way, we can ensure
that each curve’s left tangent behavior matches the previous curve’s
right tangent behavior when computing Ei jk. Finally, we can filter
out sharp corners by requiring that a curve with type k = 2 must
meet the next curve with an angle greater than αmin. Because an
unconstrained curve will always fit with smaller MSE error, cases
where the tangent angle is > αmin represent unconstrained curves
that differ significantly, and therefore should be preferred in the
interest of accuracy. We set the curve cost c1 = (D

1000W)2 where W
is the width of the input boundary’s mask, and αmin = 10◦ in our
experiments.

The constraint segments used in the segmentation stage are also
used in curve fitting; we wish for the curve to "snap" to these seg-
ments wherever they are near enough, or if it would result in a sim-
pler solution. We incorporate these constraints into our curve fitting
algorithm by first identifying points in X within τc of a constraint
segment, and forcing any segment fit to a range containing these
points to be a straight line segment. The result is shown in Figure
7 (a) and (b); the dynamic programming fit is guaranteed to pro-
duce line segments where they are needed, and does so while still
fulfilling its other objectives of continuity and simplicity.

Post-processing Having guaranteed straight edge segments in the
vicinity of constraint segments, we project the nodes bordering lines
near these constraint segments to the exact lines of these constraints
to obtain a fabricable solution (Figure 7 (c)). Neighboring curves
are modified so as to preserve their tangent angle with the displaced
lines. It is not always possible to ensure consistent tangent behavior
in the above framework; transitions between curves and line seg-
ments are troublesome since the latter lack the degrees of freedom
to adhere to the pre-computed tangents used for smooth transitions.
The inherent order of curves considered by the dynamic program-
ming algorithm prevents curves from correcting for the behavior of
subsequent neighbors. We therefore apply an additional smoothing
step in which corners below angle αmin are made smooth by alter-
ing curve tangents. This step is only done if the resulting change
to the shape is not too drastic; we approximate this change by the
total displacement of Bézier control points, which we limit to τc.

We additionally find lines that are parallel/orthogonal (within an-
gle α) and further align them. Constraint line orientations are left
unchanged, and any edges nearly parallel to them copy their ori-
entation, and likewise for nearly orthogonal edges. In many cases,
this produces 90 degree angles in shapes where parts connect.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

a) b) c)

Figure 7: Left to right: Polycurve fitting without and with con-
straints. Input points are shown in black, output curves in green.
Constraints are shown as purple line segments; the pink region rep-
resents the tolerance of the constraint. In (a), the unconstrained
solution fits a single curve to the upper points, while in (b) the con-
strained solution adds line segments which preserve smooth transi-
tions, allowing them to be trivially displaced to adhere to the con-
straints while preserving smoothness (c).

5. Experimental Results

We tested our algorithm on seven carpentered objects of varying
complexity, i.e., varying numbers of parts with some objects ex-
hibiting more difficult features, such as non-axis aligned parts (the
diagonal bookshelf and bookholder), shapes with holes and curves
(the stool and tray), non-orthogonal connections, and one which de-
viates slightly from our model assumptions in the form of smoothed
corners and grooves in the sheet plane, as well as having some
highly occluded part sheet planes (complex stool). We obtained
fabricable reconstructions for six of the objects, and discuss the
seventh as a limitation in the final section.

Experimental Setup We photographed our objects with a hand-
held Google Pixel 3 camera in two distinct, well-lit indoor loca-
tions with a variety of backgrounds (different rugs, etc.). For each
model, we took between 30 and 70 photos from viewpoints fac-
ing the object and situated approximately on a hemisphere around
it. We used RealityCapture [Cap20] to recover camera poses and
semi-dense point cloud reconstructions which requires some minor
user input to select the reconstruction region to isolate the object
one desires to capture, in particular to omit the ground plane.

Qualitative assessment Figure 8 shows results for six of the mod-
els. In all cases, there were faces of the model that were either miss-
ing or incompletely represented in the point cloud (second row),
such as the unseen undersides of the top of the stool and night-
stand, as well as faces that are less well-textured or in shadow, as
with some parts of the bookshelf. For all six models shown, we
were able to generate fabricable results, shown in the fourth row.
In the third row, we superimpose the reconstructed CAD model on
the input image showing how faithfully our reconstructions fit to
the observed object. Some minor failure regions include the hori-
zontal pieces of the nightstand, which are slightly thicker and, in
the bookshelf, two of the parts are slightly translated from their
original position. In the final row, the cut shapes for all the parts in
the output are shown as combinations of line segments and Bézier
curves. The nodes, shown in blue, indicate the transitions between
curves and may either be smooth or sharp corners. For the most
part, these simplified curves are consistent with the input, but in the
case of the tray, the smooth transitions on either side of the rounded

model

#i
m

ag
es

#p
ar

ts
(a

ct
ua

l)
#p

ar
ts

(fo
un

d)
RM

SE
(%

of
D

)
id

en
tifi

ca
tio

n
as

se
m

bl
y

se
gm

en
ta

tio
n

cu
rv

e fi
tti

ng

stool 68 4 4 0.433 3s 0.3s 267s 129s
nightstand 37 10 7 0.477 25s 25s 498s 70s
bookshelf 37 7 7 0.204 8.7s 4.7s 507s 31s
tray 30 5 5 0.259 2.5s 26s 54s 23s
bookholder 42 6 6 0.406 5.2s 27s 131s 23s
tilted stool 48 4 4 0.432 15s 0.038s 199s 20s

Table 1: Statistics for five input models, showing the complexity of
each model, the geometric accuracy of the reconstruction, and the
time taken in each stage of the algorithm

handles, as well as on the bottom of the handholds, are sharpened.
The cut shapes also reveal that the back side of the nightstand was
detected as a single piece. In fact, that piece is made up of 4 smaller
pieces, as shown in Figure 9 (a). Though we do not decompose de-
tected parts based on detected seams, this result can be “fixed” by
adding cuts after the fact. To evaluate the importance of the meth-
ods in our technique, we also show some results with various parts
of our pipeline simplified in Section 4 of the supplemental material.

Quantitative evaluation To measure the accuracy of the final fab-
ricable, simple CAD model to the original object, we use the RMSE
distance of the point cloud to the model surface, multiplied by 1/D
for scale independence. As shown in Table 1 for the same five mod-
els in Fig 8, this error is on the order of 0.4% of the model width, in-
dicating that in terms of geometric displacement, our reconstructed
shapes remain true to the original objects.

We also measure the number of incorrect connections, i.e. extra,
missing, or misclassified connections. Among the five models, only
the nightstand misses some connections; the four parts making up
the back surface are detected as one part (see Figure 9 (a)).

Another important measure of accuracy is in the representa-
tion of the cut paths themselves; smooth curves and sharp corners
should be reflected in the final result. Two of our models contain
smooth curves: In the case of the stool, these features were handled
without problems; for the tray, some additional corners are present
in the handle holes, as well as on either side of the arches.

6. Limitations and Future Work

A key feature and a notable limitation of our method is its reliance
on image evidence. The images enable the MVS reconstruction,
corner assembly disambiguation, and recovery of nice cut paths.
However, we can only reconstruct what we observe sufficiently.
If a model has structure that hides some parts from view, it can
be difficult or impossible for our method to accurately reconstruct
the model. In the model in Figure 9b (“complex stool”), the parts
highlighted in red are occluded by the boards directly above them,
causing them to be detected as disjoint, floating pieces; the result is
not fabricable or even connected. This might have been addressed
by observing the underside of the red parts (and straightforwardly
handling type 3 connections), but the underside was out of view. In

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

Figure 8: Results from six example models. Left to right: stool, nightstand, bookshelf, tray, bookholder, tilted stool. The results shown, from
top to bottom: representative input image; reconstructed point cloud; our result superimposed on the input image; a clean render of the
result; and the 2D cut paths, with curve endpoints shown as blue dots. Bevel cut surfaces are displayed in red and green, indicating that the
surface normal faces into or out of the page, respectively.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

a) b)

Figure 9: Limitations of our ability to capture part some part struc-
tures. In (a), the nightstand contains four co-planar parts that are
merged into one in our result; the seams where they should be cut
apart are highlighted in red. For the complex stool in (b), failure
to detect a complete set of part candidates causes the result to be
invalid.

future work, it would be interesting to explore the use of additional
priors or learned semantics to reconstruct objects with incomplete
observations. For instance, if a model could not be assembled only
with detected parts (perhaps due to floating, unconnected pieces),
we could potentially hallucinate new structures. Another way to ad-
dress the method’s reliance on image evidence would be to extend
the system to enable real-time capture by incorporating new obser-
vations incrementally, and guiding the user to capture new images
that resolve ambiguities or missing geometry in the model.

Our method has a number of thresholds, cost terms, and other pa-
rameters that affect the final quality of the result. Many of these pa-
rameters were related to object dimensions, to limit dependency on
object size. The method, particularly the segmentation, and curve
fitting stages, are sensitive to the choice of some of these parame-
ters. We determined good values by experimentation up front and
then used the same parameter values (or proportionality constants
for parameters related to object scale) for every model. In the fu-
ture, it would be desirable to to detect some of these parameters
adaptively to improve the robustness of our method. For instance,
some specific stock thicknesses are more common as building ma-
terials, so part thicknesses could be used to detect the true object
scale. This can further be used to ensure that parts can be made
from readily available materials.

It might also be worth exploiting alternative or complementary
features derived from the input data. For example, we could use
all seams in the wood as evidence of cuts to find connected co-
planar parts as in Figure 9a. To incorporate arbitrary seams ro-
bustly, we would need to account for other texture features, such
as ever-present wood grain, that could be mistaken for cuts. In ad-

Figure 10: Examples of procedurally generated connectors used
for assembly.

dition, man-made objects often have symmetries and repetitions,
which could be exploited both to aid in detection and to further
regularize the model. Lastly, in addition to planar surfaces detected
from point clouds, we could also use the detected curved (cut) sur-
faces to guide segmentation. This would also help minimize the
bias towards straight lines observed in the tray example.

Since our method identifies where and how parts are connected
by classifying the types of connection (Figure 4), we can procedu-
rally define connectors over the contact surface for each connection
type. In our implementation we use two nails for each contact be-
tween parts, one at each end of the participating cut surface, as
shown in Figure 10. This information can be used to create phys-
ical reproductions of the models, such as that shown in Figure 1.
We leave it to future work to consider the problem of assembly in
greater detail, in particular ensuring that connectors do not obstruct
each other and determining easy-to-follow assembly instructions,
which should ensure that a sequence of steps exists such that the
model can be assembled without parts obstructing other parts, or
the tools needed to assemble them. One direction is to adapt prior
work in automatic generation of assembly instructions to the output
of our method [APH*03].

Finally, it would be interesting to extend our method to more
fabrication operations and objectives. Within carpentry, supporting
more complex joinery would expand the possible geometries that
could be reverse engineered. We currently assume planar contacts,
both because they are common and because the internal structure of
joints cannot always be observed without disassembly (such as with
mortise and tenon joints). In some cases, however, it may be pos-
sible to parse joinery directly through image analysis. Optimizing
joinery with respect to structural stability, similar to [YKGA17],
or additional objectives such as fabrication cost and packing ef-
ficiency [WSP21] could also guide reconstruction of joinery and
other hidden structure.

7. Conclusion

In this work, we propose a method for recovering accurate repre-
sentations of built, carpentered objects from a set of photographs
by working within the space of the fabrication process itself. This
representation is both highly expressive and subject to real world
constraints, as the process describes models that can be physically
realized, making it a good candidate for solving inverse problems

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

in 3D reconstruction. Given enough images covering the surfaces,
our solution in the carpentry domain can recover the parts and con-
nections that comprise captured real world objects, complete with
the simplified contours that most concisely describe the cut paths
of the model, making it easy to edit with CAD software to cre-
ate design variations. We hope this result will inspire future work
at the intersection of fabrication and computer vision, leading to
more end-to-end systems for 3D reconstruction that can take into
account multiple materials and fabrication processes.

Acknowledgements

This work was supported by National Science Foundation grants
CCF-2017927 and EEC-2035717, UW Reality Lab funding from
Facebook, Google, and Futurewei. A. Schulz acknowledges the
generous support of the Google Faculty Research Award.

References
[ACA*19] ARAÚJO, CHRYSTIANO, CABIDDU, DANIELA, ATTENE,

MARCO, et al. “Surface2Volume: Surface Segmentation Conforming
Assemblable Volumetric Partition”. ACM Trans. Graph. 38.4 (July
2019) 3.

[ADD*19] AVETISYAN, ARMEN, DAHNERT, MANUEL, DAI, ANGELA,
et al. “Scan2CAD: Learning CAD Model Alignment in RGB-D Scans”.
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2019 2.

[APH*03] AGRAWALA, MANEESH, PHAN, DOANTAM, HEISER, JULIE,
et al. “Designing effective step-by-step assembly instructions”. ACM
Transactions on Graphics (TOG) 22.3 (2003), 828–837 12.

[ASF*13] ARIKAN, MURAT, SCHWÄRZLER, MICHAEL, FLÖRY, SIMON,
et al. “O-Snap: Optimization-Based Snapping for Modeling Architec-
ture”. ACM Trans. Graph. 32.1 (Feb. 2013) 3.

[BCF*18] BUONAMICI, FRANCESCO, CARFAGNI, MONICA, FURFERI,
ROCCO, et al. “Reverse engineering modeling methods and tools: a sur-
vey”. Computer-Aided Design and Applications 15.3 (2018), 443–464 2.

[BJ01] BOYKOV, YURI Y and JOLLY, M-P. “Interactive graph cuts for
optimal boundary & region segmentation of objects in ND images”.
Proceedings eighth IEEE international conference on computer vision.
ICCV 2001. Vol. 1. IEEE. 2001, 105–112 8.

[BMV01] BENKŐ, PÁL, MARTIN, RALPH R, and VÁRADY, TAMÁS.
“Algorithms for reverse engineering boundary representation models”.
Computer-Aided Design 33.11 (2001), 839–851 2.

[Cap20] CAPTURING REALITY. RealityCapture. Version 1.1.1. May 12,
2020. URL: https://www.capturingreality.com 4, 10.

[CJ93] CHIVATE, PRAMOD N and JABLOKOW, ANDREI G. “Solid-model
generation from measured point data”. Computer-Aided Design 25.9
(1993), 587–600 2.

[CRZ00] CRIMINISI, ANTONIO, REID, IAN, and ZISSERMAN, ANDREW.
“Single view metrology”. International Journal of Computer Vision 40.2
(2000), 123–148 3.

[CZS*13] CHEN, TAO, ZHU, ZHE, SHAMIR, ARIEL, et al. “3-sweep: Ex-
tracting editable objects from a single photo”. ACM Transactions on
Graphics (TOG) 32.6 (2013), 1–10 2.

[DAB15] DEMIR, UNDEFINEDLKE, ALIAGA, DANIEL G., and BENES,
BEDRICH. “Coupled Segmentation and Similarity Detection for Archi-
tectural Models”. ACM Trans. Graph. 34.4 (July 2015) 3.

[DIP*18] DU, TAO, INALA, JEEVANA PRIYA, PU, YEWEN, et al. “Inver-
seCSG: Automatic conversion of 3D models to CSG trees”. ACM Trans-
actions on Graphics (TOG) 37.6 (2018), 1–16 2.

[DSG*20] DOMINICI, EDOARDO ALBERTO, SCHERTLER, NICO, GRIF-
FIN, JONATHAN, et al. “PolyFit: perception-aligned vectorization of
raster clip-art via intermediate polygonal fitting”. ACM Transactions on
Graphics (TOG) 39.4 (2020), 77–1 9.

[DTC04] DICK, ANTHONY R, TORR, PHILIP HS, and CIPOLLA,
ROBERTO. “Modelling and interpretation of architecture from several
images”. International Journal of Computer Vision 60.2 (2004), 111–
134 3.

[DTM96] DEBEVEC, PAUL E., TAYLOR, CAMILLO J., and MALIK, JI-
TENDRA. “Modeling and Rendering Architecture from Photographs:
A Hybrid Geometry- and Image-Based Approach”. Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’96. New York, NY, USA: Association for Comput-
ing Machinery, 1996, 11–20. ISBN: 0897917464 3.

[EH96] ECK, MATTHIAS and HOPPE, HUGUES. “Automatic reconstruc-
tion of B-spline surfaces of arbitrary topological type”. Proceedings of
the 23rd annual conference on Computer graphics and interactive tech-
niques. 1996, 325–334 2.

[FAG*20] FILOSCIA, I., ALDERIGHI, T., GIORGI, D., et al. “Optimizing
Object Decomposition to Reduce Visual Artifacts in 3D Printing”. Com-
puter Graphics Forum 39.2 (2020), 423–434 3.

[FCS05] FLEISHMAN, SHACHAR, COHEN-OR, DANIEL, and SILVA,
CLÁUDIO T. “Robust moving least-squares fitting with sharp features”.
ACM transactions on graphics (TOG) 24.3 (2005), 544–552 9.

[FF02] FARIN, GERALD E and FARIN, GERALD. Curves and surfaces for
CAGD: a practical guide. Morgan Kaufmann, 2002 9.

[FSY*15] FU, CHI-WING, SONG, PENG, YAN, XIAOQI, et al. “Computa-
tional Interlocking Furniture Assembly”. ACM Trans. Graph. 34.4 (July
2015), 91:1–91:11 3.

[FW16] FAN, LUBIN and WONKA, PETER. “A probabilistic model for ex-
teriors of residential buildings”. ACM Transactions on Graphics (TOG)
35.5 (2016), 1–13 3.

[GDP*18] GANAPATHI-SUBRAMANIAN, VIGNESH, DIAMANTI, OLGA,
PIRK, SOEREN, et al. “Parsing geometry using structure-aware shape
templates”. 2018 International Conference on 3D Vision (3DV). IEEE.
2018, 672–681 3.

[GJG16] GARG, AKASH, JACOBSON, ALEC, and GRINSPUN, EITAN.
“Computational design of reconfigurables.” ACM Trans. Graph. 35.4
(2016), 90–1 3.

[HDS*18] HOSHYARI, SHAYAN, DOMINICI, EDOARDO ALBERTO,
SHEFFER, ALLA, et al. “Perception-Driven Semi-Structured Boundary
Vectorization”. ACM Trans. Graph. 37.4 (July 2018) 9.

[HWK15] HUANG, QIXING, WANG, HAI, and KOLTUN, VLADLEN.
“Single-view reconstruction via joint analysis of image and shape col-
lections”. ACM Transactions on Graphics (TOG) 34.4 (2015), 1–10 2.

[JBX*20] JONES, R. KENNY, BARTON, THERESA, XU, XIANGHAO, et
al. “ShapeAssembly: Learning to Generate Programs for 3D Shape
Structure Synthesis”. ACM Transactions on Graphics (TOG) 39.6 (Nov.
2020) 3.

[KHLM17] KOO, BONGJIN, HERGEL, JEAN, LEFEBVRE, SYLVAIN, and
MITRA, NILOY J. “Towards Zero-Waste Furniture Design”. IEEE
Transactions on Visualization and Computer Graphics 23.12 (Dec.
2017), 2627–2640 3.

[KL11] KOPF, JOHANNES and LISCHINSKI, DANI. “Depixelizing Pixel
Art”. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011)
30.4 (2011), 99:1–99:8 9.

[KLY*14] KOO, BONGJIN, LI, WILMOT, YAO, JIAXIAN, et al. “Creat-
ing works-like prototypes of mechanical objects”. ACM Transactions on
Graphics 33.6 (2014) 3.

[KSS12] KOWDLE, ADARSH, SINHA, SUDIPTA, and SZELISKI, RICK.
“Multiple View Object Cosegmentation using Appearance and Stereo
Cues”. Proceedings of the 12th European Conference on Computer Vi-
sion (ECCV). Springer Verlag, Oct. 2012 8.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://www.capturingreality.com

J. Noeckel, H. Zhao, B. Curless, & A. Schulz / Fabrication-Aware Reverse Engineering for Carpentry

[LOMI11] LAU, MANFRED, OHGAWARA, AKIRA, MITANI, JUN, and
IGARASHI, TAKEO. “Converting 3D Furniture Models to Fabricatable
Parts and Connectors”. ACM SIGGRAPH 2011 Papers. SIGGRAPH ’11.
New York, NY, USA: ACM, 2011, 85:1–85:6. ISBN: 978-1-4503-0943-
1 2, 3.

[LPT13] LIM, JOSEPH J, PIRSIAVASH, HAMED, and TORRALBA, ANTO-
NIO. “Parsing ikea objects: Fine pose estimation”. Proceedings of the
IEEE International Conference on Computer Vision. 2013, 2992–2999 2.

[LSD*19] LI, LINGXIAO, SUNG, MINHYUK, DUBROVINA, ANASTASIA,
et al. “Supervised fitting of geometric primitives to 3d point clouds”.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, 2652–2660 2.

[LSZ*18] LIN, M., SHAO, T., ZHENG, YOUYI, et al. “Recovering Func-
tional Mechanical Assemblies from Raw Scans”. IEEE Transactions on
Visualization and Computer Graphics 24 (2018), 1354–1367 3.

[LVLR19] LEEN, DANNY, VEUSKENS, TOM, LUYTEN, KRIS, and RA-
MAKERS, RAF. “JigFab: Computational Fabrication of Constraints to Fa-
cilitate Woodworking with Power Tools”. Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. CHI ’19. New
York, NY, USA: ACM, 2019, 156:1–156:12. ISBN: 978-1-4503-5970-
2 3.

[LWC*11] LI, YANGYAN, WU, XIAOKUN, CHRYSATHOU, YIORGOS, et
al. “Globfit: Consistently fitting primitives by discovering global rela-
tions”. ACM SIGGRAPH 2011 papers. 2011, 1–12 8.

[NLX18] NIU, CHENGJIE, LI, JUN, and XU, KAI. “Im2struct: Recovering
3d shape structure from a single rgb image”. Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, 4521–
4529 3.

[PS83] PLASS, MICHAEL and STONE, MAUREEN. “Curve-Fitting with
Piecewise Parametric Cubics”. SIGGRAPH Comput. Graph. 17.3 (July
1983), 229–239 9.

[Rob63] ROBERTS, L. G. “Machine perception of three-dimensional
solids”. PhD thesis. Massachusetts Institute of Technology, 1963 3.

[SFJ*17] SONG, PENG, FU, CHI-WING, JIN, YUEMING, et al. “Recon-
figurable Interlocking Furniture”. ACM Trans. Graph. 36.6 (Nov. 2017),
174:1–174:14 3.

[SFK*19] SMIRNOV, DMITRIY, FISHER, MATTHEW, KIM, VLADIMIR
G, et al. “Deep Parametric Shape Predictions using Distance Fields”.
arXiv preprint arXiv:1904.08921 (2019) 2, 3.

[SSB*17] SCHULZ, ADRIANA, SHAMIR, ARIEL, BARAN, ILYA, et al.
“Retrieval on parametric shape collections”. ACM Transactions on
Graphics (TOG) 36.1 (2017), 1–14 2.

[SSS*08] SINHA, SUDIPTA N, STEEDLY, DREW, SZELISKI, RICHARD,
et al. “Interactive 3D architectural modeling from unordered photo col-
lections”. ACM Transactions on Graphics (TOG) 27.5 (2008), 1–10 3.

[SWK07] SCHNABEL, RUWEN, WAHL, ROLAND, and KLEIN, REIN-
HARD. “Efficient RANSAC for point-cloud shape detection”. Computer
graphics forum. Vol. 26. 2. Wiley Online Library. 2007, 214–226 5.

[TLS*19] TIAN, YONGLONG, LUO, ANDREW, SUN, XINGYUAN, et al.
“Learning to infer and execute 3d shape programs”. arXiv preprint
arXiv:1901.02875 (2019) 3.

[TSG*17] TULSIANI, SHUBHAM, SU, HAO, GUIBAS, LEONIDAS J, et
al. “Learning shape abstractions by assembling volumetric primitives”.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, 2635–2643 3.

[UHS*20] UY, MIKAELA ANGELINA, HUANG, JINGWEI, SUNG, MIN-
HYUK, et al. “Deformation-aware 3d model embedding and retrieval”.
European Conference on Computer Vision. Springer. 2020, 397–413 2.

[UIM12] UMETANI, NOBUYUKI, IGARASHI, TAKEO, and MITRA,
NILOY J. “Guided Exploration of Physically Valid Shapes for Furniture
Design”. ACM Trans. Graph. 31.4 (July 2012), 86:1–86:11 3.

[WGY*12] WANG, JUN, GU, DONGXIAO, YU, ZEYUN, et al. “A Frame-
work for 3D Model Reconstruction in Reverse Engineering”. Comput.
Ind. Eng. 63.4 (Dec. 2012), 1189–1200 2.

[WSP21] WANG, ZIQI, SONG, PENG, and PAULY, MARK. “State of the
Art on Computational Design of Assemblies with Rigid Parts”. Com-
puter Graphics Forum 40.2 (2021), 633–657 2, 12.

[WZ02] WERNER, TOMAS and ZISSERMAN, ANDREW. “New techniques
for automated architectural reconstruction from photographs”. European
conference on computer vision. Springer. 2002, 541–555 3.

[WZN*19] WU, CHENMING, ZHAO, HAISEN, NANDI, CHANDRAKANA,
et al. “Carpentry compiler”. ACM Transactions on Graphics (TOG) 38.6
(2019), 1–14 3.

[XLX*16] XU, MINGLIANG, LI, MINGYUAN, XU, WEIWEI, et al. “In-
teractive mechanism modeling from multi-view images”. ACM Transac-
tions on Graphics (TOG) 35.6 (2016), 1–13 2, 3.

[XZZ*11] XU, KAI, ZHENG, HANLIN, ZHANG, HAO, et al. “Photo-
inspired model-driven 3D object modeling”. ACM Transactions on
Graphics (TOG) 30.4 (2011), 1–10 2, 3.

[YKGA17] YAO, JIAXIAN, KAUFMAN, DANNY M., GINGOLD, YOTAM,
and AGRAWALA, MANEESH. “Interactive Design and Stability Analy-
sis of Decorative Joinery for Furniture”. ACM Trans. Graph. 36.2 (Mar.
2017) 3, 12.

[YWM15] YANG, YONG-LIANG, WANG, JUN, and MITRA, NILOY J.
“Reforming Shapes for Material-aware Fabrication”. Computer Graph-
ics Forum. Vol. 34. 5. Wiley Online Library. 2015, 53–64 3.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

