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Reconstructing 3D scenes from online photo collections has attracted a tremendous amount of in-

terest from both academia and industry. The progress in the past decade has been exceptional, in

terms of scale and reconstruction quality. Yet, we are still far from creating 3D models that support

consumer level graphics applications. The challenge is twofold. First, modern geometry recon-

struction and illumination/reflectance estimation techniques are generating low quality 3D models

that are severely contaminated by visual artifacts, i.e., geometry holes, over-inflated boundaries,

noisy surface details, low-resolution texture, etc. These artifacts are often extremely noticeable,

thus largely limit the applicability of these 3D reconstruction approaches. Second, the real-world

is dynamic, but very little research has been devoted to modeling and visualizing transient objects

in photos. Therefore, typically we see ghost town 3D models in even the best-of-the-breed work.

In this thesis, I first introduce the Visual Turing Test with two of the first relight-able city-scale

MVS models. The results show that poor geometry reconstruction and the lack of transient scene

elements significantly reduce the photorealism of the rendered images. Our grand vision is that

eventually the 3D reconstruction research will be able to pass the Visual Turing Test. While we are

still far from that, this dissertation proposes new approaches to photo-realistic scene modeling and

visualization. This line of research addresses both of the two aspects of the challenge, i.e., reducing



severe artifacts and incorporating some transient objects (people) in renderings, by improving vari-

ous key components of modern 3D reconstruction pipelines. To be more specific, our work pushes

the limit of (1) Structure-from-Motion research by solving the ground-to-aerial geo-registration

with pixel level accuracy; (2) Multi-View Stereo by incorporating occluding contour information,

and show dramatically improved geometry; (3) lighting/texture estimation by explicitly modeling

outdoor illumination, and optimizing for lighting parameters and scene albedo, (4) image-based

rendering to improve visualization of a scene with erroneous geometry, and (5) modeling transient

objects. This dissertation describes work that can be considered as early effort towards the goal of

making 3D reconstruction technologies widely applicable in real-world graphics applications.
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Chapter 1

INTRODUCTION

“For me, it’s absolutely inevitable that entertainment will be 3D, it’ll all be 3D, eventually,

because that’s how we see the world.” – James Cameron [54]

It is foreseeable that in near future a significant portion of productivity and entertainment ac-

tivities would be built upon 3D technologies. Video gaming, film production, virtual conferencing,

and CAD are in the transition stages where exciting new technologies (for example, holographic

displays, virtual reality headsets, 3D printers, etc.) are booming. However, high quality 3D content

creation for consumer grade applications is still an expensive, mostly manual, and labor intensive

process.

Academic research on automatically reconstructing 3D scenes is an area that has received a

great deal of attention. Arguably the most exciting progress is from the line of work which uses

Internet photo collections as input. Researchers have succeeded in developing very large-scale

3D reconstruction pipelines for Internet photo collections [4, 22, 67]. These systems are able

to scale to millions of photos and produce increasingly better quality 3D models. Commercial

applications, e.g., Apple Maps [7], Google Earth [29], and Bing 3D Maps [51], that are inspired

by these reconstruction pipelines, have reached a point where most of the world is reconstructed at

least to a moderate level of quality.

Although the research progress is encouraging, the gap between the academic community and

the stricter demands of industry is still wide. Indeed, the current stage of 3D reconstruction work

is not ready for most commercial graphics applications. Although we are able to render real world

scenes using sparse point clouds or partial mesh reconstructions on a computer monitor, the vi-

sualization is often severely contaminated with artifacts including surface noise, holes, undesired
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Figure 1.1: The Visual Turing Test: One of the two images is rendered from our reconstructed 3D
model, and the other is a real photograph. We ask the question to a test subject: “which of the two
images do you think looks more photo-realistic?”

geometry, and low-resolution texture. These artifacts largely limit modern 3D reconstruction tech-

niques to support graphics applications that have been promised to the community, for example,

virtual tours that grant the visual experience of being physically present at a real-world landmark,

a.k.a, “being there” experience. In fact, most graphics applications (e.g., video games and virtual

reality) require high quality 3D reconstructions that are basically artifact-free, and thus are beyond

the reach of current state-of-the-art approaches.

In order to address the problem of bridging the gap between academic research and industry,

we need to better understand the challenges. The first question is: “how do we know if we have

achieved the goal?” In fact, this question is about how to evaluate 3D reconstruction work, and is

far from trivial. State-of-the-art work typically conducts evaluations with Middlebury datasets, and

report distance to a ground truth. This evaluation doesn’t capture the photo realism [61]. Some

work simply visually inspects the reconstructed 3D models, the conclusion could vary depends on

the perspectives. In this thesis, we propose to evaluate by randomly sampling the images rendered

from 3D models and measure how photo-realistic they are comparing to actual photos taken from

same viewpoints, a process we call the “Visual Turing Test” (Figure 1.1). We argue this is more

meaningful than the Middlebury evaluation, but passing it is a grand challenge, and requires the
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Colosseum San Marco Square

Figure 1.2: Two datasets used in our experiments, where the reconstructions are rendered from
aerial viewpoints with albedo colors without additional lighting effects. Top: Colosseum. Bottom:
San Marco Square.

3D models to be complete and re-lightable. We create two city scale 3D models from an unusually

large number of photos (100K+), and successfully estimate scene albedo and lighting variations

(Figure 1.2). The quantitative results of the visual Turing test show that we can fool human per-

ception when making comparisons at low image resolution, although further progress is necessary

to achieve photo realism at higher resolution levels.

Figure 1.3: Typical bad results in our visual Turing test. (left real, right rendered). More than 90%
of test subjects pick the reference photos as more realistic in every resolution level.

The visual Turing test is important for identifying key challenges. Some of the most interesting

results are the images with low passing rates (Figure 1.3). These cases help to draw a road map for

the work described in the thesis by answering the next question “what are the main challenges for
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Figure 1.4: Photo Uncrop. Travel photos have limited field of view (FOV). We address the problem
of extending the field of view of a photo – an operation we call uncrop, by utilizing Internet photos
from near-by viewpoints.

3D reconstructions to pass the Visual Turing Test?” The answer is twofold:

• reducing geometry artifacts to a level where they are almost unnoticeable by human percep-

tion;

• visualizing transient but salient scene elements that are hard to model.

To address the above two challenges, in this dissertation, I propose making progress on photo-

realistic scene modeling and visualization. My work focuses on a fully automatic, end-to-end

pipeline of 3D reconstruction and visualization. The input of my system is a collection of photos

collected from popular image hosting websites (Google [28] and Flickr [19]) by typing in the

names of real-world landmarks (e.g., “Colosseum in Rome” or “Place de la Concorde in Paris”).

The output is a 3D model of the particular landmark [63, 64, 66], or a visualization created through

the 3D model using image-based rendering [65]. Our work significantly advances the state-of-the-

art in 3D reconstruction and visualization, offers innovations in multiple critical aspects, and is able

to achieve photo-realistic rendering quality for applications like “Photo Uncrop” [65] (Figure 1.4).

Geometry artifacts often appear as holes, overly expanded boundary fill, and noisy surface

details. These artifacts are very noticeable, but extremely difficult to fix for automatic scene recon-

structions. Geometric holes are common for texture-less or un-captured regions. We address this

problem by using multiple sources of images (tourist photos, street-view imagery, and aerial pho-

tos) and interpolating depth information based on occluding contours. Boundary artifacts and noisy
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Figure 1.5: Improved geometry from occluding contours. Left: one of the input images. Middle:
the mesh reconstructed using a state-of-the-art reconstruction pipeline. Right: the mesh recon-
structed from our improved pipeline that estimates dense visibility from occluding contours.

surface details are two other major causes of geometric errors. The cause lies within the standard

3D reconstruction pipelines which start with images, then estimate camera poses, compute dense

3D oriented points, and in the end reconstruct a mesh from these dense points. In most methods the

last step fits a mesh that best explains the 3D oriented points, without using the color information

from input images. We improved the pipeline by putting the image information back in the mesh

reconstruction stage. Our approach estimates dense visibility from occluding contours and infers

free space information to better regularize surface reconstruction (Poisson-based approach in [41]),

so that the reconstructed surface would be constrained in a tight envelop. This constraint helps to

suppress overly expanded boundary artifacts (Figure 1.5) and improve surface details .

Transient but salient scene elements (e.g., people in the scene) are also crucial. Modeling them

exposes new challenges. Existing Multi-View Stereo (MVS) methods rely on the photometric

consistency metric for inferring scene depths. This metric assumes a static scene across multiple

images. A person does not usually appear at the same location with exactly the same posture in

multiple images, especially in Internet photo collections. Our approach takes advantage of hu-

man pose detection/estimation [82] and image compositing [65] techniques, and explicitly models

people in images (Figure 1.6).

Most of the techniques described in this dissertation use publicly available online photo col-
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Input image Photo Popup [Hoiem et al. 2005] Our depth map rendering

Figure 1.6: Comparing with single image modeling.

lections. These photos are taken by a large number of people using different cameras at different

times of day with different illumination conditions. However, these techniques are not limited to

online photo collections. And unsurprisingly, they are able to achieve even better results while

working with carefully taken photos. We choose Internet photos as our datasets for the following

three reasons. First, it is easy to obtain a huge amount of images to enable a large scale evaluation.

Second, these photos are more “general purpose” as they are typically taken by ordinary non-tech-

savvy photographers. We believe they better represent the population of the user groups of our

system than us (academic researchers). Datasets carefully captured by researchers are typically

biased towards a few particular applications and less suitable for large scale scene reconstruction

work. Finally, Internet photos have a much longer time span (taken over years). These photos

capture a wide range of scene appearance variation, and are interesting to applications including

scene change detection [50] and lighting/texture estimation [63].

This dissertation is organized as follows. It first presents the Visual Turing Test and our so-

lution to reconstruct complete and re-lightable city-scale models in Chapter 2. We examine the

quantitative results and delve into the images with low passing rates. These images reveal a clear

road map for next steps of our work, including reliable ground-to-aerial geo-registration (Chap-

ter 3) and higher quality geometry reconstruction (Chapter 4). We further note that visualization is

another crucial component of the pipeline, especially when our 3D models are reconstructed from
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online photo collections and the underlying geometry is not perfect. We demonstrate the effective-

ness of a novel Image-Based Rendering (IBR) visualization approach and show success in creating

“photo-realistic” renderings for a novel application called “Photo Uncrop” (Chapter 5). Chapter 6

introduces an extension of “Photo Uncrop” which explicitly models people in images. It creates

immersive 3D visualization from a single input image by adding parallax and defocus effects. Each

of the following chapters is organized in a self-complete way where I first introduce the problem,

then describe related work, our solution, and present experimental results and discussions. Note

that the mathematical notations of the equations are only consistent within each chapter.
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Chapter 2

THE VISUAL TURING TEST FOR SCENE RECONSTRUCTION

The last few years have seen dramatic progress in the area of 3D reconstruction from pho-

tographs, to the point that much of the world has been reconstructed and can be browsed in tools

like Microsoft’s Photosynth, Google’s Photo Tours, and Apple’s Flyover 3D Maps.

Yet, we are still far from being able to generate 3D geometric models that look just like the real

thing. Far from it; even the best-of-breed vision-based 3D reconstruction techniques are not good

enough to support most computer graphics applications (games, films, virtual tourism, etc), and

instead require extensive manual editing (in the case of 3D maps) or image-based rendering (e.g.,

Photosynth) to compensate for deficiencies in the reconstructed geometry.

But what exactly does it mean to look just like the real thing? One definition is that people

should be unable to tell apart photos from renderings. For any photo, we can produce a scene

rendering (for the same viewpoint and illumination conditions) that appears so realistic that you

can’t tell which one is real. This is a grand challenge problem; we call it the Visual Turing Test for

Scene Reconstruction.

While we are still far from being able to pass the Visual Turing Test, it defines a useful bench-

mark, and a goal to strive for in 3D reconstruction research. Achieving this goal also necessitates

two new capabilities that have not previously been demonstrated. First, we have to match any

photo. This requires building a model that leverages all available imagery, from the ground, the

air, the walking paths, and the streets. To this end, we are the first to demonstrate models derived

from Flickr photos, Streetview, and aerial imagery, merged into one reconstruction. We employ an

unusually large number of photos (100K+) to create our models, to ensure that they are as complete

as possible. Second, we must be able to render the scene to match the viewpoint and illumination

in any photo. The latter requires estimating not only geometry, but surface reflectance, as well
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Google Earth Building Rome in a Day [4] PMVS Our reconstructed albedo

Reference photo Rendered view Relit at sunset Sunset reference photo

Figure 2.1: Comparison with state of the art (top row) and results for rendering and relighting of
one viewpoint (bottom row).

as the lighting in that particular photo. In this chapter, we present the first large scale results on

reflectance estimation and lighting matching for Internet Photo Collections. To the best of our

knowledge, we are also the first to conduct a large scale Visual Turing Test which consists of 100

randomly selected renderings, each of which is shown in 4 resolution scales, and 142 human test

subjects.

The remainder of the chapter is organized as follows. I first give a brief overview on related

work in scene reconstruction in Section 2.1. Our approach is described in Section 2.2 (Preprocess-

ing) and Section 2.3 (Lighting and Reflectance Estimation). I show our datasets, both qualitative

and quantitative results of our visual Turing test in Section 2.4. In Section 2.5, I present how the

visual Turing test draws the road map of my research and inspires the work in following chapters.

The work in this chapter was published in the 2013 International Conference on 3D Vision [63].

2.1 Related Work

In the past few years, researchers succeeded in developing very large-scale 3D reconstruction

pipeline for Internet photo collections [4, 22] that can scale to millions of photos. These models

are detailed but incomplete, containing holes in areas of sparse coverage. In contrast, aerial-based
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reconstructions in products like Google Earth and Apple’s 3D Maps provide more uniform scene

coverage, but lack the detail and resolution of ground-based models. We seek to achieve the best

of both worlds, also leveraging Google Streetview imagery to fill gaps in coverage.

There is a large literature on the topic of reflectance and illumination modeling in the graphics

and vision communities, going back multiple decades. The vast majority of prior work, however,

assumed a controlled laboratory environment or imposed restrictions such as fixed lighting, or

materials that do not vary over the surface. Most closely related to our work are methods that

operate outside, “in the wild,” with widely varying, unknown viewpoints, illumination, and surface

material variation.

A few researchers have reconstructed depth maps from time-lapse webcam videos of outdoor

scenes [1, 2], where the fixed viewpoint and strong directional sun-light allow application of pho-

tometric stereo techniques.

Internet photo collections pose additional challenges, as both the viewpoint and illumination are

unknown and vary arbitrarily in each photo. Indeed, the only previous work to attempt relighting

for Internet photo collections is [31] and they provided results for only one dataset (Statue of

Liberty) consisting of six photos. While their lighting and reflectance model is more sophisticated

than ours, it is not scalable–it took three hours to process the six image dataset. By using a more

streamlined illumination and reflectance model, we are able to process tens of thousands of images,

while achieving high quality visual results.

Also related is work on multi-view intrinsic image decomposition [45]. They recover a PMVS

point cloud, which is then used to estimate per-point, per-view illumination (a single color value

to represent the combined illumination and shading) which can be spread smoothly across each

view; they leverage multi-view constraints on the (Lambertian) reflectance during estimation. This

approach enables transferring illumination from one image to another that has many PMVS points

in common, again after smoothly spreading the illumination across the second image. However,

their datasets are fairly small, typically tens of images. Further, the method does not support gen-

eral relighting, instead copying sparse illumination (a per-point color) from one image to another

image, and both images must cover roughly the same portion of the scene.
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Figure 2.2: Workflow overview.
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(a) (b)

Figure 2.3: Ensuring a uniform SfM reconstruction. (a) SfM model from a randomly subsampled
image set. (b) The final SfM model after augmenting the image set.

2.2 Preprocessing

Our pre-process consists of collecting images, recovering camera poses with structure-from-motion

(SfM), recovering a point cloud with multi-view stereo (MVS), and recovering a mesh with per-

vertex visibility to sets of images.

Given a landmark (e.g., the Colosseum), we download ground-level images from Flickr [19]

and obtain aerial images from Google. We augment this set with Google Streetview images in

regions that are poorly covered by Flickr photos; these images are not directly available to us in raw

form, so we simply capture them from the in-browser Streetview rendering. We also approximately

invert the sRGB function typically applied to photographic imagery to put the pixel values in a

linear space.

We then recover a triangle mesh for the landmark using freely available software. In particular,

we employ VisualSFM [79] to estimate camera poses, PMVS/CMVS [26, 27] to recover a dense,

oriented point cloud, and Poisson Surface Reconstruction [40] to reconstruct a triangle mesh. We

remove large (typically inaccurate) “hole-fill” triangles from the Poisson reconstruction; specifi-

cally, we filter out all triangles with average edge length greater than 20 times the average edge

length of the entire mesh. Finally, we estimate a set of visible images per vertex, i.e., a set of
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images in which the vertex is visible. Below, we describe the SfM and visible image estimation

steps in more detail.

2.2.1 SfM Reconstruction

For some datasets, the number of available images is quite large (e.g., 140K Flickr images of

the Colosseum) with a considerable amount of overlap. Matching all the images to each other

would be quite slow. Further, photos are typically concentrated around a small number of popular

viewpoints [4], heavily oversampling those particular regions and needlessly slowing the entire

pipeline. We take a two-step SfM approach that limits the number of images used and encourages

good coverage around the landmark.

In the first step, we randomly subsample K images (we use K = 1000) to give an initial subset

IK. The remaining images form a set IR. We apply VisualSFM to IK to recover camera poses and

image matches; images match if they have common SfM features. The resulting set I1 contains

images that were matched successfully by VisualSFM.

In the second step, we augment I1 with another subset IA taken from IR and then re-run

VisualSFM. To add images to IA (which is initially empty), we match each of I1’s images against

the images in IR, where a match must have a large number of features in common (≥ 300) and

be geometrically consistent with the initial SfM reconstruction. To encourage good coverage, we

process the images in I1 in order, starting with the images that have the fewest number of matches,

thus giving priority to sparsely covered areas. Further, we do not consider images in I1 that are

already well-matched (having ≥ 30 matches). To promote high quality reconstruction and to

control the total number of images, we sort the images in IR according to image resolution and

iterate through them (highest resolution first) when matching to an image in I1, stopping after

finding a fixed number of matches (we set the number to 10). After an image from IR is matched,

it is removed from IR and added to IA. When finished building IA, we perform a second pass

of VisualSFM on I1 ∪ IA yielding a set I2 containing images that matched successfully during

reconstruction. Figure 2.3 illustrates the results on the Colosseum after the two steps.
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2.2.2 Visibility Estimation

After reconstructing a Poisson mesh and automatically trimming out large hole-fill triangles, we

estimate a set of images in I2 that can see each vertex, i.e., one visibility set per vertex. The

original PMVS points already have a conservative visibility set per oriented point, a set comprised

of images that matched well at that point; we use the PMVS points and visibility sets to bootstrap

the process of estimating per-vertex visibilty.

Specifically, for each vertex v in the trimmed Poisson mesh, we collect the 30 nearest PMVS

points and their visibility sets. We then select the 9 images that appear most frequently in those

visiblity sets. Next, we project all vertices in the 7-ring neighborhood of v (i.e., vertices within 7

edge hops from v) into the selected images and compute an average color at each of those vertices.

We then consider each image I in I2. If v is facing away from I or if a ray cast from I to v hits

another part of the Poisson model first, then I is eliminated from consideration. Otherwise, the

7-ring neighborhood is projected into I , and the resampled colors from I are compared against

the average colors of the vertices, using Normalized Cross Correlation (NCC) as the metric. If the

NCC score is higher than a threshold (0.8), then I is added to v’s visibility set. To accelerate the

process, we find nearest PMVS neighbors using FLANN [53] (set for exact neighbor-finding), and

we use pre-computed z-buffers instead of ray casting for occlusion testing.

2.3 Lighting and Reflectance Estimation

Given the images with recovered poses and the reconstructed mesh with per-vertex visibility sets,

we estimate lighting parameters for each image and reflectance parameters for each vertex. In

the remainder of the section, we explain our shading model and objective function, how to detect

cloudy images (useful for bootstrapping the optimization), how we optimize for the shading model

parameters, and finally some implementation notes.
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2.3.1 Shading model and objective function

For the outdoor scenes we are reconstructing, we adopt a simple, but fairly effective representation

for illumination and materials. In particular, we assume the lighting is comprised of uniform,

hemispherical sky illumination plus directional sunlight, and we assume all materials are diffuse.

Given a point Pi (a vertex in the mesh), an image Ij , and their associated shading parameters,

the rendered pixel intensity Ri,j of Pi in Ij is calculated with an ambient+diffuse shading model as

follows:

Ri,j(Θ) = ai

{
f(Ni)k

sky
j + max[0, Lj ·Ni]k

sun
j δi,j

}
. (2.1)

Θ = {Ni, ai, Lj, k
sky
j , ksunj , δi,j}. (2.2)

ai and Ni are the surface albedo and normal at Pi, respectively. kskyj and ksunj are the skylight (am-

bient) and sunlight (diffuse) intensities, respectively. Lj is the lighting direction, parameterized in

spherical coordinates. Note that we have not explicitly modeled camera exposure; instead, this is a

scale factor that is implicitly pre-multiplied into the light intensities. δi,j models sunlight visibility

and is 1 if Pi is in sunlight in image Ij , else it is 0. f(Ni) models the ambient (skylight) occlusion,

that is, how much of the hemisphere is visible from, and hence, illuminates the point. In principle,

we can use the input mesh model to take into account occlusions caused by the surrounding struc-

ture as in [31]. For efficiency, we just use the normal Ni to determine hemispherical sky visibility,

ignoring occluders. f(Ni) = (1 − Ni · U)/2 (derived in [68]) where U is the unit-length “up”

direction in the scene. Though we expect that adding sky occlusion due to surrounding geometry

could improve results, we found that our simplified model works surprisingly well in practice.

We assume, for the moment, that our images, albedos, and lighting are grayscale; we discuss

color in Section 2.3.5.

Based on our shading equation (2.1), the lighting and reflectace estimation problem can be

formulated as follows:

argmin
Θ

∑
i

∑
j∈Vi

√
R̃i,j‖Ri,j(Θ)− R̃i,j‖2

2. (2.3)
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R̃i,j is the observed pixel intesity of point Pi in image Ij , and Vi is the list of image indexes in which

Pi is visible, where i and j are indexes to points and images. Note that the objective is simply the

sum of squared differences of image intensities between the observation and what is predicted by

our shading model, weighted by the squared root of the observed intensity. The weight is intended

to give less weight to points that may be in shadow. This weighing scheme has proven effective,

particularly in the early stage of the optimization, where {δi,j} are all initialized to 1, i.e., all the

points are assumed to be sunlit.

2.3.2 Identifying Cloudy Images

Solving (2.3) on a large mesh with thousands of images is a very challenging problem because

optimizing it has a high computational cost, exacerbated by the non-linearity of the functional

which gives rise to numerous local minima. To improve both the computational efficiency and to

avoid local minima, we will make use of cloudy images, which have negligible sunlight intensity

and can directly lead to estimates of skylight intensities and surface albedos for points visible in

those images. (In our experiments, around 15% of photos are taken under cloudy weather and 40%

of all the 3D points are visible in at least one of the cloudy images. This section describes how we

identify cloudy images.

An image is identified as cloudy, if it passes at least one of the following three tests.

• The first test is on the camera shot setting stored inside the EXIF tag. We compute the exposure

value as {exposure-time}{ISO-value}
{F-number}2 , and identify the image as cloudy, if the value is modest, that is,

within the range [0.05, 5.0]. A small value typically indicates a sunny day with strong illumination,

while a large value indicates a night-time shot.

• The second test is on the skyness at the top portion of an image, as inspired by Ackermann et

al. [2]. Given an image, we compute the average intensities in the RGB channels over the top 3%

of the image region, and identify the image as cloudy, if (2Bavg −Ravg −Gavg < 100) holds.

• The last test is on the ratio between the skylight and sunlight intensities (kskyj /ksunj ) after lighting

estimation (i.e., during optimzation). An image is identified as cloudy if the ratio is more than 10.

As described in Sec. 2.3.3, the first two tests are initially used to identify cloudy images. After
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the first lighting estimation, we include the third test to update cloudy images.

2.3.3 Algorithm

The core estimation algorithm consists of three steps: 1) Partial albedo estimation from cloudy

images; 2) Lighting estimation; and 3) Per-point albedo estimation (See Fig. 2.2 for an entire

algorithm flow).

Skylight and partial albedo from cloudy images

For cloudy images, the shading equation (2.1) does not have a sunlight component and is simplified

to

RC
i,j(Ni, ai, k

sky
j ) = aif(Ni)k

sky
j . (2.4)

Let IC denote a set of cloudy images. We collect a set of points PC that are visible in at least three

cloudy images, where estimation becomes reliable. The optimization problem (2.3) can similarly

be reduced as follows:

argmin
{ai,kskyj }

=
∑
i∈PC

∑
j∈Vi∩IC

√
R̃i,j‖RC

i,j(ai, k
sky
j )− R̃i,j‖2

2. (2.5)

Note that surface normal Ni is technically a variable in (2.5). However, we instead use the Poisson

normal, because normal estimation is unreliable without the directional lighting component, and

the input mesh model has already fairly accurate surface normal estimates.

Lighting Estimation

Even with partial surface albedo estimates, it is very expensive to solve (2.3) by using all the points,

which could number into tens of millions. On the other hand, we observe that not all the points are

necessary to estimate lighting parameters; thus, we first focus on solving lighting parameters for

each image, while operating on a small but effective set of points.

For lighting estimation, we would like to select a subset of points (vertices) that are visible

in many images, but also achieve coverage by ensuring each image contains at least m(= 1000)
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such points. After initializing the set PL with 2000 points that have the most number of visible

images, we pick an image that has less than m visible points, and add 100 points from that image

to PL. The 100 points are randomly sampled, where the sampling probability is proportional to the

number of visible images for each point, so that points with more visible images are more likely to

be added. The process repeats until all the images have more than m points or no more points can

be added.

Now, we finally solve (2.3), but with two modifications. First, we use the subsampled point set.

Second, we add a damping term to bias our solution to the surface albedo estimate ãi from (2.5)

and the normal Ñi in the input mesh, giving a new objective:

argmin
Θ

∑
i∈PL

∑
j∈Vi

√
R̃i,j‖Ri,j(Θ)− R̃i,j‖2

2 + λ1

∑
i∈PC

‖aif(Ni)− ãif(Ñi)‖2
2. (2.6)

λ1 = 1 is used in our experiments. Note that the damping term is added for points PC that are

visible in some cloudy images and has estimates from (2.5).

After solving (2.6), we update the cloudy image set PC by using the estimated lighting param-

eters as in Section 2.3.2. Then, we solve (2.5) and (2.6) in exactly the same way.

Per-point Albedo Estimation

The final step is to fix the lighting parameters {Lj, kskyj , ksunj }, then solve for the remaining pa-

rameters {Ni, ai, δi,j}, which can be optimized for each point independently,

argmin
{Ni,ai,δi,j}

∑
j∈Vi

√
R̃i,j‖Ri,j(Θ)− R̃i,j‖2

2 + λ1

∑
i∈PC

‖aif(Ni)− ãif(Ñi)‖2
2 + wi‖Ni − Ñi‖2

2. (2.7)

The third term arises from the observation that when a point is visible only in a few images, normal

and albedo estimation become very noisy. In this case, since the surface normal estimation from

the input mesh model is fairly accurate, we add a damping term on the surface normal itself, while

adaptively weighing the term based on the amount of available image information for that point.

Note that Ñi is the surface normal in the input mesh. More detailed definition of the per-point

weight wi is given in Sec. 2.3.4.
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2.3.4 Regularization Weight on Per-point Albedo Estimation

For per-point albedo estimation, here we re-iterate Equation 2.7

argmin
{Ni,ai,δi,j}

∑
j∈Vi

√
R̃i,j‖Ri,j(Θ)− R̃i,j‖2

2 + λ1

∑
i∈PC

‖aif(Ni)− ãif(Ñi)‖2
2 + wi‖Ni − Ñi‖2

2.

The first term is the data term measuring the image discrepancy between observed pixel intensities

and what is predicted by our model. The second term is a regularizer based on cloudy images; it

keeps the estimated albedos for points seen in cloudy images close to the estimates recovered by

optimizing Equation 5. Reference normals come from the Poisson reconstruction.

In this section, we focus on the third term, a regularizer that encourages adherence to the

Poisson normals when the weight wi is high. Ideally, we would make wi depend on the first, image

discrepancy term in the objective; i.e., when the discrepancy is high, the normal estimation is

unreliable, and the weight should be high. Of course, we do not know the magnitude of the image

discrepancy term before actually solving Equation (7). Nonetheless, for a subset of points PL, we

have already solved Equation 6 to estimate lighting and thus have computed image discrepancies

for those points. Our approach is to use that information to construct per-point weights based on

just these image discrepancies.

More precisely, we first compute an average image discrepancy measure dimagej for each image

Ij by taking the average of the discrepancy term over points PL
j that are in PL and visible in Ij:

dimagej =
1

|PL
j |
∑
Pi∈PL

j

‖Ri,j(Θ)− R̃i,j‖2
2.

Then, we define the reliability rpointi of imagery information at each point Pi by aggregating

dimagej over Pi’s visible images Vi:

rpointi =
∑
Ij∈Vi

√
|PL

j | exp(−κ dimagej ).

The exponentiated discrepancy measure from each image is weighted by the square root of the

number of contributing points PL
j . Note that the reliability of a point should increase when it is
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visible in more images, which is also modeled by the formula above. We used κ = 20 in our

experiments.

Finally, we normalize rpointi so that its mean is 1.0 over the entire point set to give a normalized

reliability measure r̂pointi , and we then define the regularization weight wi to be inversely propor-

tional to r̂pointi :

wi =
λ2

r̂pointi

,

where λ2 = 0.01 in our experiments.

2.3.5 Implementation details

Here we describe several implementation details. First, we employ the Matlab function lsqnonlin

to solve all of the the optimization problems.

Second, δi,j is a binary variable and cannot be optimized easily. δi,j is initialized to be 1 at the

beginning. When δi,j is a free variable in an optimization problem, we solve it in three steps: 1)

Fix δi,j and solve the other parameters with lsqnonlin; 2) Solve δi,j while fixing the others for each

point independently (a simple binary decision); and 3) Fix δi,j again and solve the other parameters

by lsqnonlin.

Finally, the albedos ai and lighting intensities, kskyj and ksunj , are all color values. In practice,

when sunlight direction Lj is not a free variable, we simply solve the optimization problem in each

color channel independently. When Lj is a free variable in an optimization, we first map the colors

to grayscale (luminance) to solve the problem, then solve the same problem again in each color

channel independently while fixing the lighting direction.

Poisson Surface Reconstruction [40] converts a PMVS point cloud into a triangle mesh, where

the output mesh resolution can be controlled by a parameter (depth). We noticed that increasing

this parameter (and hence resolution) too much introduces surface artifacts, however, we still want

to match the texture resolution of the mesh to that of the input images for optimal rendering.

Therefore, we use a modest parameter for depth, in particular, 12 for the San Marcos Square and

13 for the Colosseum. Then, we simply apply the triangle subdivision – split a triangle into four
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Colosseum San Marco Square

Figure 2.4: Two datasets used in our experiments, where the reconstructions are rendered from
aerial viewpoints with albedo colors without additional lighting effects. Top: Colosseum. Bottom:
San Marco Square.

smaller ones – to increase the mesh resolution, where the surface subdivision is adopted in two

ways in our system. First, we subdivide the entire mesh once uniformly to increase its resolution.

Second, regions of interest, which are specified by drawing rectangles on images, are subdivided

by three times to increase resolution locally.

Lastly, inaccurate geometry at the top of the structure often projects to sky pixels in the input

images. Since sky pixels are usually much brighter, the estimated albedos become very high and

cause visible artifacts in the rendering. To address this, we adopt a simple thresholding method

that removes mesh vertices that have near upward normals and have high albedo values. More

concretely, we drop a mesh vertex, if the associated surface normal is within 9 degrees from the

up-direction, and the estimated albedo value is more than 255×2 in any of the three color channels.

2.4 Experimental Results

This section presents the first large scale 3D reconstructions with lighting and reflectance models

from community photo collections mixed with aerial and streetview imagery. Figure 2.4 shows
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Dataset

Colosseum
San Marco

Flickr
# MVS
points

# Mesh
vertices

Running time [hour]
Visibility
estimation

Lighting
estimation

Per-point albedo
estimation

14k

140k

2,687

3,267

Street-
viewAerial

# Input Images # Images
after SfM

14

033

77 10m 27m

23m

20

23

~ 1

~ 1

3

434m

Table 2.1: Statistics of our datasets.

the two datasets used in our experiments, where some statistics are given in Table 2.1. The com-

putational time is collected by running the system on a cluster of 12 nodes. The visibility and

the per-point albedo estimation processes distribute workload to all the 12 node while the lighting

estimation process runs on a single core. Figure 2.4 shows overlook albedo renderings. Note that

in the Colosseum model rendering, the points on the Colosseum are mostly reconstructed from

ground level images, thus are much denser than the points on the rest of the city. The rest of the

city is mostly created from aerial images that are taken within a short period of time. Since there is

not much lighting variation in the aerial images, shadows on the ground are baked into the albedo.

2.4.1 Visual Turing Test

We conducted a series of Visual Turing Tests to evaluate the realism of our renderings using Ama-

zon Mechanical Turk. We present a pair of images, one real and one rendered, from the same

viewpoint and illumination condition, then ask the subject to specify which is “more realistic”.

The results of the Visual Turing Tests depend on the image resolution. Simply put, the higher

the image resolution, the easier it is to detect small imperfections in the reconstructed model.

Therefore, we conducted tests for four different image resolutions, in particular, when the longer

side of an image is 100, 200, 400, and 600 pixels in length.

We chose hundred randomly selected Flickr photos as reference views. Each view is presented

in four resolution levels, and there are in total four hundreds image pairs in the study. Each image

pair is shown to twenty test subjects. Low resolution images are sent to workers prior to high

resolution images for the same viewpoint, to avoid having the high-res results (which are easier for
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Figure 2.5: Visual Turing test. In each image pair, the ground truth image is on the left and our
result is on the right.

subjects to get right) pollute the low-res tests. Some of the image pairs are shown in Figure 2.5,

where the real photos are on the left and our rendered images are on the right. Note that we don’t

feed the estimated shadow map into the rendering process as it contains shadows from foreground

occluders. The sky is rendered with a simple sky dome texture mapping.

Visual Turing Test results are provided in Figure 2.6a, where the x-axis corresponds to the hun-

dred examples, and the y-axis is the probability, in which our renderings succeeded on the test, that

is, fooled the subjects. Examples are sorted along the x axis in the ascending order of the success

rate in the 100 pixel resolution. Clearly, the test is easier at lower resolution. Indeed, a handful



24

of low-res rendered images actually passed the Visual Turing Test, meaning that the majority of

the subjects believed our renderings are more realistic than the photos. The average success rate

at the four resolutions are 0.3455, 0.16, 0.0735, and 0.034, respectively. Moreover, 30% of the

subjects were fooled on almost half of the low-res tests, which suggests that passing the low-res

Visual Turing Test is perhaps a goal within reach for 3D reconstruction research. Interestingly,

there are a couple viewpoints in which subjects had trouble identifying real photos even for the

highest resolution.

Figure 2.6b summarizes the statistics of the success rates (y-axis) over the hundred examples

for the four resolution levels (x-axis). For each resolution, the five horizontal markings correspond

to the minimum, lower quartile, median, upper quartile, and the maxium of the success rates.

Figure 2.6c illustrates how many tests (out of four hundreds) are completed by each of the 142

subjects. Note that one worker participates in multiple tests, but cannot do the same test more than

once (same photo, same resolution).

Finally, there are a number of other factors (apart from resolution) that appear to be correlated

with success or failure on the Visual Turing Test. One is the presence of people (Figure 2.7).

Subjects are much more likely to pick a photo as more realistic if the photo contains people, which

suggests that adding people to the renderings could improve realism. Visual artifacts can also give

our results away. For the right-most result in Figure 2.7, the viewpoint is located right behind some

geometry fragments which occlude the object of interest and cause severe artifacts.

2.4.2 More Evaluations

To further validate the accuracy of our lighting estimation, we render images with and without

shadow effects (Figure 2.8). The shadows (highlighted with green ellipses) rendered with our

estimated lighting configurations match those in the input images. The rightmost column shows

the renderings from an aerial viewpoint, illustrating the presence of large shadows cast by the

tower. Note that since we compute reflectance and lighting parameters, it is easy to relit any photos

from any viewpoint using any lighting configurations, as the example in Figure 2.1.

One may suggest an alternative solution for reproducing lighting effects without estimating
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lighting and albedo, for example, by computing average/median colors over the mesh from vis-

ible images and applying a histogram matching to ground truth images. However, as illustrated

in Figure 2.9, such an approach does not produce any directional lighting effects, which is cru-

cial to visual fidelity. It also suffers from inconsistent colorization, because it does not properly

handle widely varying viewpoints and illumination conditions that are present in Internet photo

collections.

Figure 2.10 illustrates the importance of the visibility test in our system, which removes the

influences of foreground occluders that are often present in community photo collections. Our sys-

tem can reveal structure behind occluders as if they are lit under the same illumination conditions.

It rejects fore-ground occluders by examining the color consistency over the entire image collec-

tion, and can reveal the structure behind, while removing the foreground objects. Figure 2.10c

shows a close-up view of structure where the subdivision scheme was used to increase the mesh

resolution, which illustrates the fidelity of our reconstruction even at an inch-scale in a city-scale

3D model, thanks to two components. First, combining aerial and ground level images enables dy-

namic scale range so that our mesh has an adaptive resolution as more points are devoted to more

exposed regions. Second, the subdivision scheme produces extremely fine grain local texture.

We provide additional details and results on the Visual Turing Test. Figure 2.11 shows a screen

shot of the test user interface. We randomized the order in which the reference photo and rendered

result were shown to avoid position bias (e.g., 50% of the time, the reference photo appears above

the rendered image). Figure 2.12 illustrates the four resolution levels.

We show additional typical good and bad image results in Figures 2.13 and 2.14. Even with

good geometry rendering, subjects are still more likely to choose the reference photo if people are

present (e.g., the first example in Figure 2.14). Figure 2.15(b) shows the increase in performance

if we omit photos containing people; observe that the scores are significantly increased, compared

to 2.15(a). In some cases, the photos themselves may appear unrealistic; for example, 2 of the

100 randomly selected photos are black-and-white. Subjects rate them as less realistic than the

(colored) renderings (Figure 2.16).
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2.5 Conclusions and Limitations

In this chapter, I have presented a system to capture and render relightable scene reconstructions

from massive unstructured photo collections consisting of Flickr photos, streetview and aerial im-

ages. Our system captures a wide range of lighting variations and scene reflectance, and recovers

fine grain texture details. The evaluation on a large scale Visual Turing Test demonstrates the

effectiveness of our system.

As a step towards solving the grand challenge of Visual Turing Test, our system has notable

limitations and thus a number of areas for future work. We have not modeled ambient occlusion

which is an important lighting effect. There is one coupled scale ambiguity between lighting colors

and albedo values. Simple geometry might not provide enough information for light estimation,

which further introduced ambiguity. Our system models outdoor environments under the sun and

sky illuminations. It would be interesting to extend the framework to night-time shots. Lastly, our

system optimizes surface normals, but it is not clear so far if this improves the geometric fidelity.

In the previous section, I discussed the images with low pass score in our Visual Turing Test.

These “failed” results suggest next steps (Chapter 3-6) of our work on pushing the research of

photo-realistic scene modeling. Specifically, to be able to eventually passing the test, we need re-

liable ground-to-aerial registration (Chapter 3), much better geometry with fewer artifacts (Chap-

ter 4), better visualization techniques that take geometry error into account (Chapter 5), and being

able to model transient objects in the scene (Chapter 6).
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Figure 2.6: Statistics of the Visual Turing Test. Please zoom in for a better visualization of the
plot. (a) Per-image average. (b) Per resolution level statistics. (c) Worker plots.

Figure 2.7: Typical failure cases. Bad geometry and people are two major causes for our method
to fail the Visual Turing Test. More than 90% of test subjects pick the reference photos (left) as
more realistic in every resolution level for these examples.
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Reference image Our rendering without shadow Our rendering with shadow Aerial rendering

Figure 2.8: Validating the accuracy of our lighting estimation.

Figure 2.9: Rendering with median color and histogram matching. Left: input ground truth im-
ages; middle: our results; right: images rendered from average pixel color and applying histogram
matching to the ground truth image. Note the lack of directional lighting effects and color noise in
red ellipses.
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(a) (b) (c)

Figure 2.10: Our rendered image removes fore-ground objects. (a) A reference photo. (b) Rendered
result. (c) A close-up view of (b).

Figure 2.11: The UI for the Visual Turing Test shown to workers on Amazon Mechanical Turk. In
this case, the top image is our rendering, while the bottom one is a real photo.
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100px 200px 400px 600px

Figure 2.12: Test images at different resolutions. For each pair at a given resolution, the reference
photo is on the left, and the rendered image is on the right.

70%, 5% 85%, 10%65%, 15%60%, 25%

Figure 2.13: Additional typical good results (top real, bottom rendered). The numbers are the prob-
abilities that our rendered image fools test subjects at resolution levels 100 and 600, respectively.
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Figure 2.14: Additional typical bad results (left real, right rendered). More than 90% of test
subjects pick the reference photos as more realistic in every resolution level.
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(a) On all 100 images. (b) On 75 images with no people.

Figure 2.15: Performance increase from omitting photos with people.
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Figure 2.16: Black and white photos are anomalous (left real, right rendered). 10% and 20%
test subjects choose the rendered image as more photo-realistic at the 600 resolution level. The
numbers increase to 50% and 60% at the 100 resolution level.



33

Chapter 3

MATCHING GROUND AND AERIAL VIEWS

In the previous chapter, I presented an approach of reconstructing two of the first relight-able

city scale models using both aerial imagery and ground level images. One of the challenges raised

in that approach is registering these two sources of imagery in the SfM stage. We used SIFT feature

matching [48]. However, the experiments were limited to two landmarks, the Colosseum in Rome

and San Marco Square in Venice, which appear relatively large even in the aerial views. In particu-

lar, we employ imagery from low-altitude helicopters and use overlook views from the tall towers

(i.e., semi-aerial views) to bridge the gap between aerial and ground viewpoints. Unfortunately,

such semi-aerial views are not typically available for most landmarks. To address this challenge

and extend the visual Turing test on a large number of real-world landmarks, in this chapter, I

present a novel ground-to-aerial geo-registration approach that works for a much broader range of

landmarks and does not rely on semi-aerial views.

So why registering ground and aerial imagery is important? If we take a closer look the prob-

lem, Internet photos in general are mostly taken from the ground, therefore the reconstructed multi-

view stereo (MVS) models are highly detailed, but are often disconnected due to the lack of photo

coverage in less popular areas. At the same time, these ground-level models are usually not accu-

rately geo-located in a global coordinate system, making it difficult for them to support applications

such as digital mapping and autonomous navigation. In contrast, commercial products like Google

Earth, Apple’s 3D Maps, and Bing maps use geo-located aerial imagery for more uniform 3D

reconstruction. The aerial 3D models are complete but much less detailed than the ground-level

models. We want achieve the best of both worlds by using the aerial and ground imagery together

in 3D reconstructions.

However, it is difficult to directly match ground and aerial images together, due to the large
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(a) (b) (c)

Figure 3.1: A typical scenario for the ground-to-aerial image registration problem. (a) An aerial
image shows part of the city of Rome. The red rectangle highlights the Sant’Andrea della Valle.
Even for human vision, it is difficult to find the target geometry from the aerial view. (b) A close-up
view of (a). (c) A ground image of Sant’Andrea della Valle.

differences in their camera viewpoints and imaging conditions. Figure 3.1 illustrates the chal-

lenges. First, in the case of aerial images, the scene is observed from much greater distances and at

very different angles than in the case of ground images. Typically, landmarks roughly corresponds

to 400 × 400 pixels in high resolution aerial images. Second, depending on the direction of the

sunlight, certain facades appear very dark in the aerial images, making standard feature detection

and matching difficult. In addition, most previous wide-baseline feature-matching methods rely

on dominant planar structures [52, 80], but the actual 3D geometry can be more complicated, an

assumption that fails for many landmarks (e.g., Figure 1). In fact, we rarely see compelling 3D re-

constructions obtained from the mix of aerial and ground images, especially across a large number

of scenes.

In this chapter, we address the problem of registering ground-level models to aerial imagery. To

this end, we introduce a new viewpoint-dependent matching technique to establish pixel accurate

feature correspondences between aerial and ground imagery. Our approach helps mitigate the

problems caused by the large discrepancies in viewing angles and image resolutions that have

frustrated prior efforts. As a result, we can now achieve pixel-level accuracy in geo-registration
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(within a few centimeters in many cases). This is a significant improvement over the ∼ 5.5-meter

accuracy attainable using GPS or text labels in prior approaches [47, 84].

Our contributions are: 1) a novel viewpoint-dependent matching method that handles large

viewpoint changes; 2) a fully automated geo-registration pipeline for matching ground-level pho-

tos to aerial imagery; and 3) a large-scale geo-registration evaluation which consists of the most

popular outdoor landmarks in Rome, demonstrating an approximately 70% success rate with the

proposed system. Aligning ground-based models enables adding dramatically more details to aerial

reconstructions.

The remainder of the chapter is organized as follows. I first give a briefly introduction to

relate work on image geo-registration in Section 3.1, and describe an overview of our system in

Section 3.2. The proposed viewpoint-dependent feature matching is presented in Section 3.3, and

evaluated with a large scale evaluation in Section 3.5. We discuss the work and show its limitations

in Section 3.6.

Note that the work in this chapter was published in the 2014 International Conference on 3D

Vision [66].

3.1 Related Work

Ground-to-aerial image matching for geo-registration is difficult, and standard feature matching

techniques often fail (Figure 3.3a), necessitating manual intervention [16, 71]. Very few ap-

proaches have demonstrated fully automatic matching and reconstruction of aerial and ground

imagery.

Coarse geo-registration of ground-level models is possible using photo meta-data. GPS and text

labels are commonly used to estimate rough geographic location. For more accurate registration,

early attempts focused on matching aerial image edges (or map edges) to 2D projections of ground

models (projection along the “up” vector) [24, 39, 84]. However, reliable matching by these meth-

ods requires multiple facades (or multiple map edges) in the ground-level models, which is not

always the case. Furthermore, their altitude estimation is often less accurate. Recently, researchers

have looked into using other sources of geo-location proxies, for example, matching ground im-
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A ground image Estimated depth map

Ground and aerial 
camera poses

The synthesized view

Figure 3.2: Warping the ground-level image into target view using depth maps and corresponding
camera poses.

ages to geo-located Google Street View photos [23, 78], or looking for GPS tagged images with

similar appearance [32, 42], matching to geo-located ground-level 3D points [47]. Nevertheless, it

is difficult for these methods to achieve high precision; for example, the average error is about 20

meters in [84], and 5.5 meters in [47]. In this chapter, we establish feature matches between aerial

and ground imagery for geo-registration with pixel-level (centimeter) accuracy.

Invariant features (e.g., SIFT) are typically used to tackle viewpoint changes. Beyond the

invariance to scale changes, there exists a rich body of work on affine or perspective invariance

for improved robustness to large viewpoint changes [72, 52, 80, 81, 11]. These techniques usually

assume dominant planar geometry for simulating different views with a homography or affine

transformation, and as a result, their performance suffers when the scene geometry is complex or

has many foreground occluders. Furthermore, the viewing angle variation between the aerial and

ground imagery is so dramatic (45◦) that it usually falls outside the operating range of most image

matching methods. Our experiments with state-of-the-art methods ([52] and [80]) show that they

are insufficient for our aerial to ground registration task.

An alternative to image matching is direct 3D model alignment using 3D feature points [12,

36, 83, 59]. These approaches assume meshes with similar resolutions and with a substantial
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(a) (b) (c)

Figure 3.3: Two-view matching of ground and aerial images. (a) Matching the whole aerial photo
with the ground image produces mostly useless feature pairs. (b) Matching an automatically
cropped and sharpened aerial photo with the ground image also fails. (c) More reliable feature
correspondence is obtained by matching the cropped aerial photo with the synthesized target view
from the ground image.
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amount of overlap. Unfortunately, aerial models are much coarser than ground models (meter

versus centimeter resolution), and it is difficult to extract accurate mesh features for matching.

Furthermore, the aerial and ground models usually do not overlap enough. Geometry that is visible

in aerial views, e.g., rooftops, rarely appears in ground images, and vice versa. Therefore, it is

difficult to achieve pixel-level accuracy via 3D feature based techniques.

3.2 Algorithm Overview

Given ground-level MVS reconstructions, our goal is to accurately and automatically align these

MVS models to the aerial images, which have been geo-referenced already. The following is an

overview of the proposed algorithm.

We first obtain an approximate geo-referenced ground-based MVS model by performing GPS-

based geo-registration using the EXIF tags of ground images. The ground-level images are col-

lected from Flickr [19], of which roughly 10% have GPS tags [22]. As many of the GPS tags are

inaccurate (due to poor reception, user tagging, etc.), the RANSAC process typically can locate

the 3D models only within a 20 meter range [84].

Based on the estimated geo-location of the ground models, we retrieve oblique aerial views

from Google Maps [29].1 The oblique images are captured from 4 different directions, east, south,

west, and north. Our method finds feature matches between the ground and aerial images to geolo-

cate the ground models to pixel-level accuracy.

Section 3.3 proposes a new viewpoint-dependent matching method, which effectively deals

with the large viewpoint differences between the ground-level and the aerial images. Section 3.4

presents our aerial view-selection algorithm, which leads to efficient and robust matching. The final

3D transformation is recovered by applying RANSAC to the feature matches. In our experiments,

41 out of 59 outdoor landmarks in Rome were successfully registered, a 70% success rate.

1Note that we don’t need aerial 3D geometry for geo-registering the ground models.
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3.3 Viewpoint-Dependent Feature Matching

We consider the problem of finding accurate feature matches between two sets of images with large

viewpoint changes. In ground-to-aerial matching, we have accurate geo-reference information

for aerial images, while the location of the ground MVS reconstructions can be recovered only

approximately from GPS tags.

SIFT is sufficient for small viewpoint changes, as the local transformations are close to simi-

larity transforms. For larger viewpoint changes, affine invariance can be achieved on planar struc-

tures [52]. When accurate, dense 3D reconstructions of both models are available, improved invari-

ance can be achieved with viewpoint-invariant patches extracted from synthesized local orthogo-

nal views [80]. Unfortunately, the ground-to-aerial registration problem has (i) drastic viewpoint

changes, (ii) very complicated geometry, and (iii) sparse and noisy reconstructions from aerial

imagery. Therefore, none of the above techniques are applicable.

Instead of seeking invariant feature detections, we propose to match view-dependent features by

exploiting approximate alignment information and underlying 3D geometry. Consider matching

a ground MVS model (source) and an aerial image (target). We assume that dense depth maps

exist for the source images, and that approximate alignment information is available, from which

we can synthesize the source images rendered from the target viewpoint. Standard small-baseline

features can then be applied to match the synthesized views with the target image. Note this is

fundamentally different from VIP matching [80], which needs to synthesize invariant views for

both source and target images. In fact, the proposed matching method only requires the dense 3D

geometry of the source imagery.

For the target view synthesis, we compute MVS reconstructions of the source imagery and

create dense depth maps with a bilateral filter-based interpolation process as described in [33].

The depth maps are first computed by back-projecting visible MVS points to each view, and then

interpolated with a bilateral filter to fill in possible holes (window radius is 10 pixels and the

regularization parameter is 0.16). We then further smooth the depth maps with a Gaussian filter of

size 11 to reduce warping artifacts.
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Given the recovered depth maps, we are able to synthesize the target view for each source

(ground level) image by depth-based warping . After that, we use SIFT to match with the aerial

views. See Fig. 3.3(c) for an example. Experiments show that the viewpoint-dependent feature

matching works well for the large viewpoint and scale changes in the aerial and ground matching,

where direct matching will typically fail.

A key advantage of our viewpoint-dependent feature matching over [80] is the ability to handle

large scale changes and exploit the approximate alignment information. By warping the ground

level images into the aerial views, and matching at the resolution of the aerial views, our algorithm

naturally ignores the small 3D structures that are invisible in the aerial views. In fact, we found

that the failures of [80] in our problem are often due to feature matching at the wrong scales.

3.4 Aerial View Selection and Matching

The initial alignment for the ground models is obtained by using a GPS tag based RANSAC, which

typically has an accuracy of around 20 meters. This precision allows us to automatically select the

proper aerial views for matching.

First, given an approximately aligned ground model, we identify the aerial images that contain

the model in their viewports. Specifically, for each of the four aerial oblique viewing directions,

we select the aerial image, whose center is the closest to the center of the ground model on the

image.

Second, each ground model usually corresponds to a small fraction of an aerial image, due to

the large scale changes. For the purpose of efficiency, our system automatically crops the aerial

images to narrow down the search space (Figure 3.3b). Specifically, based on the 3D bounding

box of the ground model, we extract the sub-images that cover the desired region of interest by

projecting the bounding box into the aerial views. In our implementation, we use 5 pre-defined

crop sizes: 401 × 401, 601 × 601, 801 × 801, 1001 × 1001, and 1201 × 1201. To account for the

error in the initial registration, we choose one crop size that is approximately twice the size of the

region of interest.

Third, we apply contrast adjustment to deal with landmarks in shadow. The aerial images are
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Before sharpening After sharpening

Figure 3.4: Image sharpening brings up the contrast level of aerial views in shadow, improving the
feature matching. Note that the aerial crop we show in Figure 3.3 (b,c) is after sharpening.
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(a) (b)

Figure 3.5: Applying the estimated similarity transform to the ground model. (a) The aerial MVS
model. (b) The transformed ground model on top of the aerial model. Note that accurate geo-
registration has been achieved.

all taken on sunny days in Rome, Italy. Therefore, north-facing facades are always in shadow,

resulting in low contrast aerial views. The contrast mismatch has a significant effect in SIFT

matching. To address it, we apply an unsharp mask to enhance these north facing views. That is,

Is = (1 + a)I − aI ∗ g, where Is is the sharpened image, I is the original cropped aerial image,

g is a 7 × 7 Gaussian filter with standard deviation σ = 1, ∗ is the convolution operator, and a is

the sharpening ratio (0.25 in our implementation). The aerial view enhancement produces better

two-view matching (Figure 3.4), leading to more accurate geo-registration.

Feature matches between the ground and aerial images are then converted into a list of 3D point

pairs, denoted {(P a
i , P

g
i )}. P a

i is one (feature) point in the aerial view, back-projected into 3D ac-

cording to the underlying aerial geometry. P g
i is the matched ground point, which is back-projected

based on the interpolated depth map. The ground-to-air alignment is sought by finding the optimal

3D similarity transformation between the two sets of 3D points. The error to be minimized can

be written as
∑

i ‖P a
i − (sRP g

i + T)‖2 , where s is the scale factor, R is the rotation matrix, and
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T is the translation vector. The closed form solution for the similarity transform is given by [73].

For robustness to outliers, we use a RANSAC process to find the transformation with the largest

number of inliers. We set the distance threshold to 5 centimeters. To account for possible low

inlier ratios, we empirically let the RANSAC process take 100, 000 iterations, where each iteration

randomly picks 3 pairs of points. This would guarantee a success probability of 0.999996 even if

the inlier ratio is 5%. Finally, the estimated similarity transform is applied to the ground model for

geo-registration (Figure 3.5).

3.5 Evaluation

The proposed system is evaluated on popular landmarks in the city of Rome. We downloaded

ground images from Flickr, and ran a standard 3D reconstruction pipeline (VisualSFM [79] fol-

lowed by PMVS [27]). After removing indoor scenes and small models of less than 20 images, we

keep 59 datasets for the geo-registration experiment. The number of images in each dataset varies

from 28 (Santa Croce in Gerusalemme) to 5000 (Colosseum). 12 of the 59 datasets have more

than 1000 images. As the geo-registration target, we collected 31, 891 aerial images that cover the

entire city of Rome. Most of the computation time is spent in the pre-processing steps computing

SfM [79] and MVS [27]. In particular, it takes about a day for each of the biggest datasets with

a distributed reconstruction system. The geo-registration process takes less than 20 minutes on a

single machine with 8 threads.

The proposed method successfully registers 41 out of the 59 landmarks in Rome, which gives a

69.5% success rate. Qualitative results can be found in Figure 3.6, 3.7, 3.8, and 3.9, which demon-

strate the accuracy of the proposed registration method. Our method shows clear improvements

over the initial GPS-based geo-registration.

Our view-dependent feature matching approach is critical to handling large viewpoint and scale

changes. For comparison, we also run the geo-registration pipeline using standard SIFT [48],

ASIFT [52] and VIP matching [80]. As expected, SIFT and ASIFT are not capable of handling the

drastic viewpoint changes (See Fig. 3.7). One may suspect that a possible reason of the failure is

the ratio-test. We experimented with this hypothesis by disabling the ratio-test. It indeed increases
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Aerial MVS points Result from [Wu et al. 2008] Our result

Aerial view                     Ground image

Figure 3.6: Comparing against the VIP matching in [80]. For better visualization, we manually
place red and green lines to highlight the bridge beams in aerial and ground models, respectively.
Note that the geo-registration from the proposed method is more accurate as the bridge beams from
the aerial and ground model overlap. Landmark: Ponte Vittorio Emanuele II.
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Aerial view       Ground image

Aerial MVS points

Our result

SIFT matching

[Wu et al. 2008]

More viewpoints

Aerial MVS points Our result

Figure 3.7: Comparing against the baseline method and the VIP matching in [80]. Landmark:
Theatre of Marcellus.
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Figure 3.8: Comparing against the VIP matching in [80]. Landmark: Santa Maria in Trastevere.

the number of putative feature matches between the ground and aerial views. However, the feature

matches become much noisier. In the end, disabling the ratio-test does not increase the number of

successfully registered landmarks. VIP matching works reasonably well for a few datasets where

the scene geometry is relatively simple, but fails in most cases. One of the successful examples of

VIP matching is shown in Figure 3.6, where the ground MVS model of the bridge has been regis-

tered to the aerial model. However, the registration error from VIP matching is significantly larger.

Two failure examples are shown in Figure 3.7 and 3.8. VIP detection and matching relies heavily

on correctly parsing local scene geometries, e.g., the plane detection process. The performance

varies depending on various thresholds which need to be tuned for each landmark. Moreover,

the matching tends to get confused by the large number of small 3D features in the ground-level

reconstruction.

We tried to conduct quantitative evaluations of the geo-registration accuracy, but it is not clear

how to define a good metric. One option is to define a recall score by setting a distance threshold

and measuring the percentage of ground MVS points that have aerial reconstructions within the
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Figure 3.9: More results on matching the aerial view to the ground image. Left: the point cloud
from aerial MVS models. Right: our geo-registered models. Please zoom into the original resolu-
tion for best visual quality.
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Failure case 1: inconsistent aerial/ground appearance

Failure case 2: noisy ground MVS reconstruction

Figure 3.10: Failure cases. The proposed method fails when (i) the aerial/ground geometry is not
consistent, and (ii) the ground geometry is noisy.
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threshold. However, due to the large difference in resolution and coverage between the aerial

and ground models, this metric does not necessarily favor the better geo-registration result. For

example, a ground model of the frontal facade of a church may be mis-matched to an incorrect

planar region in the aerial model, and produce a comparable or higher recall score. We hope to

develop a better metric for the problem in future work.

The proposed approach does fail for some landmarks. Figure 3.10 shows such an example,

where the building is under construction in the aerial model, but not in the ground model. When

the aerial and ground s are not consistent, the proposed method is not able to find enough feature

matches. Another cause of failure is due to noisy ground reconstructions. Since our viewpoint-

dependent feature matching relies on the ground geometry for warping, it is vulnerable to noisy

ground reconstructions, which result in severely distorted synthesized views.

3.6 Conclusion

This chapter presents a fully automatic system to geo-register ground MVS reconstructions. The

system is capable of handling drastic viewpoint variations by adopting a novel view-dependent

feature matching approach. We conducted a large scale experiment using 59 popular outdoor

landmarks in Rome. Our results are significantly better than existing techniques.

Our approach does have some limitations. It relies on the quality of ground MVS reconstruc-

tions, and assumes consistent appearance in both aerial and ground imagery (Figure 3.10). The

registration accuracy degrades at the presence of severe occlusions. Although the ultimate goal is

to create high-resolution city-scale 3D models, currently we are only able to achieve this desired

resolution at city landmarks where dense ground images are available. One topic of future work is

to incorporate another source of ground-level imagery such as Google Street View images. Finally,

the proposed approach simply estimates a similarity transformation between the aerial and ground

models. Slight mis-alignments are observed in some of the datasets, which could be reduced by

global bundle adjustment on all the ground and aerial imagery, incorporating the ground-to-aerial

feature matches obtained by the proposed algorithm.
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Chapter 4

OCCLUDING CONTOUR FOR MULTI-VIEW STEREO

One of the key challenge arises from our study to the Visual Turing Test (Chapter 2) is ob-

taining high quality geometry. The state-of-the-art pipelines typically produce meshes with noisy

surface details and undesirable overly-inflated boundaries which can be easily spotted by human

perception [63]. In this chapter, we propose a new approach that dramatic improves MVS quality

both around object contours and in surface detail.

Object silhouettes provide remarkably strong shape cues; a single silhouette constrains the en-

tire volume of 3D space that projects outside of it to be “empty.” Combined with image intensity

cues, silhouettes have been shown to greatly enhance the output of multi-view stereo (MVS) meth-

ods particularly for low-textured scene regions [34, 76]. However, as the focus of 3D reconstruction

research has shifted out of the lab and into “the wild,” [5, 22] silhouettes have become less relevant,

as it is not clear how to define, much less separate, the “background.” E.g., for applications like

city modeling (Google Maps and Apple Maps), there is no concept of a silhouette as the goal is to

reconstruct the entire scene.

Occluding contours, aka “internal silhouettes,” provide similarly powerful shape cues but in

a much more general setting, without the need to define a background. An occluding contour

corresponds to a boundary in the image between an object surface (e.g., part of a statue) and

another surface further away (e.g., wall) that it partially occludes. In principle, occluding contours

could be leveraged similarly to silhouettes, to identify regions of empty space between closer and

more distant surfaces. The main challenge, however, is that identifying such free-space regions

requires accurate reconstructions of both the foreground and the background surface to start with,

i.e., it’s a chicken-and-egg problem. For example, both statues and walls are hard to reconstruct

due to lack of texture, and give rise to incomplete or noisy models, complicating the inference of
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Figure 4.1: Luxembourg Gardens in Paris. The top row shows the baseline reconstruction by
PMVS [27] and Poisson Surface Reconstruction software [40]. The middle row shows another
baseline reconstruction by CMP-MVS software [37]. Our results are in the bottom row, illustrating
much clearner geometry boundary and more accurate details. PMVS+Poisson and our meshes
are colorized from the closest PMVS points. CMP-MVS mesh is colored by the reconstruction
software.
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free space and occluding contours.

Our contributions are 1) a new technique to identify free-space regions arising from occluding

contours, and 2) an approach for incorporating the resulting free-space constraints into surface

reconstruction. Our approach is based on extrapolating free space using the assumption that piece-

wise constant image regions have simple (quadric) surface geometry. While this type of assumption

is commonly used in stereo methods to interpolate nearby surface geometry, e.g., [70], prior work

has not considered the effects that the interpolated geometry has on free-space and how to globally

propagate this free-space information across the scene in a globally consistent and noise-robust

manner. To this end, we introduce free-space voting into the Poisson Surface Reconstruction [40]

framework, and demonstrate how this novel extension allows for high quality, free-space aware

MVS reconstructions.

We show that incorporating this occluding contour information into an MVS method yields

considerably cleaner, more accurate, and more complete reconstructions, especially around object

boundaries. Our focus is Internet imagery, which tends to be more challenging than lab-captured

datasets. The greatest improvements are in areas of very fine-scale geometry, which tend to be lost

using standard regularization approaches due to over smoothing; contour information is critical to

retaining these structures. When available, our approach can also incorporate standard silhouettes,

and we show results on using external (sky-based) and internal silhouettes together to achieve

state-of-the-art reconstructions of large landmarks.

The remainder of the chapter is organized as follows. Section 4.1 describes an overview of our

approach with intuitions on its design. The detailed algorithm is presented in Section 4.2. I show

evaluation results in Section 4.3 and conclude in Section 4.4.

The work in this chapter was published in the 2014 IEEE Conference on Computer Vision and

Pattern Recognition [64]

4.1 Overview

Here we present a high level view of our proposed framework. A detailed description appears in

Section 4.2.
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Starting from an internet photo collection for a given site, we recover the camera positions

with freely available structure-from-motion software [67] followed by multi-view stereo using

PMVS [27]. PMVS is well-suited to recovering geometry from photo collections, but only gives a

semi-dense reconstruction, and can be very sparse in low texture regions. In a typical reconstruc-

tion pipeline (Figure 4.2 (a)), these PMVS points are then used directly for surface reconstruction.

Instead, we modify the pipeline (Figure 4.2 (b)) to include construction of dense depth maps that

respect occluding contours and provide additional shape and visibility information.

We construct an initial depth map for each input view, starting with the PMVS points that

are visible in that view. Each initial depth map can be quite sparse, inadequate for providing

dense visbility information. To address this, we interpolate the depth maps by optimizing for

depths that are smooth between PMVS samples, with an important modification. Observing that

depth discontinuities (occluding contours) tend to coincide with image discontinuities, we relax

the smoothness near apparent image contours and edges during optimization.

Next, we prepare a free space volume and an augmented point set that will drive the surface

reconstruction. We observe that the optimized depth maps are useful both for visibility constraints

and for adding new surface points. Though not accurate everywhere, the depth maps tend to be

good proxies for space carving. Thus, we create a free space volume directly from the depth maps.

In addition, we use the same depth-map visibility constraints to cull spurious PMVS points, e.g.,

those that can often appear near occluding contours.

In some interpolated areas, the depth maps can also provide reasonable approximations to the

true geometry. The intuition is that within regions that do not contain much image detail, including

constant albedo regions with little shading variation, PMVS does not recover much, if any, geom-

etry, but that geometry is likely fairly smooth. Our image-guided interpolation algorithm tends to

propagate depths well within such textureless regions. In the end, we consider each depth map

point as a candidate for surface reconstruction, while retaining only the points that are consistent

with the all the depth maps. We combine the surviving depth map points with the PMVS points

(that are not in visibility conflict) to construct an augmented point set.

Finally, we solve for a surface that fits to the augmented point set and performs fair hole-filling,
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Figure 4.2: System overview. Our contributions are highlighted in the yellow rectangle. (a) A
typical scene reconstruction system pipeline. (b) Our system pipeline.

while respecting the free space volume. To achieve this, we employ screened Poisson surface

reconstruction [41] with a simple modification: the addition of a soft, free-space volume constraint.

The resulting surface has smooth hole fills in under-sampled areas but does not “baloon” out into

free space in the way standard Poisson reconstructions often do. In addition, the free space volume

provides, in effect, a tighter boundary condition on the screened Poisson problem, which improves

the overall quality of the result.

Our system uses occluding contour information to improve 3D geometry reconstruction from

uncontrolled photo collections. It consists of two novel pieces, i.e., (i) computing occluding con-

tour information and encoding it elegantly with dense depth maps, and (ii) a Poisson based ap-

proach that respects occluding contours for mesh reconstruction.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Densifying depth maps. (a) Input color image. (b) gPb contour response along hori-
zonal direction. (c) gPb contour response along vertical direction. (d) Initial depth map based on
visible PMVS points. (e) Our estimated dense depth map. (e) Our estimated confidence map.



56

Figure 4.4: Two single view depth point clouds. The depth interpolation does not create accurate
background depth values, as there are not enough samples. But it does create a depth-discontinuity
boundary that aligns well with images and recovers geometry where PMVS points are dense.

4.2 Algorithms

4.2.1 Densifying depth maps

PMVS recovers oriented points and provides a list of views used to reconstruct each point; we

say a point is (conservatively) visible in these listed views. We can therefore construct an initial,

conservative depth map for each view by projecting its visible PMVS points into a depth buffer for

that view. As shown in Figure 4.3(d), these depth maps can be fairly sparse.

To estimate a dense depth map for a given view, we define an energy function that encourages

depths to be (1) close to the PMVS points where available and (2) smooth between PMVS points

in a spatially adaptive way, i.e., respecting image contours and color discontinuities. Let (x, y) be

a pixel location in an image, dx,y be the unknown depth values, and Ω be a set of pixels with depth

values d̂x,y derived from projected PMVS points. Our energy definition is then:

Ed =
∑
x,y∈Ω

(dx,y − d̂x,y)2 + λ
∑
x,y

wx(x, y)

(
∂2dx,y
∂x2

)2

+ wy(x, y)

(
∂2dx,y
∂y2

)2

(4.1)

where λ is a global smoothness weight and wx(x, y) and wy(x, y) are spatially varying smoothness
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weight functions along horizontal and vertical directions, respectively (described below). We set λ

to a relatively large value (50) in our experiments to boost the regularization due to the fairly noisy

PMVS points that arise when reconstructing from internet photo collections.

Note that we choose to use second order derivatives in order to encourage low curvature recon-

structions. We approximate these derivatives as

∂2dx,y
∂x2

= 2dx,y − dx−1,y − dx+1,y,

∂2dx,y
∂y2

= 2dx,y − dx,y−1 − dx,y+1.

We construct the smoothness weighting functions wx(x, y) and wy(x, y) to have values close to

1 in visually smooth regions, to encourage depth propagation, and close to 0 on contours and color

boundaries, to stop depth propagation and encourage depth discontinuities at visual boundaries.

To quantify visual smoothness and proximity to boundaries, we employ two measures. Re-

cent work in computing image contours has shown significant progress. We leverage the work of

gPb [9], which computes oriented contour strength at each pixel, measured in 8 directions. For our

purposes, we use just the horizontal and vertical contour strengths, gx(x, y) and gy(x, y), which

we show for one example in Figure 4.3(b) and (c). The second measure we use is simply the sec-

ond derivative of image intensity in the x and y directions. Putting these together, we define the

smoothness weighting functions to be:

wx(x, y) = exp

(
−
∥∥∥∥∂2I(x, y)‖

σ1∂x2

∥∥∥∥) exp(−gx(x, y)σ2

)
,

wy(x, y) = exp

(
−
∥∥∥∥∂2I(x, y)

σ1∂y2

∥∥∥∥) exp(−gy(x, y)σ2

)
,

where σ1 = σ2 = 0.1 in our implementation.

Minimizing Eq. 4.1 is a linear least squares problem for which the global optimum is readily

computed. Figure 4.3(e) illustrates an example of dense depth map estimation.

In later steps, having a confidence measure for each depth estimate is important. Depths near

projected PMVS points should have relatively high confidence, whereas depths far from these

points should have low confidence. Applying nearly the same framework we used for depth esti-
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mation (Eq. 4.1), we estimate per-pixel confidence c(x, y) by minimizing an objective:

Ec =
∑
x,y

(cx,y − ĉx,y)2 + λ
∑
x,y

wx(x, y)

(
∂cx,y
∂x

)2

+ wy(x, y)

(
∂cx,y
∂y

)2

(4.2)

In this case, we define the data ĉ(x, y) across all pixels: ĉ(x, y) = 1 at projected PMVS points,

otherwise ĉ(x, y) = 0. Here, the smoothness weights allow confidences to “diffuse” without cross-

ing color contours; thus, for example, a high confidence foreground does not raise the confidence

of a low confidence background. Note that the smoothness term now uses first order instead of

second order derivatives, since c(x, y) does not have a geometric meaning that requires second

order smoothness. We approximate these derivatives as:

∂cx,y
∂x

= cx+1,y − cx,y,
∂cx,y
∂y

= cx,y+1 − cx,y.

Again, we set λ = 50.

Figure 4.4 shows two depth maps visualized as 3D point sets. Note how these point sets capture

the occluding contours of the foreground against the background as depth discontinuties. The

point locations are accurate at regions with good PMVS point coverage. They are less accurate at

areas with very sparse coverage, for example, the wall in the back. We use the confidence map

(Figure 4.3(f)) to measure this accuracy and later to limit the effect of bad depth values on our final

reconstructions.

4.2.2 Augmenting the PMVS point cloud

The reconstructed depth maps provide useful visibility information, as well as new points that can

potentially fill in geometry in less textured regions that are not well-covered by PMVS. In this

section, we describe a method for enhancing the PMVS point set using the dense depth maps.

First, we consider each depth map point with confidence greater than 0.2 to be a candidate for

inclusion in the augmented point set P , which is initially an empty set. Denote the location of this

point in world coordinates as q. We will add q to P if q (1) is not in significant visibility conflict

with the all the depth maps and (2) is near other depth map points and thus likely on the surface.

Let πj : R3 → R2 be the function that projects a 3D point into viewpoint j and let πdj : R3 → R

be a function that computes the projected depth of that point. dj(x, y) represents the depth stored
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(a) (b)

Figure 4.5: Augmenting the PMVS point clouds. (a) The direct output from PMVS. (b) Our
augmented point cloud.
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in the j-th depth map at location (x, y). We compute two confidence-weighted visibility votes for

each point q:

Kf (q) =
∑
j

c(πj(q)) · δ(πdj (q) ≤ lbdj(πj(q)))

Ks(q) =
∑
j

c(πj(q)) · δ(lbdj(πj(q)) ≤ πdj (q) ≤ ubdj(πj(q))),

where

δ(x) =

 1, x = true

0, x = false
.

lb and ub are tolerance bounds to determine if a point lies near the surface; we set lb = 0.99 and

ub = 1.01. Kf (q) then measures the degree to which q lies in the free space of all of the depth

maps. Ks(q) measures the amount of support for q being with range of some set of depth map

points. We only add q to P if Kf (q) < γ and Ks(q) > γ, where we set γ = 6 in our experiments.

We additionally add the original PMVS points to P , except those points that are in significant

visibility conflict with the depth maps, i.e., for which Kf (q) < γ.

Figure 4.5 illustrates the greater coverage provided by the augmented point set.

4.2.3 Computing free space volume

We additionally compute a free space volume that will later constrain the surface reconstruction.

First, we form a finely sampled grid of voxels. Given a voxel u, we project its center (which, with

some abuse of notation, we will also denote as u) into each view j to compute the accumulated

free-space vote for the voxel as:

K ′f (u) =
∑
j

c(πj(u)) · δ(πdj (u) ≤ l′bdj(πj(u))),

where l′b determines how close to the surface to carve. Here we are more conservative and let

l′b = 0.97, effectively assuming most high confidence values on the depth map are within 3% error.

To prevent carving through well-supported regions of space, we compute the number of aug-

mented points in P that lie within a voxel – call this number Kn(u) – and finally define the free

space volume Vf as:

Vf = {u : (K ′f (u) > γ′) ∩ (K ′f (u) > 10 ·Kn(u))} (4.3)
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In our experiments, we conservatively set γ′ = 15.

4.2.4 Occluding contours against the sky

Sky regions in images provide strong occluding contour cues for bounding foreground structures.

Suppose we have fairly conservatively detected some (but not all) sky pixels in a given view. We

incorporate this information into our framework by assigning very large depth values (108) to those

pixels, and then proceed with densifying the depth map for that view as before. In later steps, depth

map pixels with very large depths are not considered as candidates for inclusion in the augmented

point set P – we are not actually reconstructing the sky geometry – but they are used for free space

computations.

Our procedure for conservatively identifying sky pixels is as follows. First we reconstruct a

Poisson surface just based on the original PMVS points. We then project this surface into each

view. Pixels are initially labeled sky if they are not covered by this surface. Assuming sky pixels

tend to be blue or gray, we then narrow this set to pixels with (r, g, b) colors that satisfy r+g ≤ 2b.

Finally, we conservatively erode this set in each view with a disk of size 11. Note that this procedure

is only to initialize a conservative sky seed. The accurate sky mask is computed through depth

densifying using interior contours.

4.2.5 Poisson reconstruction with free space

We modify the screened Poisson surface reconstruction alrogithm [41] to handle free-space vol-

umes. In particular, we minimize the following objective:

E(χ) =

∫
‖∇χ(u)− V (u)‖2du+ α

A

|P|
∑
p∈P

c(p)χ2(p) + β

∫
u∈Vf

‖χ(u)− 1‖2du. (4.4)

The first two terms give rise to the screened Poisson equation [41]. In the first term, u is a point

in the volume, V is the vector field constructed from the point normals, and χ is an indicator

function; χ(u) > 0 means that u lies outside the surface, and χ(u) < 0 means u is in the interior of

the surface. In the second term, α trades off matching point normals and point locations over the

point set P (of size |P|), and A is an area term automatically computed in [41]. This second term
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Figure 4.6: Reconstruction of Place Saint-Michel (583 images after SfM).

encourages values of χ to be zero near the input points. The third term is our contribution: a soft

constraint that encourages the indicator function to take on values near 1 in free space. We build

this modification into the released source code of [41], version 4.0. Finally, solving for the χ that

minizes Eq. 4.4 results in an implicit function from which the surface can be extracted as the zero

level set.

In our experiments, we set α ∈ [0.5, 2] and β = 1. We also supply normals for the vector field

V . For PMVS points, we use the original PMVS normals. For depth map points, we compute the

normals directly from the depth maps in the standard way.
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PMVS + Poisson Proposed approach

Figure 4.7: Reconstruction of Laocoon and his Sons at Vatican Museums (303 images after SfM).

4.3 Experiments and Evaluations

We evaluate the proposed system on 6 datasets, consisting of images collected from the Inter-

net. The computational bottleneck is in the pre-processing, namely, image contour calculation by

gPb [9], SfM execution [79], and PMVS execution [27]. These pre-processing steps may take days

for large datasets, in particular, nearly a week for our largest dataset Colosseum, which started from

more than tens of thousands of images and ended up with an SfM model consisting of 3276 im-

ages. Conversely, the new steps we contribute – depth map densification, point set augmentation,

free space construction, and constrained Poisson reconstruction – finish within an hour for all the

datasets on a 40-core cluster, not including file I/O time.

To evaluate the effectiveness of our approach, we have made comparative evaluations. In Fig-

ures 4.1 and 4.6, our reconstructions are compared against two other state-of-the-art methods: 1)

screened Poisson surface reconstruction [41] operating on the original PMVS point-cloud [27];

and 2) CMP-MVS [37], which improves reconstruction near silhouettes and compares favorably to

other state-of-the-art techniques such as [77]. Also note that the screened Poisson surface recon-

struction software “hallucinates” large pieces of geometry in an attempt to produce a water tight
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model. Such geometry consist of large triangles; thus, we remove triangles whose edge length is

longer than 10 times the average edge length of the entire mesh for Poisson reconstructions. The

figures show that our results have much cleaner geometry boundaries showing the effectiveness of

the enhanced depthmaps and their carving power along the occluding boundaries. Notice, in par-

ticular, the precise outline of the winged dragon in our 3D model at Place Saint-Michel (Figure 4.6)

as well as sample depthmaps produced by our system.

The top two rows of Figure 4.8 further illustrate improvements over the standard PMVS+Poisson

approach, with tighter bounds on the geometry. We can also see the effect of various components

of the system in the bottom row. The bottom left sub-figure shows that augmenting the point set

does a better job of completing one of the wings, but the reconstruction is still noisy and does

not have a tight silhouette. Alternatively, as shown in the bottom-middle sub-figure, not adding

these points, but performing the carving on the original PMVS points does tighten the silhouette,

but leaves Poisson to just smoothly fill in missing pieces. We note that the reconstruction is much

less noisy, due to the free space volume providing tigher constraints on the Poisson reconstruction.

Finally, the combination of augmenting the point set and using the free space constraint gives the

best of both worlds as shown in the bottom-right sub-figure.

Figure 4.7 provides another example where, in particular, PMVS creates a noisy point set and

leads to poor surface reconstruction using the standard Poisson approach. Our method significantly

improves the mesh quality.

Finally, we highlight the results of incorporating the occluding contours against the sky in

depth map densification and free-space volume construction, as shown in Figure 4.9. The top

row (San Marco Basilica) shows how PMVS and Poisson tend to inflate the boundary into sky

regions. After carving out sky regions in the free space volume using the improved depth maps,

we are much better able to resolve the outlines of statues and even the fine cross structure atop the

dome. In the middle and bottom rows (Colloseum), we can see how sky carving has both removed

spurious geometry along the top of the Colloseum and also enabled carving through some of the

portals around the structure.
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Figure 4.8: Reconstruction of Winged Victory of Samothrace at Louvre (274 images after SfM).
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[63] Proposed approach

Figure 4.9: Our reconstructions for San Marco Square (top) and Colloseum (middle and bottom)
datasets showing the improved geometry boundaries over [63]. The numbers of images after SfM
are 2687 and 3276, respectively.
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4.4 Summary

This chapter presents two contributions to the problem of MVS from photo collections: 1) a new

technique to identify free-space regions arising from occluding contours, and 2) a new approach

for incorporating the resulting free-space constraints into surface reconstruction. We propose a

new dense depth map interpolation from 3D point clouds and occlusion boundaries, and a Poisson

formulation that incorporates free space constraints. The free space constraints effectively modify

the space of solutions with a tigther bound around the initial point cloud. This new formulation

retains the regularization/hole filling properties of Poisson [41] while improving its accuracy with

noisy data. It outperforms state-of-the art MVS techniques on Internet photo collections, and

results show dramatic quality improvements.

The method we have described does have limitations. First, it depends on time-consuming

pre-processing steps, though these can be difficult to avoid (e.g., SfM and PMVS). Faster imple-

mentations of gPb are now available, which should accelerate this part of the process. Second,

errors in depth map interpolation have the potential to do too much carving. Third, occluding con-

tours can give better bounds on parts of a scene, but screened Poisson surface reconstruction is still

left to fill in parts that were not observed, e.g., the backs of objects. In some cases, the filled-in

regions behave unexpectedly, such as the wings of Winged Victory, which are merged across the

top, rather than being filled around the back. Finally, 3D volumetric contouring artifacts are visible

in some reconstructions, likely due to the influence of the binary free space volume on the Pois-

son reconstruction. We believe the results could further be improved with a soft voting scheme or

perhaps signed distances from depth maps.
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Chapter 5

PHOTO UNCROP

As we have seen in Chapter 2, creating photo-realistic visualization by directly rendering from

a reconstructed 3D model is a grand challenge, and may take decades of research effort. But is it

true that “directly rendering” is the only solution of visualizing a 3D scene? I believe the answer

is no. Innovating image based rendering to work with inaccurate geometry (created from Internet

photo collections) is a promising area of research to create “photo-realistic” visualizations, and

thus is able to enable a wide variety of applications. In this chapter, I present an application we

called “photo uncrop”. The advantage of our approach is twofold. First, it tolerates geometry errors

from MVS approaches. Second, it renders salient scene elements (transient objects, hard-to-model

geometry) and thus dramatically improves the photo-realism of the results.

Travel photos often fail to create the experience of re-visiting the scene, as most consumer

cameras have limited field of view (FOV). Indeed, mobile phone cameras (which far outnumber any

other photography device) typically have a FOV around 50-65 degrees, significantly narrower than

the human eye [8]. Capturing large scenes is therefore tricky. Modern cell phones are equipped

with camera apps providing a panorama mode, which allows you to take multiple pictures and

stitch them into a bigger image. However, the process is often tedious. Furthermore, you cannot

operate on your past photos. As a result, your photos are often more tightly cropped than desired

(See Fig. 5.1).

We address the problem of extending the FOV of a photo—an operation we call uncrop. The

goal is to produce a larger FOV image of the scene captured in your photo, leveraging other photos

of the same scene from the Internet (captured at different times by other people). We make an

important distinction between producing a plausible extended image using a technique such as

texture synthesis [57], vs. producing an extended rendering of the true scene which is intended
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A typical travel photo
of a family

Our photo uncrop resultInternet Photos

Figure 5.1: Capturing family photos with the desired background in the image frame can be tricky.
Our approach expands the FOV of a user photo thus enables better spatial context. Landmark:
Stravinsky Fountain in Paris.

to be accurate. The latter case is more challenging and potentially more useful, as it gives you

information about the real world, allowing you to zoom out of any photo to get better spatial

context.

For almost any photo you take at a tourist site, there exist many other photos from nearby

viewpoints, collectively capturing the scene across a potentially large FOV. Our approach is to

automatically select, reproject, and composite a subset of this imagery into a large image screen

centered on your photo. This problem is challenging for several reasons. First, the photos are

not captured from the same optical center, resulting in too much parallax for existing state-of-the-

art panorama stitchers (which produce severe artifacts as we will show). Second, the appearance

(color, exposure, and illumination) varies dramatically between photos, making it difficult to pro-

duce a coherent composite. And finally, the presence of people, cars, trees, windows, and other

transitory or hard-to-match objects make the alignment problem especially challenging.

This problem represents a compelling application that sits between traditional panorama stitch-

ing, which requires capturing many images and is thus labor intensive, and full 3D scene recon-

struction, which has too many failure modes. Indeed, our experiments with state-of-the-art 3D

reconstruction techniques [26, 37, 63] rarely produce hole-free geometry, omitting ground, people,

trees, windows, and many other salient scene aspects. Our approach therefore assumes incomplete

geometry in the form of depth maps, and leverages a novel Markov Random Field (MRF) based
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compositing technique to generate compelling full-scene composites complete with people, trees,

etc.

Our contributions are two-fold: (i) the first system to produce compelling uncroping results

with Internet photos; (ii) a novel MRF based formulation adapted to handle significant geometry

errors.

We show convincing results on a wide range of scenes. Like existing panorama stitchers,

our results are not entirely free of artifacts, and stitching seams and misregistration artifacts are

occasionally noticable. However, we argue that for the intended application (giving you spatial

context for your photo), small artifacts are quite tolerable. I.e., it’s less important that every pixel

is right than being able to zoom out and see that the building behind you is the Uffizi, or that you’re

standing in the middle of a large town square.

The remainder of the chapter is organized as follows. I first define the input data of our sys-

tem in Section 5.1. The detailed uncrop algorithm and implementation details are presented in

Section 5.2 and 5.3, respectively. I show our experimental results in Section 3.5 and conclude in

Section 5.5.

The work in this chapter was published in the 2014 European Conference on Computer Vi-

sion [65].

5.1 Input Data

We download images from Flickr (http://www.flickr.com) for a variety of sites, and use

existing structure from motion (SfM) software [79] to compute camera poses. Uncropping is per-

formed on images selected from the SfM model to show the capability of our system, though it

would be straightforward to apply our system to an arbitrary new photograph by simply adding

it to the relevant image set and performing incremental SfM. Publicly available multi-view stereo

software is used to reconstruct per-view depthmaps [25]. Then, we warp each image by reproject-

ing its depth map and colors to the viewpoint of the image to be uncropped. More details on these

preprocessing steps are found in Section 5.3.
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5.2 Uncrop Algorithm

We propose an MRF-based compositing algorithm to construct a wide FOV target image around a

reference image. We assign a label l to each source image, such that l ∈ {−1, 0, 1, · · · , N − 1},

where N is the number of images that survived the view selection process (including the reference

image itself), and −1 is the null label. After re-projecting each source image, we have a set of

partial, warped images Cl(p) that each cover parts of the target image. We seek to solve for the

label map l(p) over target pixels p that will yield a high quality composite when copying warped

image colors to the target image. We include the null label l = −1 to allow for a small number

of pixels not covered by any of the images. After computing the composite, we perform a Poisson

blend to give the final result.

We formulate the MRF problem as the sum of a unary term, a binary term, and a label cost

term:

E(l) =
∑
p

Eunary(p, l(p)) +
∑

{p,q}∈N (p,q)

Ebinary(p, l(p), q, l(q)) + Elabel(l). (5.1)

where N (p, q) denotes pairs of neighboring pixels in a standard 4-connected neighborhood. With

abuse of notation, l here denotes the set of all the labels in the image. What is novel is the ac-

tual formulation of the unary and binary terms. We first describe their principles, where detailed

formulation will be discussed in the following sections.

5.2.1 Principles

Eunary: It is nearly impossible to reconstruct perfect geometry for a complicated scene like ours,

and a warped image may not be exactly aligned with the reference image. Therefore, the unary

term incorporates the confidence of estimated depth information. Appearance mismatch is another

source of artifacts. For example, compositing a daytime photo with a nighttime shot is challenging.

We assign each image a score that measures the appearance similarity to the reference. Further-

more, appearance variation within an image due to shadows, over-saturation, and flash photography

can result in spatially varying pixel quality. Thus, we assign lower cost to high contrast pixels.
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Ebinary: Traditional image stitching uses Ebinary to minimize seams by looking for cuts on image

edges. We follow a similar path, but also introduce a new measure to encourage any given recon-

structed patch in the composite to resemble at least one warped source image at the same location.

This helps to avoid making abrupt transitions in the composite that can arise from geometric mis-

alignments, because noticeable artifacts at such transitions do not resemble corresponding regions

in any of the input images.

Elabel: Building a composite out of many images can lead to a quiltwork of stitched patches that can

stray from the desired result. It is natural instead to encourage the stitcher to take pixel examples

from a sparse set of warped views. In our approach, we achieve this by assigning a constant cost

to each unique label used in the compositing.

5.2.2 Unary term

We construct the unary term from several components:

Eunary(p, l) = Egeometry(p, l)+α1Eappearance(l)+α2Econtrast(p, l)+α3Ereference(p, l), (5.2)

where α1 = 10, α2 = 5, α3 = 1 are used in all of our experiments. Note that each warped source

image Cl(p) only partially covers the target image; if warped image l does not have a color at pixel

p, the unary term is automatically set to infinity.

Geometry: We define the geometry term Egeometry(p, l) as the possible error in the position of a

reprojected pixel. It is determined by two factors: the accuracy of the original depth value and

the baseline between the reference view and the source view. First, we model the accuracy using

the range of depths in a local neighborhood in the source image l. More concretely, let u denote

a source pixel in image l, and U to be the corresponding 3D point on the depthmap, which is re-

projected to p in the reference. We look at a local neighborhood of size 11× 11 pixels centered at

u, and compute the minimum and the maximum depth values in the window. We have assumed a

1% depth error, and subtracts from the minimum and add to the maximum depth values by 0.01Du,

where Du is the depth value at u. We take the 3D point U and shift its location to the minimum and
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the maximum depth locations, and project it to the reference image. Let us call the two projected

location pnear(p, l) and pfar(p, l), respectively. Then, the geometry term is defined as follows:

Egeometry(p, l) = max(|p− pnear(p, l)|, |p− pfar(p, l)|). (5.3)

By minimizing this term, the optimization will favor pixels from images that have a smaller base-

line relative to the reference view (less room for parallax errors) and images that sample surface

regions more densely in close-ups and thus are more likely to cover a smaller range of depths. It

is possible that multiple pixels u may warp to pixel p (see Section 5.3), in which case, we simply

take the average projected location.

Appearance: Internet photos exhibit a wide range of illumination conditions. It is important to

encourage the use of images with similar appearance. To do this, we assign an appearance cost to

each source image. Specifically, we take the color histogram of each image, and score it by its KL

divergence from the histogram of the reference image. Then the images are sorted in ascending

order. Let kl be the index of image l in this sorted list. We now define the overall image appearance

cost as:

Eappearance(l) = kl/N, (5.4)

where N is the number of images in the set. Smaller cost in this case means less divergent from

(more similar to) the reference image. Note that this unary term is constant for image l, regardless

of which target pixel is being considered.

Contrast: Undesirable appearance variations such as shadows and over-saturation can be penal-

ized based on the contrast. We address this by defining a local contrast cost. Let (Gl
x, G

l
y) be the

finite difference gradient of image l after mapping image l to grayscale (intensity values ∈ [0, 1]).

We use the following formula to measure the lack of contrast over 11 × 11 window Ω centered at

u in image l, which corresponds to p after the warping:

Econtrast(p, l) =
1

|Ω|
∑
v∈Ω

√
(1− |Gl

x(v)|)2 + (1− |Gl
y(v)|)2. (5.5)
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If multiple pixels from source image l map to p after warping, we again simply take the average of

their scores.

Reference: Finally, it is important to respect the reference image. Let us define the core region of

the image Ωcore to be a set of pixels inside the reference image and more than 11 pixels in distance

from its boundary. The reference cost is defined by applying the following four rules from top to

bottom:

Ereference(p, l) =



0, l = lref

10000, l = −1

100, p /∈ Ωcore

∞, p ∈ Ωcore

(5.6)

where lref is the label of the reference image. It is possible that some of the pixels in the target

image are not covered by any of the images, thus we allow the l = −1 label, with high cost.

5.2.3 Binary term

Similar to previous work [6], we encourage label switches in regions with edges, where seams will

be less noticeable. Further, we use a novel compatibility term to encourage constructing regions in

the target image that resemble warped source image regions. Our binary term can then be written:

Ebinary = Eedge + βEcompatibility. (5.7)

where β trades off the relative contribution of the compatibility term. (We set β = 10 in all of our

experiments.)

Edge: We first define a Sobel filter cost for a single pixel u and in (unwarped) source image l:

ES(u, l) =

(
6− ||S(u, l)||1

4

)2

. (5.8)

S(u, l) is the concatenation of the Sobel filter responses in the x and y directions for each of the

r, g, and b color channels, where we take the L1 norm of this 6-dimensional vector. Now, for

neighboring target pixels p and q with labels l and m, respectively, the binary edge cost is:

Eedge(p, l, q,m) =

 0, l = m

ES(u, l) + ES(u,m), l 6= m.
(5.9)
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If multiple pixels correspond to p after warping, we take their average over u.

Compatibility: To encourage regions in the target image to resemble regions in the source image,

we introduce a novel label compatibility term. Consider a pixel p and one of its neighbors q in

the target image, and an image l. We define an 11× 11 window around the two pixels and collect

the pixels of Cl(p) (corresponding to the warped version of image l) in the overlap into a vector

Wp,q(l). If there will be a transition between labels l and m in going from p to q, respectively, then

the resulting window in the final result will likely resemble the average of the windowsWp,q(l) and

Wp,q(m). This average in turn should resemble at least one of the (warped) source images. Thus,

we define the following compatibility cost:

Ecompatibility(p, l, q,m) = 1−max
n

NCC

[
1

2
(Wp,q(l) +Wp,q(m)) ,Wp,q(n)

]
(5.10)

where NCC[·, ·] ∈ [−1, 1] is the normalized cross-correlation between two vectors, and n ranges

over all of the labels. Note that, by this definition, this term becomes 0 when l = m. In addition, we

set the term to∞ if either Wp,q(l) or Wp,q(m) includes pixels where Cl(p) or Cm(p) are undefined.

5.2.4 Label cost

We encourage the image stitcher to take color from a small number of images by assigning a

constant cost for each additional label. If K is the number of unique labels in the composite, we

set Elabel(l) = 500000 ·K.

5.2.5 Optimizations and Accelerations

The energy definition in Eq. (5.1) falls naturally in the category of multi-label optimization with

label cost. We optimize it with an iterative alpha-expansion solver [18].

Directly solving the problem is impractical due to the image resolution (millions of pixels) and

the large label space (thousands of labels). Therefore, we apply (i) a simple up-sampling scheme

and (2) a pre-filtering process to limit the solution space. The computational time varies from 10

seconds to a few minutes for solving the graph cut problem with a single thread on a 3.4Hz CPU.
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Up-sampling a lower resolution label map: The iterative alpha-expansion solver is performed on

a target image that is 1/8 the resolution (in each dimension) of the desired result. After optimiza-

tion, the label values are upsampled as follows. Each pixel in the original high resolution target

image has four possible label candidates at the 4 nearest pixels in the low-resolution label image.

We simply pick the label with the lowest appearance penalty (Eq. 5.4).

Pre-filtering: First, we reduce the label set by discarding input images that are far from the COP

of the reference view or cover only a small portion of the target image (see Section 5.3 for more

details of this process). Next, we observe that the optimization process tends to reject pixels that

(i) have large geometry cost, (ii) have poor patch compatibilities, or (iii) are too dark or over-

saturated (essentially, pixels in solid black or white regions). Removing some obviously low

quality pixels before performing the optimization limits the solution space and can thus greatly

improve the computational efficiency. Specifically, we remove a label l at pixel p from the solution

space, that is, assigning infinity cost, when (i) Egeometry(p, l) > 20, Ecompatibility(p, l, p, l) > 0.6, or

Econtrast(p, l) >
√

2− 0.01.

5.2.6 Poisson image blending

The final, blended composite is computed from the MRF composite by solving a Poisson equation

(Fig 5.2). We first compute the x, y gradient from the MRF composite, and set the values to be 0 at

places where the label changes or where the label is −1. The blended composite should keep the

color from the reference images; thus, we set a large weight (1000) to penalize differences from

the reference image colors at the locations where reference pixels are available.

5.3 Implementation Details

Depth map reconstruction: We use publicly available multi-view stereo software [25] to recon-

struct per-view depth maps, then apply cross bilateral filtering [33] for smoothing, as noise and

high frequency geometric details often cause artifacts during image warping. The local window

radius is 50 and the regularization parameter is 0.16 (suggested by the code of [33]). Note that
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Input image

Label map

MRF composite (without Poisson blending) Final blend composite

Figure 5.2: Landmark: Pantheon in Rome. Typically 10-20 unique labels are present in the label
map after the graph-cut optimization. It is used to create an MRF composite.

we use the corresponding color image as the reference for the bilateral filtering. This process also

helps in filling in missing depth values, where kernel weights are simply set to 0 for holes in an

initial depth map. Finally, we compute a normal per pixel based on the depths.

Image Selection and Warping: Given a reference photograph and the SfM reconstruction, we

first remove each source image with an optical center that is more than a distance τCOP from the

reference; we set τCOP = 501 in our experiments.

Next, we forward-warp the remaining source images into the target image using splatting and

a soft Z-buffer algorithm. We project each source image pixel into the target view, eliminating

source pixels that are backfacing to the target view. In general, re-projected source pixels land

between target pixels; furthermore, due to occlusions, foreshortening, and differences in image

resolution, it is possible for multiple source pixels to land between the same set of target pixels.

We associate each source pixel with the four nearest target pixels, storing at each target pixel p a

sample {u, l, C, w, d} comprised of the position u, image identifier l, color C, bilinear weight w,

and re-projected depth d of the source pixel. We project all source images in this manner, storing

a list of samples at each pixel. We then eliminate all samples that are behind the reference viewer

1The length of 1 unit in our 3D models is the distance between the first pair of images selected by VisualSfM. The
pair is selected to have a large number of features in common while having a sufficiently large triangulation angle
(greater than 4 degrees between their optical axes).
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(d < 0) or occluded by other samples based on a soft Z-buffer; i.e., for each target pixel p, we

find the closest positive depth dclosest and consider a given sample with depth d at p to be occluded

if d > dclosest + τdepth. (We set τdepth = 20 in our experiments.) For each target pixel p, we

then collect all the samples from the same image l, compute a weighted average color Cl(p) and a

source pixel list Ul(p), which will be used in computing label costs in the MRF formulation. Note

that Cl(p) only covers part of the target image and is “invalid” elsewhere; further, it is possible for

source samples to land apart from each other due to grazing angle surfaces or if the source image

is low resolution, leaving gaps between the projected samples.

Finally, we perform one last image selection step: for each image l, if the valid portion of Cl(p)

which lies outside of the reference image region covers less than 5% of the target image, then

image l is eliminated from further consideration. This step tends to remove images that are: not

looking in the direction of the scene of interest, are much lower resolution than the target image,

or are close-ups of only a small portion of the scene of interest.

5.4 Results and Evaluations

We evaluated our system on 10 datasets from the city of Rome and Paris. The number of images

in each dataset (i.e., SfM model) ranges from 262 (Stravinsky Fountain) to 2397 (Piazza Navona),

where the largest two datasets contain more than 2000 images. For each example, we generated

results for several target image sizes and kept the largest image that looked plausible after manually

cropping to discard image boundaries with significant artifacts (Fig. 5.3). Automatically selecting

the target image sizes and cropping is an area for future work.

5.4.1 Ground truth experiment

Figure 5.4 illustrates an experiment which allows us to compare our result against the ground truth.

We take a relatively wide FOV image (one from San Peter Cathedral dataset), crop to 1/9 of the

image in the center, then run our system to uncrop. Note that the ground truth image is not used

for stitching. Despite minor intensity differences, our result faithfully reconstructs the original
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(a) (b)

Figure 5.3: Manual cropping to discard image boundary with significant artifacts. (a) The imme-
diate output from the Poisson color blending step. (b) We manually crop the image borders. The
boundary artifacts are caused by Poisson blending at regions without source image coverage.

image using other photographs. In fact, our result has better contrast and reveals more details, in

particular, in the bottom half of the image. To take this one step further, we can expand the FOV

even more than the original image and generate a convincing composite with much wider field of

view than the input.

5.4.2 Evaluation of the geometry and compatibility terms

Here we evaluate the effectiveness of two novel components of our MRF formulation: Egeometry

and Ecompatibility. The Egeometry term prefers source pixels from smaller baseline views with more

accurate depth estimates. These views typically produce fewer distortions. Fig. 5.5(a) shows the

MRF composite and its Poisson blend when Egeometry is set to 0. The optimizer picks a patch

with large geometry distortion, causing misalignment artifacts. On the other hand, Ecompatibility is

designed to discourage switching labels to a misaligned image. We show the result of setting
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(a) (b) (c) (d)

Figure 5.4: Ground truth experiment (San Peter Cathedral). (a) The ground truth image. (b) We
only keep 1/9 of the image in the center, which is the input to our system. (c) Uncropped to the
ground truth image size. The ground truth image in (a) was not used in creating this composite.
(d) Uncropped to even wider FOV than the original.

Ecompatibility = 0 in Fig. 5.5(b). Severe misalignment is visible at the boundaries between image

patches in the MRF composite. By incorporating both terms (Fig. 5.5(c)), the optimizer creates a

better composite with fewer visible artifacts.

Comparitive evaluation against baseline methods

To the best of our knowledge, there does not exist a system that can address the same uncropping

problem with community photo-collections. The closest ones are the Photoshop CS6 PhotoMerge

tool [3] and Scene Collage [55] (with executables released). Here we treat these two as base-

line methods. Neither of them is capable of handling the large amount of images in our datasets

(processes crash with our 64-bit Windows machine with 48 GB memory).

A common problem of the baseline methods is the inability to handle non-planar geometry and

reason about visibility, as shown in Fig. 5.6. Both PhotoMerge and Scene Collage copy pixels

from a bridge that is behind the camera. The baseline methods usually prefer wider FOV source

images, thus tend to use images containing occluders, the bridge and the bus in this case, in the
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Figure 5.5: Evaluating the effectiveness of Egeometry and Ebinary compatibility (San Peter Cathedral). We
show close-up views of the image mosaic and the Poisson blended results for better visualization.
(a) Egeometry is turned off. (b) Ebinary compatibility is turned off. (c) Both terms are turned on.

composite.

The presence of large parallax is also a challenge for the baseline methods. Most 2D image

transformations used for image stitching, such as a planar homography, are not sufficient to cor-

rectly warp images, unless the underlying geometry is near planar. This problem is well illustrated

at the top portion of Institut de France in Fig. 5.6. Results in Fig. 5.8 show similar misalignment

artifacts with the baseline methods, where our composites are significantly better.

More experimental results are provided in Fig. 5.8, which clearly illustrates that the uncropped

images with extended FOV provides better spatial context of the scenes.

5.5 Summary

This chapter presents the work on utilizing Internet imagery to extend the field of view of a user

photo. We employ multi-view stereo to warp images into a target, wide FOV image and propose
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a novel MRF-based formulation designed to handle inevitable geometric inaccuracies. It creates

results with image content that resembles the real scene. The evaluations on a wide range of real

world datasets demonstrate the effectiveness of our approach. The results, while not perfect, are

convincing and provide real spatial and visual context not available in the original user photo.

Our approach does have limitations. First, it only works for photos taken at sites where a

sufficient number of Internet photos are available (e.g., tourist sites). It requires a certain density

of source photos, and would fail to reconstruct regions where there is no coverage. The ground is

often a problem area, as people seldom photograph the ground (examples in Fig. 5.8). Although

our approach takes geometry error into account and minimizes potential image misalignment risk,

severe geometry noise would still cause problems 5.9. As with most panorama stitchers, transient

objects in the source images – e.g., people and cars – can be problematic, and seams through them

may occur (Fig. 5.10). Recognition and segmentation algorithms could help address this problem.

If the user photo itself contains transient objects that are not entirely in frame, then they will

remain clipped in the final composite if the new field of view extends beyond them; automatically

and realistically extending such objects (people, cars, etc.) out of frame would be interesting if

quite challenging.
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Our photo uncrop result

Photoshop CS6 PhotoMerge with manual color blending

[Nomura et al. 2007]

User input

A subset of Internet photos 
from the same scene

Figure 5.6: Institut de France in Paris. We don’t show the color blend result of [Nomura et al.
2007] since it is not straight forward from their output.
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User Input

Our photo uncrop result

[Nomura et al. 2007]

Photoshop CS6 PhotoMerge with manual color blending

A subset of Internet photos 
from the same scene

Close-up views

User Input

Our photo uncrop result

[Nomura et al. 2007]

Photoshop CS6 PhotoMerge with manual color blending

A subset of Internetphotos
from the same scene Close-up views

Figure 5.7: Two datasets from Piazza del Popolo. Notice the geometry misalignment in results
from PhotoMerge and [55]
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 resultsUser input

Figure 5.8: More results.
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Our photo uncrop results

User input

Figure 5.9: A failure case with artifacts caused by large transient objects. Our future work includes
exploring recognition and segmentation algorithms to help address this problem. Landmark: Place
de la Concorde in Paris.
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Our photo uncrop resultsUser input

Figure 5.10: A failure case. Large geometry errors can cause visual artifacts. The depth map
estimation process performed poorly on the fountain sculptures in this example. When the source
images are taken from viewpoints that are substantially different from the user photo, then warping
and stitching these images can lead to significant artifacts in the composite. Landmark: Piazza
Navona in Rome.
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Chapter 6

ADDING PARALLAX TO YOUR PHOTOS BY MODELING PEOPLE IN
3D RECONSTRUCTION

In this chapter, I present our work on extending “photo uncrop” by adding parallax to an in-

put photo. The key contributions include explicitly modeling people in photos and being able to

simulate parallax and defocus blur effects from a single input photo. Our approach handles both

transient and hard-to-reconstruct scene elements.

The world is dynamic. Yet, existing image-based reconstruction algorithms assume a static

scene and cannot reconstruct objects that change or move between images. Take a typical tourist

photograph in Figure 6.1 for example. Thanks to the sophistication of Internet 3D computer vision

techniques, there exist many systems and algorithms that are able to recover precise geometry of the

most of the scene by harnessing Internet photo collections [4, 22, 64, 63, 67]. These approaches are

typically incapable of handling hard-to-model scene elements including texture-less regions and

thin objects. Moreover, none of the reconstructions from these methods would contain the people,

which are in fact the most important subjects in this photograph. This chapter presents work that

reconstructs a depth map of this photograph including the people, more generally transient objects

in this scene, or otherwise un-modeled objects. Our approach enables immersive 3D visualization

effects such as adding parallax or controlling the depth of field.

The reconstruction of transient objects exposes new challenges for 3D modeling techniques.

Existing Multi-View Stereo (MVS) methods rely on the photometric consistency metric for infer-

ring scene depths. This metric assumes a static scene across multiple images and doesn’t work

for transient scene elements. For example, a person does not usually appear at the same location

with exactly the same posture in multiple images, unless synchronizing the acquisition on purpose,

and never in Internet photo collections. Besides reconstruction, visualization of transient objects
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Input image Photo Popup [Hoiem et al. 2005] Our depth map rendering

Figure 6.1: Comparing with single image modeling.

also exposes challenges for existing image-based rendering techniques. Even if we assume we can

recover rough geometry, rendering parallax typically results in severe visual artifacts. Therefore,

reconstructing people is only part of the problem, and it is crucial to develop a visualization method

that deals with geometry errors and complicated occlusions.

The approach presented in this chapter takes advantage of recent developments in MVS [64],

human pose detection and estimation [82] and image compositing [65] techniques. It makes a first

step towards photo-realistic visualization of 3D reconstructions with people. The contributions of

this work are (i) a fully automatic system that creates compelling 3D visualizations from a single

image (with the help of additional Internet images of the same scene); (ii) a novel 3D reconstruction

approach to model people and other hard-to-model objects in the scene; (iii) a visualization method

that reduces a number of artifacts.

In the remainder of this chapter, I give a brief introduction of related work in Section 6.1.

I give an overview of our system in Section 6.2, and present our 3D modeling and visualization

approaches in Section 6.3 and Section 6.4. I show results in Section 6.5 and conclude in Section 6.6.

6.1 Related Work

A rich literature exists on various aspects of this work: MVS [62, 37], dynamic texture reconstruc-

tion [38], human detection and pose estimation [82], and image based rendering [88, 14, 65]. But
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none has been proposed to solve the whole problem of adding and rendering parallax in Internet

images with people. To the best of our knowledge, this is the first work that addresses the problem

with a fully automatic system. We here limit our description to closely related fields, in particular,

people reconstruction in photographs and image-based visualization techniques.

6.1.1 Reconstructing People in Photos

There are few existing works that explicitly model people from multiple (unsynchronized) pho-

tographs. Zheng et al. [87] estimate the location of people by assuming that pedestrians uniformly

distribute along a 2D path. This assumption does not necessarily hold for general scenes, especially

popular sightseeing spots in open areas (See Fig. 6.1). Foreground/background segmentation is an

alternative for modeling people in photographs. However, these methods typically require user

interaction [85].

Single-view modeling methods have the potential to properly reconstruct transient objects.

However, modeling people in a single-view fashion is rarely explored, and there has been lim-

ited progress on the problem. The problem of single-view modeling is highly ill-posed and

extremely challenging, and typical approaches rely on user interaction [15]. Automatic methods,

on the other hand, impose strong assumptions on the scene layout, appearance, and geometry, e.g.

assuming planar or a special class of curved surfaces [56, 86, 43]. These methods are incapable

of handling Internet photo collections with complicated geometry and foreground occluders. The

Photo Popup [35] approach, for example, segments a scene into a small set of image regions and

models them with planar proxies. This approach cannot handle the case where people and more

complicated geometry are present. In Fig. 6.1, we show the result of applying Photo Pop-up to one

of our images. Our approach is to leverage other views found n Internet photos. This approach is

not as general as existing methods that do not require multiple photos of the same scene, however,

it will work at popular sites and give significantly better results.

Recent approaches adopt large scale RGBD datasets for estimating object shapes from a single

image [60, 69, 21]. These approaches are only evaluated on a small set of objects and are not

easily scalable to Internet photo collections. The reason is multi-fold (i) their performance relies
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Figure 6.2: System overview.

on object detection and finding good matches from the dataset, but building such a detector or

extended RGBD database for Internet photos is very difficult; (ii) these methods only estimate

local object shapes instead of global layout.

6.1.2 Visualization

Image based rendering (IBR) techniques have been used for high-fidelity scene visualization [17,

13, 14, 58]. However, these systems require careful capturing of input images. The viewpoints need

to be densely sampled on a contiguos path, and without foreground occluders to prevent visual ar-

tifacts. A full dynamic scene reconstruction is possible from multiple calibrated and synchronized

videos [10]. Such data is not typically available in Internet photo collections. Photo Tourism is

the first work on visualizing 3D scenes from Internet photo collections [67]. However, they model

scene geometry for each image as a planar proxy, and are not able to add more dramatic 3D effects

such as parallax or depth of field. Photo Tours [44] does model some parallax, but does not handle

people. Photo uncrop [65], described in the previous chapter of this dissertation, is another IBR

technique that works with Internet photos. It creates a panorama of a scene starting from a single

user input, by minimizing the pixel misalignment when compositing together images warped from

nearby viewpoints. The output is only a still image without 3D effects. Extending this technique

for rendering camera motion video is not straightforward.
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6.2 System Overview

Our system takes a single photograph (reference image), together with a dataset of photographs

roughly at the same location (source images). These source images are downloaded from Flickr

(http://www.flickr.com). We use existing structure-from-motion (SfM) software [79] to

compute camera poses and the MVS system in [25] to generate sparse per-view depth maps. We

obtain over-segmentations of the reference and source images and the per-pixel contour response

by gPB [9]. In this section, we focus on explaining intuitions and high-level ideas of various

components in the pipeline (Fig. 6.2). Detailed algorithms are explained in Sec. 6.3.

Our system consists of two major components, namely, 3D reconstruction and visualization.

Our 3D reconstruction approach recovers much of the consistent geometry across all the im-

ages, by counting MVS points that are reconstructed. This consistent geometry is usually static

scene elements in the scene. Other image regions, whose appearance cannot be well explained by

MVS reconstruction, are likely to be transient objects, and difficult-to-reconstruct static geometry

and will be further modeled as billboards.

We use the off-the-shelf human pose detector from [82] to detect people in the images. Note

that there is a sensitivity parameter in the detector which strongly affects the detection response.

Automatically determining the value of this parameter is a non-trivial research problem. Using the

default value leads to unreliable performance on general Internet photos (note the false positives in

Fig. 6.3 and detection error on the head of the person in Fig. 6.4). To improve results, we apply the

detector on images after removing elements well-reconstructed by MVS, and the performance is

significantly improved. Note that we use a human pose detector, instead of just a human detector,

since we need the semantic meaning of parts for people matting (reconstructing skeleton) and depth

assignment (putting feet on the ground).

We estimate the depth of each human billboard by assuming feet touch the ground, thus natu-

rally rise the question of how to reconstruct the ground. Ground reconstruction is usually not trivial

for MVS reconstruction, due to the grazing angle between camera rays and the ground (people do

not tend to point their cameras at the ground). Here we assume that the ground can be approxi-



93

mated as a plane, and that most cameras are hand-held and about 5 feet above the ground. Though

simple, the assumptions work surprisingly well in practice. We adopt a RANSAC process to fit

a plane that agrees the largest set of camera centers, rejecting the remaining cameras as outliers.

We then move the plane five feet down. Note that we geo-locate the models using GPS data in

photos [66]. Thus we know the metric (physical distance in feet) and the gravity direction.

General transient objects and other hard-to-reconstruct geometry are more difficult to recover.

Ideally we can build a large set of object detectors that covers all categories of objects that appear

in outdoor scenes. This process would be a major undertaking in itself. Instead, we simply use

planar proxies for these transient objects, and assume that they need ground support or are attached

to other scene geometry. Therefore, we iteratively propagate the depth information by assigning

the depth of each unassigned pixel region (super pixel) with the smallest depth value that is around

that region. Although imperfect, we find this approach works well for enabling camera dolly-in

motion and defocus effects. Furthermore, we identify sky in images similarly to the process in

Section 4.2.4.

The transient aware 3D modeling produces dense depth maps for the reference image (user

input) and the source images (Internet photos from nearby viewpoints). These depth maps are in-

accurate, and in general don’t agree with each other. Our visualization process takes this inaccurate

per-view geometry, and renders a video that minimizes the artifacts. Here we adopt a similar idea

as in Section 5.2 that the energy definition is to minimizes pixel misplacement when compositing

from multiple images.

6.3 3D Modeling

In this section, we describe the key components in detail.

[Geometry depth interpolation] We generate initial per-view depth maps using the method of [25].

These depth maps only contain sparse depth values from consistent geometry across multiple im-

ages. These depth maps are far from being useful for our visualization, as they are full of holes

and omit any transient scene elements. Depth hallucination is then necessary. We describe depth

interpolation for consistent geometry in this subsection. Billboarding other hard-to-model objects



94

is explained later.

To interpolate depth values of consistent geometry, we adopt a super-pixel based approach

using over-segmentations from gPb [9]. Given one super-pixel, our approach counts the number of

sparse depth values in it. If there are more than 3 sparse values, it approximates the depth within

that particular super-pixel by fitting a smooth surface. In particular, we minimize the L2 norm of

the curvature as solving

arg min
d

∑
x,y∈Ω

(
dx,y − d̂x,y

)2

+ w
∑
x,y

∥∥∥∥∂2dx,y
∂x2

,
∂2dx,y
∂y2

∥∥∥∥2

2

,

where (x, y) denotes a location in a super-pixel, dx,y is the unknown dense depth, Ω is a set of

locations with sparse depth values d̂x,y, and w is a weight parameter. Note that this approach

assumes the geometry within each super-pixel is of a simple form, i.e., quadratic or planar. This

assumption works well in practice. More complicated geometry tends to have non-flat shading and

is likely to be segmented into multiple super-pixels, each of which has a relative simple shape.

[Geometry Removal] Next, to improve the human pose detection, we remove pixels correspond-

ing to geometry recovered in the previous step. One super-pixel from the over-segmentation is

considered to be a geometry segment if there are 3 or more sparse depth values. Fig. 6.3 illustrates

the resulting image after geometry removal.

[People detection and matting] We use the human pose detector proposed in [82], which demon-

strated the state-of-the-art performance on various benchmarks. The human pose detection, in

general, is affected by a threshold parameter. Lowering the threshold leads to more detection re-

sponse as well as more false positives (Fig. 6.3), for example, the false positive on the wall at

the background and on the sculptures. However, working with community photo collections gives

us the luxury of reasoning about the scene geometry. Hence we can compute which parts in the

images represent consistent scene elements (at least those reconstructed well enough by MVS),

and filter them out in the pose detection process. Note that a significant number of false positives

are filtered out. We also evaluated the pose estimation on images with more crowded scenes (Fig.

6.4). Note the improvement in detecting the foreground person after filtering out much of the scene

geometry.
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Input image

Removing geometry

Pose detection on the input image

Pose detection on the geometry 
removed image

Figure 6.3: Removing consistent background geometry helps to filter out false positives.
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(a) (b) (c)

Figure 6.4: Removing background leads to more accurate human pose estimation. (a) Human pose
estimation on the original image. (b) Removing geometry reconstructed by MVS. (c) Human pose
estimation on geometry removed image. Note that the head of the foreground person is correctly
detected on the geometry removed image.

In the current implementation of our system, we compute a whole-body bounding box for

each human pose response, and only keep the pose responses whose body bounding boxes are no

smaller than half the size the largest one. Therefore, in most cases, we only keep the people in the

foreground while treating the background people as other transient objects.

A person typically consists of multiple gPb segments and multiple part bounding boxes. We

consider one super-pixel is on a human body if is contains the center pixel of one part bounding

box. This process gives a binary mask of the foreground people. We then compute a color based

matte from the binary mask, to reduce aliasing artifacts in the final blending, using the method

proposed in [46]. In particular, we erode the foreground binary mask by 5 pixels and use it as

foreground strokes for the matting algorithm and then erode the inverse of the foreground mask by

5 pixels to create background strokes. The output matte has a smooth transparency transition at the

boundary and therefore creates fewer aliasing artifacts when compositing during visualization.
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(a) (b) (c) (d)

Figure 6.5: Using human pose estimation results to segment foreground people. This is a closed-up
view of the example in Figure 6.3. (a) The original image patch. (b) The human pose detection
result. (c) The estimated alpha matte. (d) The color segmentation.

[Billboarding people] We use billboard proxies for people. And the problem here is to figure out

the depth values on the billboard. From the previous step, we have a binary mask for the foreground

people, and we know that the feet is detected in the pose. The depth of the billboard is simply the

ground depth at the bottom pixel of the mask.

6.4 Visualization

6.4.1 Simulating camera dolly-in motion

To impart the 3D sense of the scene in a photo, the visualization process generates a video with

camera dolly-in motion, where the camera translates gradually forward into the scene. Camera

motion reveals occluded regions in the user input image. Therefore it is important to fill these

regions with textures from source images. The problem of generating a single novel view and

filling the missing image regions is similar to Photo Uncrop [65] described in Section 5.3. Here

we adopt a simplified version of Photo Uncrop to achieve better computational efficiency. In

particular, we optimize the objective of Equation 5.1, with the exception of the compatibility term,

on a frame-by-frame basis. Poisson blending is applied in a frame-by-frame fashion to blend the

images patches and compensate for the appearance difference in source images.
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The per-frame novel view generating process causes flickering artifacts, as there is no temporal

consistency on either the label or the color space. Per-frame Poisson blending is another source of

flickering, since it is highly sensitive to the boundary conditions which vary from frame to frame.

To address this, we adopt a deflickering process. The pixels in the Poisson blended frames are from

two sources, the reference image and the source images to fill the texture of occluded geometry.

The pixels from the source images are the cause of flickering. We want these pixels to be consistent

over the frames. In order to do this, we back project these pixels (from all the frames in the video

sequence) to the 3D world coordinate system. To improve the rendering efficiency, we merge

points (averaging colors) that sit on top of each other (distance less than 0.1 of a pixel width in the

3D space). We use these merged points and the reference image (with depth) to render the final

video with point splatting.

Note that we don’t render the foreground people in the previous rendering process. The fore-

ground people are rendered separately and then composited into the final frame in the end.

6.4.2 Simulating depth-of-field blur

We use Google’s LensBlur code [30] to render depth-of-field blur. Basically, given a focal depth,

and a depth map, one can compute the radius of lens blur at each pixel. The next problem is to

perform a depth-guided convolution with a disk kernel. We use a layered approach by dividing the

image into layers according to the pixel depth, blur each layer independently, then blend the layers

at the end.

6.5 Results and Evaluations

We evaluate our system by rendering 10 video sequences using landmarks in Rome. We collected

about 2400 Internet photos from Flickr that are taken near the input images. For more informative

results, we refer the readers to the supplementary videos on YouTube 1.

We show a comparison between naive photo zoom-in and dollying in with single image depth

1http://www.youtube.com/playlist?list=PLCOBz9xYbBdCWKsr_Zhdv_RwRLuv0NIRz
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With our added parallax

Naive photo zoom-in

Figure 6.6: Comparing against naive photo zoom-in and single image depth map rendering.

map rendering (Fig. 6.6). Naive photo zoom-in (cropping and scaling the image) gives the illusion

of dollying in but the visual experience is not convincing as there is no parallax. Note however that

single depth map rendering does have artifacts in regions where there is not enough information to

fill in regions previously occluded in the reference image, leaving holes or flat Poisson filling.

Please see the supplemented videos on YouTube at http://www.youtube.com/playlist?

list=PLCOBz9xYbBdCWKsr_Zhdv_RwRLuv0NIRz.

6.6 Conclusion and Future Work

This chapter describes a fully automatic system that can create a 3D visualization from a single user

input, with the help of Internet photos. It adds parallax to a camera dolly-in motion and defocus

blur effects to provide a controlled, 3D experience of the scene. This work introduces transient

object aware 3D reconstruction, and explicitly models people in the images. Planar geometry
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Figure 6.7: Synthesizing defocus blur.

proxies are used for people and other hard-to-model scene elements.

Our approach does have limitations. First, it only has ground texture at the regions captured

by input images. Simulating zoom-out camera motion would often be difficult due to the lack of

ground coverage, texture synthesis could be helpful in this case, a potential area of future work.

Our method only explicitly models people, while common transient objects in the scene include

cars, trees, chairs, etc. Specialized object detectors and single image car/tree modeling would be

interesting future work. Our current implementation only models foreground people. It is not trivial

to extend the work to handle people in the background who are much more likely to be partially

occluded. Our results have noticeable artifacts, which arguably is tolerable given that it is more

appealing to have 3D visualization with parallax and defocus effects. Currently our system only

simulates camera dolly-in motion, automatic planning of more complicated motion path would be

quite interesting and would likely to lead new rendering challenges as disocclusions become more

prevalent.
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Chapter 7

CONCLUSION

This thesis presented my work on advancing the state-of-the-art in “photo-realistic” 3D scene

modeling and immersive visualization using online photo collections. This work made the follow-

ing specific contributions to the computer vision community.1

• The Visual Turing Test, described in Chapter 2, is a novel quantitative evaluation scheme

for scene reconstruction work.

• Building city scale relightable models. Our work advances the state-of-the-art by creating

two of the first large scale re-lightable models. It proposes to combine multiple sources of

images that complement each other. Lighting and scene albedo are estimated by optimizing a

non-linear energy formulation, bootstrapped by using cloudy day photos. The experimental

results show that although we are still far from achieving the goal, the proposed reconstruc-

tion process is a substantial step towards fully passing the Visual Turing Test.

• Ground-to-aerial geo-registration with pixel level accuracy, described in Chapter 3, is a

first work showing ground-to-aerial geo-registration that performs consistently on a challeng-

ing large scale dataset. It solves an important yet difficult problem, that is aligning a ground-

based MVS model to its aerial counterpart, resulting in a 3D model with complete scene

coverage from aerial images and high-res details from ground level photos. This work intro-

duces a novel viewpoint-dependent feature matching approach which renders ground-level

images+geometry into aerial views to bridge the gap between wide viewing angle changes.

We conduct large scale experiments using hundreds of thousand of images from the most

1Some of the code is open sourced at http://github.com/shanqi/research-code.git.
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popular outdoor landmarks in Rome. 41 of the total 59 landmarks were successfully geo-

located, a 69.5% success rate.

• High quality geometry reconstruction using occluding contours, described in Chapter 4,

proposes a novel MVS system that effectively suppresses over-inflated boundary artifacts. It

proposes a novel way of interpolating visibility and per-view depth maps in a contour-aware

fashion. This visibility information is then used to compute a free-space volume which serves

as a tight envelop to the mesh reconstruction process. The technical contribution includes a

new technique to identify free-space arising from occluding contours and a new free-space-

aware surface reconstruction approach. Experimental results show that the new formulation

retains the regularization property of Poisson surface reconstruction [41], while significantly

improving its accuracy by suppressing boundary artifacts and surface noise.

• Photo Uncrop, described in Chapter 5, extends the field of view of a single input image using

Internet photos taken at nearby viewpoints. It introduces a novel approach to automatically

select, warp, and stitch tourist photos using an MRF formulation that minimizes potential

patch mismatch risk.

• “Adding parallax to your photos”, described in Chapter 6, extends “Photo Uncrop” by

adding parallax and defocus blur effects to create a more compelling visual experience. It

completes the scene geometry with ground estimation, and it explicitly models people, as

well as other hard-to-model objects, using billboard proxies. We consider this work a step

towards the grand goal of visualizing a scene with transient elements.

7.1 Future work

In this dissertation, I presented a collection of results showing substantial progress on large scale

scene reconstruction from online photo collections. However, they are still early attempts of push-

ing 3D reconstruction research towards being able to render a scene “photo-realistically.” As the

technology keeps progressing, I envision a fully automatic, cloud-based system where all available
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images reside. Compelling 3D models and visualization effects of any place in the world at any

time will be easily accessible. These 3D models will both capture public spaces (e.g., city scenes

and world landmarks) and private spaces (e.g., houses, offices), and will be updated progressively

with new data flows in. In this section, I describe potential future projects that are stepping stones

for achieving this grand goal. Some of the projects, I believe, I shall be exploring actively in the

near future.

7.1.1 Enabling real applications

As 3D technology keeps progressing, one important question to ask is: “what is the purpose of 3D

reconstruction research?” Although it is fulfilling to study the problem just for the sake of science,

it is unfortunate that we haven’t seen many real applications that are built upon these techniques.

In my opinion, the following two areas are among the most promising. And I believe we will see a

boom in the applications in these two areas with great impact in the near future.

Content creation in virtual reality and augmented reality

Virtual and augmented reality has been extremely popular and attracted a great amount of capital

recently, following Facebook’s acquisition of Occulus Rift. Currently people in the VR/AR field

are focusing on building better hardware and improving head/eye tracking. The content creation

technology is still uncharted. Almost nobody has tried it. The standard process now is mostly

manual and unsurprisingly is extremely expensive. More importantly, the resulting models lack

fine details, necessary to provide convincing real-world visual experiences.

One potential solution is automatically generating content from the scenes that are physically

present in the real world. Unfortunately VR/AR has a very high requirement for model quality and

a low tolerance to visual artifacts. So far we don’t see a clear path toward automatically creating

artifacts free models, thus the current generation of 3D reconstruction techniques are still far from

being suitable in this domain.

Having a system that automatically creates perfect 3D models from images is a fundamental
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problem. Note that in this case it is not necessary, and often impossible, to rely on Internet photo

collections, as content creators can capture the images on their own. Developing such a fully

automatic system will require a long term research effort and there is no sign of being close to the

goal. Fortunately, there is little reason to visualize a scene by directly rendering from 3D models.

In my opinion, a compelling solution that is achievable in short term is first creating a (imperfect)

3D model from the input images, then visualizing the scene by warping and compositing input

images using the underlying geometry. We consider this technique in the category of image based

rendering.

Apparently there are quite a few major challenges to be addressed. Geometry holes is one of

the most apparent artifacts. Image-based rendering with inaccurate geometry often suffers from

temporal inconsistency when switching between source image, as well as artifacts from geometry

distortion. Moreover, it is difficult to obtain consistent texture when illumination and camera

parameters change during the capturing process.

To summary, content creation for VR/AR is a rarely explored, extremely interesting and im-

portant research topic with many unsolved problems. It is undoubtedly the next hot research area

in computer vision and graphics.

3D indoor modeling

3D indoor modeling is one of the most interesting applications for 3D reconstruction research.

It enables museum virtual tours, video games, interior design, etc. Online real estate shopping

might well be the most promising among these potential applications. Currently, consumers can

typically only look through a handful of images of each house or apartment. The experience is

far from satisfactory as the consumers get very little knowledge about the layout and the 3D space

of the house. There are a few start-up companies exploring the space with Kinect-style depth

sensing and/or interactive solutions. MatterPort [49] uses a specially designed depth camera array.

The data capturing process involves carrying the hardware to the premises and place it at multiple

locations in a house to take scans. Consecutive scans must be close by and have a lot of overlap, in

order to match the scans. This process is quite time consuming and the scan matching often fails.
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(a) (b)

Figure 7.1: Initial experiments on indoor reconstruction using occluding contours. Top two rows:
a Tokyo hotel room reconstruction. Buttom two row: a living room reconstruction. We show mesh
rendering in (a), and corresponding texture mapped mesh in (b).
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Floored [20], on the other hand, uses a CAD approach where the 3D models are usually created

by artists. DIADRIT [74] and StreetEasy [75] are dealing with different real estate markets and

assume floor plans are available. Their systems rely on artists interactions, and only able to produce

3D walled up models from 2D floor plans. They also use room templates (e.g., kitchen, living room,

bedroom) to synthesize furniture layout. The created 3D models are not faithful reconstructions of

real houses or apartments. Note that none of these companies’ approach is capable of scaling to

hundreds of millions of houses in the nation’s real estate market.

Even the best-of-the-breed 3D models created from state-of-the-art techniques are not close to

clearing the quality bar for this application. Although results from initial experiments on indoor

reconstruction with our MVS pipeline using occluding contours are promising (Figure 7.1), they

still suffer from low quality and incomplete geometry. The difficulty is multi-fold. First of all,

computing camera poses in an indoor setting is still an unsolved problem. The images typically

lack fine details for image matching to work reliably. Therefore the reconstructed SfM model often

consists of multiple disconnected components. Second, in a typical indoor setting, the illumination

often has a high dynamic range. The natural light from windows can be 100,000 brighter than the

areas in shadow, beyond the operating range of 14-bit camera sensors. Moreover, it is non-trivial

to propose a data capturing process for houses so that non-tech-savoy users (real estate agents) can

follow.

7.1.2 Event reconstruction

In this dissertation, I presented “Photo Uncrop” (Chapter 5) and adding parallax to a photo (Chap-

ter 6). They are early steps towards a grander goal: being able to reconstruct 3D visualizations of a

scene, with convincing rendering of people and other transient scene objects. The success of event

reconstruction technology could enable applications including forensics, sports 3D visualization,

life event recording (e.g. weddings, ceremonies), etc.
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