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Abstract

We propose SplitNet, a method for decoupling visual per-
ception and policy learning. By incorporating auxiliary
tasks and selective learning of portions of the model, we
explicitly decompose the learning objectives for visual nav-
igation into perceiving the world and acting on that per-
ception. We show improvements over baseline models on
transferring between simulators, an encouraging step to-
wards Sim2Real. Additionally, SplitNet generalizes better
to unseen environments from the same simulator and trans-
fers faster and more effectively to novel embodied naviga-
tion tasks. Further, given only a small sample from a target
domain, SplitNet can match the performance of traditional
end-to-end pipelines which receive the entire dataset 1

1. Introduction
A longstanding goal of computer vision is to enable

robots to understand their surroundings, navigate efficiently
and safely, and perform a large variety of tasks in complex
environments. A practical application of the recent suc-
cesses in Deep Reinforcement Learning is to train robots
with minimal supervision to perform these tasks. Yet
poorly-trained agents can easily injure themselves, the en-
vironment, or others. These concerns, as well as the diffi-
culty in parallelizing and reproducing experiments at a low
cost, have drawn research interest towards simulation envi-
ronments [3, 15, 37, 38, 30].

However no simulator perfectly replicates reality, and
agents trained in simulation often fail to generalize to the
real-world. Transferring learned policies from simulation to
the real-world (Sim2Real) has become an area of broad in-
terest [24, 26, 35] yet there still exists a sizable performance
gap for most algorithms. Furthermore, Sim2Real transfer
reintroduces safety and reproducibility concerns. To miti-
gate this, we explore the related task of Sim2Sim, transfer-
ring policies between simulators, for embodied visual navi-
gation (Figure 1). Transferring between simulators incurs a

∗Work done during an internship at Facebook AI Research.
1https://github.com/facebookresearch/splitnet
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Figure 1. We decompose learning of visual navigation tasks into
learning of a visual encoder and learning of an embodied task de-
coder. Through this decomposition we enable fast transfer to new
visual environments and transfer to new embodied tasks.

similar “reality gap” as between simulation and reality, due
to differences in data collection and rendering. Learning to
transfer between simulation environments serves as an en-
couraging preliminary step towards true Sim2Real transfer.

To enable Sim2Sim transfer we propose SplitNet, a com-
posable model for embodied visual tasks which allows for
the sharing and reuse of information between different vi-
sual environments. SplitNet enables transfer across differ-
ent embodied tasks (Task2Task), meaning our model can
learn new skills quickly and adapt to the ever-changing re-
quirements of end users. Our key insight is to observe that
embodied visual tasks are naturally decomposable into vi-
sual representation learning to extract task agnostic salient
information from the visual input, and policy learning to
interpret the visual representation and determine a proper
action for the agent. Rather than learning these components
solely independently or completely tied, we introduce an
algorithm for learning these embodied visual tasks which
benefits both from the scalability and strong in-domain, on-
task performance of an end-to-end system and from the gen-
eralization and fast adaptability of modular systems.

SplitNet incorporates auxiliary visual tasks, such as
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depth prediction, as a source of intermediate supervision
which guides the visual representation learning to extract
information from the images extending beyond the initial
embodied task. We demonstrate that initial pre-training
of the visual representation on such auxiliary visual tasks
produces a more robust initialization than the standard ap-
proach of pre-training on auxiliary visual datasets (e.g. Im-
ageNet [5]) which may not be from an embodied perspec-
tive. Then we showcase the composability of our model
by illustrating its ability to selectively adapt only the visual
representation (when moving to a new visual environment)
or only its policy (when moving to a new embodied task).

We center our evaluation on adapting between different
simulators of varying fidelity and between different embod-
ied tasks. Specifically, our experiments show that compared
to end-to-end methods, SplitNet learns more transferable vi-
sual features for the task of visual point-to-point navigation,
reduces overfitting to small samples from a new target sim-
ulator, and adapts faster and better to novel embodied tasks.

In summary, our contributions are 1. a principled way
to decouple perception and policy (in our case navigation),
2. showing that this technique improves performance on
the primary task and facilitates transfer to new environ-
ments and tasks, 3. describing specifically how to update
the weights for new tasks or new environments using sig-
nificantly less data to adapt.

2. Related Work
This work introduces a learning approach for transfer-

ring visual representations between environments and for
transferring policy information between different embodied
tasks. The most related lines of work focus on adaptation
and transfer of visual representations, deep reinforcement
learning (especially from visual inputs), and transferring
from simulation to the real-world (Sim2Real) both for vi-
sual and embodied tasks.

Visual Transfer and Adaptation. Many works have ex-
plicitly studied techniques for increasing the reusability of
learned information across different visual tasks. Domain
adaptation research has mainly focused on reusing a repre-
sentation even as the input distribution changes, with most
work focusing on representation alignment through explicit
statistics [19, 33] or through implicit discrepancy minimiza-
tion with a domain adversarial loss [6, 36]. A related line
of work focuses on sharing between two image collections
through direct image-to-image transfer [25, 42], whereby a
mapping function is learned to take an image from one do-
main and translate it to mimic an image from the second
domain [2, 10, 18, 34].

In parallel, many works focus on reusing learned repre-
sentations for solving related visual tasks. The most preva-
lent such technique is simply using the first representation
parameters as initialization for learning the second, termed

finetuning [7]. A recent study proposed a technique for
computing the similarity between a suite of visual tasks
to create a Taskonomy [39] which may be used to deter-
mine, given a new task, which prior tasks should be used for
the initialization before continued learning. This method
focuses on “passive” visual understanding tasks such as
recognition, reconstruction and depth estimation and does
not delve into learning representations for “active” tasks
such as embodied navigation where an agent must both un-
derstand the world and directly use its understanding for
some underlying task.

Overall, much of the prior work has focused on repre-
sentation learning for visual recognition. In contrast, this
work studies transfer of visuomotor policies for embodied
tasks and decomposes the problem into transfer of visual
representations for embodied imagery (Sim2Sim) and trans-
fer of policies across various downstream embodied tasks
(Task2Task).

Visual RL Tasks: In parallel with the development of
deep representation learning for passive visual tasks, there
has also been a plethora of recent research on policy learn-
ing from visual inputs inspired by the success of end-to-
end visuomotor policy learning [16, 17, 21]. Much of the
success here comes from training on large-scale [17] data,
frequently made possible by extensive use of simulation en-
vironments [9, 21, 23, 44]. These techniques often lever-
age the additional supervision and auxiliary tasks given by
the simulators to bootstrap their learning [20, 31]. Percep-
tual Actor [31] specifically examines how 20 different pre-
training tasks affect the learning speed and accuracy of a
visual navigation policy as compared to random initializa-
tion. Others use unsupervised [14] or self-supervised [23]
learning as an additional signal in domains with sparse re-
wards. We build on these approaches by explicitly separat-
ing the auxiliary learning from the policy layers to ensure a
decoupling of the weights which enables better transfer to
new environments.

For increased task generalization, others have proposed
using the successor representation [40, 43] which decom-
poses the reward and Q-functions into a state-action feature
φs,a, a successor feature ψs,a and a task reward vector w.
This decomposes the network into one which learns the dy-
namics of the environment separate from the specified task,
which allows for faster transfer to new tasks by only retrain-
ing the task embedding w. Our proposed method allows
quick transfer to new tasks as well as new environments.

Sim2Real: Significant progress has been made on adapt-
ing between simulated and real imagery for visual recogni-
tion, especially in the context of semantic segmentation in
driving scenes [10, 11, 12, 41]. These techniques build on
the visual domain adaptation methods described above. In
parallel, there has been work on transferring visual policies
learned in simulation to the real-world, but often limited



to simple visual domains [26, 35] which bear little resem-
blance to the complexity of true real-world scenes. Rusu
et al. [26] train a network in simulation before initializing
a new network which receives outputs from the simulation-
trained network as well as real-world inputs. Yet their eval-
uation is limited to simple block picking experiments with
no complex visual scenes. Peng et al. [24] use randomiza-
tion over the robot dynamics to learn robust policies, but
do not use visual inputs in simulation or reality and only
perform simple puck-pushing tasks. Sadeghi et al. [28]
also uses randomization of textures, lighting, and furniture
placement in a simulation environment for Sim2Real trans-
fer of drone flight. Tobin et al. [35] and Sadeghi et al. [29]
randomize colors, textures, lighting, and camera pose as a
form of augmentation of the simulated imagery to better
generalize to real-world imagery for picking tasks. [35] fo-
cuses on primitive geometric objects for picking tasks and
does not decouple visual feature learning from policy learn-
ing which limits the transferrability of their method to new
tasks. [29] shows similar benefits of decoupling perception
and policy for Sim2Real transfer, but do not explore trans-
fer to new tasks. Two recent method [22, 27], uses semantic
segmentation and obstacle detection as an intermediate ob-
jective to aid in transferring learned driving policies from
simulation to the real-world. While we do not transfer our
policies to real robots, we focus on visually diverse scenes
which better match the complexity of the real-world then
the simplistic setups of many of the prior policy transfer
approaches. Similar to Müller et al. [22] we use auxiliary
intermediate objectives to aid in transfer, but in our case
focus on a set of auxiliary visual and motion tasks which
generalize to many downstream embodied tasks and pro-
pose techniques to selectively transfer either across visual
environments or across embodied tasks.

3. SplitNet: Decoupled Perception and Policy

Solving complex visual planning problems frequently re-
quires different types of abstract understanding and reason-
ing based on the visual inputs. In order to learn compact
representations and generalizable policies, it is often neces-
sary to go beyond the end-to-end training paradigm. This
is especially true when the initial learning setting (source
domain) and current learning setting (target domain) have
sufficiently different visual properties (e.g. differing visual
fidelity as seen in Figure 1 left) or different objectives (e.g.
transfer from one task to another as in Figure 1 right). In
this section we outline the learning tasks we use, and our
strategy for training a network which transfers to new vi-
sual domains and new embodied tasks.

3.1. Embodied Tasks

In this work, we focus on the following three visual nav-
igation tasks which require memory, planning, and geomet-
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Figure 2. SplitNet initial learning on source data and task.
Given source visual inputs, the visual encoder is trained using aux-
iliary visual and motion based tasks. Next, the policy decoder is
trained on the source embodied tasks with a fixed visual encoder.
Gradients from the embodied task (depicted as blue arrows) are
stopped before the shared visual encoder to ensure decoupling of
the policy and perception.

ric understanding: Point-to-Point Navigation (Point-Nav),
Scene Exploration (Exploration), and Run Away from Lo-
cation (Flee). In our experiments, all tasks share a discrete
action space: Move Forward by 0.25 meters and Rotate
Left/Right by 10 degrees.

Point-to-Point Navigation (Point-Nav) An agent is di-
rected to go to a point via a constantly updating tuple of
(angle to goal, distance to goal). The agent succeeds if it
ends the episode within a fixed radius of the goal. In our
experiments we use a success radius of 0.2 meters and the
agent is spawned anywhere from 1 to 30 meters from the
goal. The agent is provided with a one-hot encoding of its
previous action. Since the agent is given the distance to the
goal, learning the Stop action is trivial, so we disregard it.

Scene Exploration (Exploration) We discretize the
world-space into 1 meter cubes and count the number of dis-
tinct cubes visited by the agent during a fixed duration. This
task differs from Point-to-Point Navigation in that no abso-
lute or relative spatial locations are provided to the agent.
This prohibits agents from learning to detect collisions by
comparing location values from two timesteps, requiring
them to visually detect collisions. The agent still receives
a one-hot encoding of its previous action.

Run Away from Location (Flee) The goal of this task
is to maximize the geodesic distance from the start location
and the agent’s final location in episodes of fixed length. As
in Exploration, no spatial locations are given to the agent.

3.2. Decomposing the Learning Problem

For visual navigation tasks, an agent must understand
what it sees and it must use the perceived world to decide
what to do. Thus, we decompose visual navigation into
the subtasks of (1) encoding the visual information and (2)
using the encoded information to navigate. At each time
t the agent receives an egocentric image It from the en-



vironment and must return a navigation action at in order
to accomplish the task. Instead of learning actions directly
from pixels, we break the decision-making into two stages.
First, a function F processes the image It producing a fea-
ture embedding φt = F(It). Next, the features are decoded
into an action at = G(φt). Our goal is to learn features φt
which extract salient information for completing navigation
tasks and which generalize to new environments. Rather
than passively expecting the end-to-end training to result in
transferable features, we directly optimize portions of the
network with distinct objectives to produce representations
which are highly semantically meaningful and transferable.

3.3. Visual Encoder
Visual understanding comes in many forms and is highly

dependent on the desired end task. In the case of visual nav-
igation, the agent must convert pixel inputs into an implicit
or explicit geometric understanding of the environment’s
layout. To encapsulate these ideas, we train a bottleneck
encoder-decoder network supervised by several auxiliary
visual and motion tasks. Each task uses a shared encoder,
and produces a general purpose feature, φt. This feature is
then used as input to learn a set of task specific decoders.

Auxiliary Visual Tasks: We encourage the shared en-
coder to extract geometric information from the raw visual
input by augmenting the learning objective with the follow-
ing auxiliary visual tasks: (1) prediction of depth through a
depth decoder,D, (2) prediction of surface normals through
a surface normal decoder, S, and (3) RGB reconstruction
through a reconstruction decoder, R (sample outputs are
shown in the supplementary material). For an input image
It with ground truth depth,Dt and ground truth surface nor-
mals St, the learning objective for each of these auxiliary
visual decoders is as follows:

LD =
∑

pixels

‖D(φt)−Dt‖1 (1)

LS = 1−
∑

pixels

S(φt) · St

‖S(φt)‖2 ∗ ‖St‖2
(2)

LR =
∑

pixels

‖R(φt)− It‖1 (3)

We use the `1 loss for reconstruction and depth to encour-
age edge sharpness. We use the cosine loss for the surface
normals as it is a more natural fit for an angular output.

Auxiliary Motion Tasks: We additionally encourage the
visual encoder to extract information which may be gener-
ically useful for future embodied tasks by adding the fol-
lowing auxiliary motion tasks: (1) predict the egomotion
(discrete action) of the agent with motion decoder E , and
(2) forecast the next features given the current features and
a one-hot encoding of the action performed with motion de-
coder P . For a visual encoding φt at time t, previous encod-
ing φt−1, and action at that causes the agent to move from

It−1 to It, the learning objective for each of these auxiliary
motion decoders is as follows:

LE = −
∑
a∈A

p(at = a) log(E(φt, φt−1)) (4)

LP = 1−
∑

features

P(φt−1, at) · φt
‖P(φt−1, at)‖2 ∗ ‖φt‖ 2

(5)

We use the cross-entropy loss as we use a discrete action
space, and we use the cosine loss for next feature prediction
as it directly normalizes for scale which stops the network
from forcing all the features arbitrarily close to 0.

All objectives affecting the learning of the visual encoder
can be summarized in the joint loss:
L = λRLR + λDLD + λSLS + λELE + λPLP

where λR, λD, λS , λE , λP are scalar hyperparameters
which control the trade-off between the various tasks in this
multi-task learning objective.

Rather than expecting our network to learn to extract ge-
ometric information decoupled from the policy decoders,
we force the visual representation to contain this informa-
tion directly. This decreases the likelihood of overfitting to
training environments and thus increases the likelihood that
our model generalizes to unseen environments.

3.4. Policy Decoder
Our policy decoder takes as input the visual features φt

and learns to predict a desired action, at+1, supervised by a
reward signal provided by the desired task. To avoid purely
reactive policies, we employ a GRU [4] to add temporal
context. The output of the policy layers predicts a probabil-
ity distribution over the discretized action space and a value
estimate for the current state. The probability distribution is
sampled to determine which action to perform next.

When training the policy decoder, we fix our visual en-
coder and optimize only the policy decoder weights for the
chosen task i.e. gradients do not propagate from the
source task to the visual layers (see Figure 2 for an il-
lustration of the gradient flow from the embodied task loss).
This prevents policy information from leaking into the vi-
sual representation, ensuring the visual encoder generalizes
well for many tasks. For the task of Point-to-Point Naviga-
tion we use two training strategies: BC and BC, PPO.
BC: We train the agent using behavioral cloning (BC)
where the ground truth represents the action which would
maximally decrease the geodesic distance between the cur-
rent position and the goal. This is trained in a “student-
forcing” regime i.e. the agent executes actions based on its
policy, but evaluates the actions using the ground truth.
BC, PPO: We initialize the agent with the weights from the
BC setting and update only the policy layers using the PPO
algorithm [32] with a shaped reward based on the geodesic
distance to the goal, Geo(P,G):

rpointnavt = Geo(Pt−1, G)−Geo(Pt, G) + λT (6)
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Figure 3. SplitNet visual domain transfer. When the target visual
inputs differ from the source visual inputs while the desired em-
bodied task remains fixed, our model updates the shared visual en-
coder using only auxiliary visual and motion based learning tasks.
All decoder weights are frozen (to prevent overfitting), but gradi-
ents propagate through all decoder layers to the encoder.

where Pt is the agent’s location at time t, G is the goal
location, and λT is a small constant time penalty.

3.5. Selective Transfer to New Domains and Tasks
3.5.1 Adapting to new Visual Domains

By decomposing the learning task into a perceptual encoder
and a policy decoder, each supervised by their own objec-
tives, our model is able to learn more transferable visual
features than end-to-end methods. Furthermore, our model
can quickly adapt its perceptual understanding with auxil-
iary visual and motion based training in the target environ-
ment without needing to modify the policy. Figure 3 il-
lustrates the visual encoder adaptation learning procedure.
Given a small sample of data and tasks in the target do-
main, we backpropagate gradients through the policy de-
coder2 and the auxiliary task layers but freeze the weights
for all but the shared visual encoder. By doing so, our
model can quickly adapt its perception without overfitting
the policy to the small sample.

3.5.2 Adapting to new Tasks

When transferring to a new embodied task operating in
the same visual space, our model only needs to update the
policy decoder parameters (see Figure 4). While reusing
lower-level features for new tasks by replacing and retrain-
ing the final layers is a common technique in deep learn-
ing [7, 13, 8] our model naturally decouples perception
and reasoning offering a clear solution as to which layers
to freeze or finetune. Rich perceptual features often trans-
fer to tasks which require different reasoning assuming that
the representation encodes the necessary information for the
new task. By using auxiliary tasks to inform the updates to

2Without propagating gradients through the policy decoder, the encoder
feature representation shifts and no longer matches the policy decoder.
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Figure 4. SplitNet task transfer. When learning a new embodied
task for the same visual inputs as in the source initial learning,
our model fixes the shared visual encoder and updates the policy
decoder using the new target embodied loss.

the visual encoder, we aim to encourage learning of inter-
mediate features that capture semantically meaningful in-
formation which should better transfer to new tasks than
arbitrary latent features. For example, the latent features
from a purely end-to-end learned model may represent a
variety of different (sometimes spurious) correlations, while
our features must contain enough information to reconstruct
depth and surface normals etc., so the network should be
able to, for instance, avoid obstacles using the exact same
features. While this implies that the selection of an appro-
priate auxiliary task affects the success of our method, if
necessary our network can still be trained end-to-end using
the pretrained weights as initialization.

In the specific cases of transferring from Point-Nav to
Exploration or Flee we initialize the model with the weights
from the BC, PPO setting and update the policy decoder
layers using PPO with the new reward functions:

rexploret = ‖V isitedt‖ − ‖V isitedt−1‖+ λT (7)

rfleet = Geo(Pt, Pt0)−Geo(Pt−1, Pt0) + λT (8)

where ‖V isitedt‖ represents how many unique spatial
locations the agent has visited at time t.

4. Experiments
To evaluate visual navigation tasks we use the Habitat

scene renderer [30] on scenes from the near-photo-realistic
3D room datasets Matterport 3D (referred to as MP3D) [3]
and Gibson [37] as well as a third 3D navigation dataset
(referred to as IndoorEnv).

4.1. Baselines
We compare our results against traditional end-to-end

(E2E) training algorithm results for all experiments. These
can be trained via the PPO algorithm, via behavioral cloning
(BC), or pretrained with BC and finetuned with PPO. One



common technique across deep learning is to pretrain mod-
els on ImageNet [5], and finetune the entire network on the
desired task, which we also include as a baseline. We do
not freeze any weights when training E2E methods. We ad-
ditionally include blind (but learned) agents for each task
and random-action agents to benchmark task difficulty. For
Point-Nav, we also include a Blind Goal Follower which
aligns itself in the direction of goal vector and moves for-
ward, realigning after it collides with obstacles.

4.2. Generalization to Unseen Environments

The ability for an algorithm to generalize to unseen en-
vironments represents its effectiveness in real-world scenar-
ios. To begin analyzing our model, we experiment with the
standard protocol of training and evaluating on data from
the same simulator, partitioning the scenes into train and
test. We compare performance for the Point-Nav task on
three simulators (IndoorEnv, MP3D [3], Gibson [37]) eval-
uating in never-before-seen scenes. We use the SPL metric
proposed in [1] which can be stated as

SPL =
1

N

N∑
i=1

Si
`i

max(pi, `i)
(9)

where Si is a success indicator for episode i, pi is the path
length, and `i is the shortest path length. This combines
the accuracy (success) of a navigation method with its effi-
ciency (path length) where 1.0 would be an oracle agent.

Effective policies generalize by understanding the geom-
etry of the scenes rather than trying to localize into a known
map based on the visual inputs. SplitNet outperforms all
other methods by a wide margin on all three environments
(shown in Table 1). Surprisingly, pretraining on ImageNet

IndoorEnv MP3D [3] Gibson [37]

SPL Success SPL Success SPL Success

Random 0.012 0.027 0.011 0.016 0.046 0.028
Blind Goal Follower 0.199 0.203 0.155 0.158 0.325 0.319
Blind BC 0.159 0.323 0.232 0.382 0.351 0.603
Blind BC, PPO 0.291 0.377 0.317 0.471 0.427 0.643
Blind PPO 0.258 0.371 0.313 0.463 0.538 0.822
E2E PPO 0.324 0.529 0.322 0.477 0.634 0.831
E2E BC 0.343 0.548 0.459 0.737 0.509 0.824
E2E BC, PPO 0.393 0.593 0.521 0.733 0.606 0.869
ImageNet Pretrain, E2E BC 0.280 0.499 0.315 0.552 0.548 0.843
ImageNet Pretrain, E2E BC, PPO 0.338 0.440 0.450 0.539 0.642 0.737
SplitNet BC 0.421 0.687 0.517 0.808 0.584 0.865
SplitNet BC, PPO 0.560 0.703 0.716 0.844 0.701 0.855

Table 1. Performance on Unseen Environments. Blind methods
are not provided with visual input but still receive an updated goal
vector. “BC, PPO” methods are first trained with a softmax loss to
take the best next action and are finetuned with the PPO algorithm.

does not offer better generalization, likely because the fea-
tures required for ImageNet are sufficiently different from
those needed to navigate effectively (note, the convolutional
weights trained on ImageNet are not frozen during BC and
PPO training). This is true even compared to E2E without
pretraining on ImageNet.

As qualitative intuition about the performance of the var-
ious methods, we depict the policies for a subset of methods
on an example MP3D episode from in Figure 5. For a fixed
start (blue diamond) and goal (green star) location, we show
the output trajectory from each method where the trajectory
color (ranging from blue to red) denotes the number of steps
so far. If a policy failed to reach the goal, the final destina-
tion is denoted with a red “x”. From this visualization we
can see that SplitNet using BC and PPO successfully com-
pletes the task and does so with the shortest overall path.
At the beginning of the episode SplitNet BC is stuck behind
the wall, but eventually is able to navigate away from the
wall and reach the target.

SplitNet BC, PPO: SPL = 0.938 Blind BC, PPO: SPL = 0SplitNet BC: SPL = 0.486 E2E BC, PPO: SPL = 0

Point-to-Point Navigation from MP3D Validation Set

0 steps 500 steps

Figure 5. Qualitative comparison of Point-Nav policies on MP3D validation. An exemplar validation episode (fixed start and end
location) and the predicted trajectories from baselines and SplitNet.



Number Train Scenes Test Data Number Train Scenes Test Data
IndoorEnv MP3D (Train) MP3D (Val) MP3D Gibson (Train) Gibson (Val)

(Source) (Target) SPL Success (Source) (Target) SPL Success

Source E2E BC, PPO 990 0 0.257 0.412 61 0 0.609 0.866
Source SplitNet BC, PPO 990 0 0.376 0.539 61 0 0.651 0.764

Target E2E BC 0 1 0.211 0.321 0 1 0.396 0.589
Target E2E Finetune 990 1 Failure Failure 61 1 Failure Failure
Target SplitNet Transfer 990 1 0.447 0.596 61 1 0.686 0.822

Target E2E BC 0 10 0.259 0.463 0 10 0.501 0.782
Target E2E Finetune 990 10 0.401 0.612 61 10 0.667 0.870
Target SplitNet Transfer 990 10 0.531 0.681 61 10 0.727 0.854

Target E2E BC, PPO 0 All (61) 0.521 0.733 0 All (72) 0.606 0.869
Target SplitNet BC, PPO 0 All (61) 0.716 0.844 0 All (72) 0.701 0.855

Table 2. Performance transferring across simulation environments (Sim2Sim). Our method, SplitNet, significantly outperforms the
end-to-end (E2E) baseline at the task of transferring across simulated environments. For reference, we also report the performance of a
source only trained model (top two rows) or a target only trained model (bottom two rows). “Failure” indicates that performance on the
target data decreases after finetuning.
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Figure 6. MP3D Point-Nav Performance vs episode difficulty.
We compare our method, SplitNet, to end-to-end (E2E) and blind
learned baselines and report SPL performance as a function of
starting geodesic distance from the goal. SplitNet outperforms on
all starting distances, especially on the more difficult episodes.

We further analyze the performance of SplitNet com-
pared to baselines as a function of the geodesic distance be-
tween the starting and goal locations in Figure 6. This dis-
tance is highly correlated with the difficulty of an episode.
Unsurprisingly, all methods degrade as the starting location
is moved further from the goal location, but SplitNet retains
its advantage over baselines irrespective of the episode dif-
ficulty. Additionally, we see the performance gap widen
over the more difficult episodes, meaning we handle diffi-
cult episodes better than the baselines.

4.3. Transfer Across Simulators

We now study the ability for our method to transfer be-
tween visual environments for the fixed task of Point-Nav.
We denote Source to be the initial simulator in which we
train our model using both BC and PPO and denote this
initial model as “Source SplitNet BC, PPO.” The base-

line source model that uses end-to-end training is denoted
as “Source E2E BC, PPO.” We then compare our method
for transfer to the new simulator Target, described in Sec-
tion 3.5.1 and denoted as “Target SplitNet Transfer,” against
the end-to-end baseline finetuned on the target, “Target E2E
Finetune.” For reference, we also present the performance
of training an end-to-end model using only the available tar-
get data, denoted as “Target E2E BC.”

Table 2 reports our main results for this Sim2Sim
transfer problem as a function of the amount of avail-
able target scenes during training. We report performance
for the two transfer settings of IndoorEnv→MP3D and
MP3D→Gibson. These simulators differ in terms of com-
plexities of differing rendering appearance (as seen in Fig-
ure 1), different environment construction methods (syn-
thetic vs. depth-scan reconstruction), and different environ-
ment size. Again, SplitNet outperforms all baselines across
all experiments in terms of the SPL metric and performs
better or comparable to the baseline in terms of success for
all transfer setups. Even with no extra data, our initially
learned network is more generalizable to new environments,
especially those which are significantly different in appear-
ance (IndoorEnv→MP3D). Of note, in both cases, SplitNet
given 10 scenes from the target dataset matches or outper-
forms the end-to-end baseline SPL given the entire target
dataset.

Note, that our approach to visual environement transfer
includes finetuning only the visual encoder in the target en-
vironment and leaving the policy decoder fixed. One may
wonder whether this is the optimal approach or whether our
method would benefit from target updates to the policy de-
coder as well. To answer this question, in Table 3 we report
performance comparing the initial source SplitNet perfor-



SplitNet Model Layers Number SPL SuccessFinetuned Target Scenes

Transfer IndoorEnv→ MP3D (train): Eval MP3D (val)

Source Only - - 0.376 0.539
Finetune Target V+P 1 0.435 0.586
Finetune Target V 1 0.447 0.596

Finetune Target V+P 10 0.400 0.552
Finetune Target V 10 0.531 0.681

Transfer MP3D→ Gibson (train): Eval Gibson (val)

Source Only - - 0.651 0.764
Finetune Target V+P 1 Failure Failure
Finetune Target V 1 0.686 0.822

Finetune Target V+P 10 Failure Failure
Finetune Target V 10 0.727 0.854

Table 3. Ablation of SplitNet Sim2Sim transfer strategy. Split-
Net only updates the visual encoder (“V”) and fixes the policy de-
coder (“P”) when finetuning the source SplitNet model on a target
visual environment. In contrast, finetuning both V+P on the target
leads to degraded performance.

mance to that of finetuning either only the visual encoder
(“V”) which is our proposed approach or finetuning both the
visual encoder and policy decoder (“V+P”). Interestingly,
we found that allowing updates to both the visual encoder
and policy decoder in the target environment lead to signif-
icant overfitting which resulted in failed generalization to
the unseen scenes from the validation sets. This confirms
the benefit of our split training approach.

4.4. Transfer Across Tasks

We test the ability for SplitNet to learn a new task by first
training the network on Point-Nav and using our approach
to transfer the model to the novel tasks of Exploration and
Flee. All three tasks require the ability to transform 2D vi-
sual inputs into 3D scene geometry, but the decisions about
what to do based on the perceived geometry are drastically
different. Since SplitNet decouples the policy from the per-
ception, it learns features which readily transfer to a novel,
but related task.

Figure 7 shows that SplitNet immediately begins to learn
effective new policies, outperforming the other methods al-
most right away. In Exploration, our method is able to
reuse its understanding of depth to quickly learn to approach
walls, then turn at the last second and head off in a new di-
rection. For the Flee task, our method identifies long empty
hallways and navigates down those away from the start lo-
cation. None of the other methods learn robust obstacle-
avoidance behavior or geometric scene understanding. In-
stead they latch on to simple dataset biases such as “repeat-
edly move forward then rotate.” Oracle agents perform at
33.5 and 19.5 respectively, but are not directly comparable
in that they benefit from knowing the environment layout
before beginning the episode.
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Figure 7. IndoorEnv Task2Task performance as a function of
target training episodes. SplitNet Transfer and E2E Transfer are
first trained on IndoorEnv Point-Nav, but SplitNet only updates the
policy layers whereas E2E updates the entire network. E2E from
scratch is randomly initialized a episode 0. The Blind method only
receives its previous action as input and is randomly initialized.
Oracle agents perform at 33.5 and 19.5 respectively.

4.5. Analysis of Auxiliary Objectives

Our method was designed as a solution for generaliza-
tion on a downstream embodied task. However, SplitNet
also learns outputs for the auxiliary visual and motion tasks.
While our goal is not to surpass state-of-the-art performance
on these auxiliary tasks it is still useful to verify that the
visual encodings match our expectations. We therefore in-
clude several examples which show the auxiliary outputs in
the supplemental material. In our our initial experiments,
we found depth and normal estimation to be the most im-
portant auxiliary task as they most directly translate to nav-
igation understanding (free space, geometry, etc.). A com-
plete ablation of auxiliary tasks and its consequences is left
as future work.

5. Conclusion
We introduce SplitNet, a method for decomposing em-

bodied learning tasks to enable fast and accurate transfer
to new environments and new tasks. By disentangling the
visual encoding of the state from the policy for a task, we
learn more robust features which can be frozen or adapted
based on the changed domain. Our model matches the per-
formance of end-to-end methods even with six times less
data. We believe SplitNet may prove to be a useful step-
ping stone in transferring networks from simulation envi-



ronments onto robots in the real-world.
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Dataset Number of Train Scenes Number of Train Episodes Number of Val Scenes Number of Val Episodes

IndoorEnv 990 898267 905 99
MP3D 61 5000000 495 11
Gibson 72 4932479 1000 16

Table A1. Dataset Statistics

Appendix A. Dataset Details
We constructed the Point-Nav datasets for each of

IndoorEnv, MP3D, and Gibson environments using a
sampling-based method which filtered out easy episodes
(those with euclidean distance

geodesic distance < 1.1). We additionally filter
out episodes where there is no path between the start and
goal location. The start points from these episodes were ad-
ditionally used for the Exploration and Flee tasks, but the
goal locations were ignored. Per-environment statistics are
listen in Table A1.

Appendix B. Cumulative Performance based
on Starting Distance

To examine the balance of starting distances, Figure F1
shows a breakdown of performance on all episodes which
start closer than N meters. This additionally shows that 50%
of the episodes start more than 9 meters away and nearly
25% start greater than 15 meters away.

Appendix C. Network Architecture
Figure F2 shows the encoder-decoder architecture of

SplitNet. The E2E method trains the blue and orange por-
tions, and the blind agent trains only the orange. Addition-
ally the Motion layers are only trained for SplitNet. Those
are omitted for simplicity due to them operating on multiple
timesteps. The Egomotion

Appendix D. Auxiliary Outputs
To verify that our network learns to encode geometry and

appearance information, we show the output of the RGB,
depth, and surface normal decoders on test environments
in Figure F3. Learning these encoder-decoders, especially
for depth, improves the network’s ability to codify visual
information into actionable representations. The decoders
also allow us to see where the network makes mistakes as a
method of debugging the failure modes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Pe
rc

en
ta

ge
Starting Geodesic Distance from goal in meters

MP3D PointNav Cumulative Success and SPL vs. Distance

SplitNet Success SplitNet SPL E2E Success
E2E SPL Blind Success Blind SPL
Percentage of Episodes

Figure F1. Cumulative Accuracy and SPL on MP3D dataset.
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Figure F3. Example predictions of auxiliary outputs on unseen MP3D test environments.


