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Abstract

Facial motion retargeting is an important problem in

both computer graphics and vision, which involves captur-

ing the performance of a human face and transferring it

to another 3D character. Learning 3D morphable model

(3DMM) parameters from 2D face images using convolu-

tional neural networks is common in 2D face alignment,

3D face reconstruction etc. However, existing methods ei-

ther require an additional face detection step before retar-

geting or use a cascade of separate networks to perform

detection followed by retargeting in a sequence. In this pa-

per, we present a single end-to-end network to jointly pre-

dict the bounding box locations and 3DMM parameters for

multiple faces. First, we design a novel multitask learn-

ing framework that learns a disentangled representation of

3DMM parameters for a single face. Then, we leverage the

trained single face model to generate ground truth 3DMM

parameters for multiple faces to train another network that

performs joint face detection and motion retargeting for im-

ages with multiple faces. Experimental results show that

our joint detection and retargeting network has high face

detection accuracy and is robust to extreme expressions and

poses while being faster than state-of-the-art methods.

1. Introduction

Facial gestures are an effective medium of non-verbal

communication, and communication becomes more appeal-

ing through 3D animated characters. This has led to exten-

sive research [8, 3, 20] in developing techniques to retarget

human facial motion to 3D animated characters. The stan-

dard approach is to model human face by a 3D morphable

model (3DMM)[5] and learn the weights of a linear com-

bination of blendshapes that fits to the input face image.

The learned “expression” weights and “head pose” angles

are then directly mapped to semantically equivalent blend-

shapes of the target 3D character rig to drive the desired

facial animation. Previous methods, such as [8], formu-

late 3DMM fitting as an optimization problem of regress-

ing the 3DMM parameters from the input image. However,
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these methods require significant pre-processing or post-

processing operations to get the final output.

Using deep convolution neural networks, recent works

have shown remarkable accuracy in regressing 3DMM pa-

rameters from a 2D image. However, while 3DMM fitting

with deep learning is frequently used in related domains

like 2D face alignment[61, 7], 3D face reconstruction[38,

16, 25, 13] etc., it hasn’t been proven yet as an effective

approach for facial motion retargeting. This is because 1)

face alignment methods focus more on accurate facial land-

mark localization while face reconstruction methods focus

more on accurate 3D shape and texture reconstruction to

capture the fine geometric details. In contrast, facial retar-

geting to an arbitrary 3D character only requires accurate

transfer of facial expression and head pose. However, due to

the ambiguous nature of this ill-posed problem of extracting

3D face information from 2D image, both facial expression

and head pose learned by those methods are generally sub-

optimal as they are not well decoupled from other informa-

tion like identity. 2) Unlike alignment and reconstruction,

retargeting often requires real-time tracking and transfer of

the facial motion. However, existing methods for alignment

and reconstruction are highly memory intensive and often

involve complex rendering of the 3DMM as intermediate

steps, thereby making these methods difficult to deploy on

light-weight hardware like mobile phones.

It is important to note that all previous deep learning

based 3DMM fitting methods work on a single face image

assuming face is already detected and cropped. To support

multiple faces in a single image, a straightforward approach

is to run a face detector on the image first to detect the all

face regions and then perform the retargeting operations on

each face individually. Such an approach, however, requires

additional execution time for face detection and the com-

putational complexity increases linearly with the number

of faces in the input image. Additionally, tracking multi-

ple faces with this approach becomes difficult when people

move in and out from the frame or occlude each other. In

the literature of joint face detection and alignment, existing

methods [12, 55, 15] either use a random forest to predict

the face bounding boxes and landmarks or adopt an iterative
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Figure 1: Network architecture. Our end-to-end joint face detection and retargeting network is specifically tailored to incorporate multi-

scale representation disentangling. The building blocks are Fire Modules (FM) [23] and squeeze-and-excitation (SE) blocks [21] which are

designed for real-time application. The multi-scale branches use FM with stride 2 (FMs2) to allow concatenation. The Pose, wid (identity

parameters) and wexp (expression parameters) together with 3DMM generate the 3D mesh for every face bounding box.

two-step approach to generate region proposals and predict

the landmark locations in the proposed regions. However,

these methods are primarily optimized for regressing accu-

rate landmark locations rather than 3DMM parameters.

To this end, we divide our work into two parts. In the

first part, we propose a multitask learning network to di-

rectly regress the 3DMM parameters from a well-cropped

2D image with a single face; we call this as Single Face

Network (SFN). Our 3DMM parameters are grouped into:

a) identity parameters that contain the face shape informa-

tion, b) expression parameters that captures the facial ex-

pression, c) pose parameters that include the 3D rotation

and 3D translation of the head and d) scale parameters that

links the 3D face with the 2D image. We have observed that

pose and scale parameters require global information while

identity and expression parameters require different level of

information, so we propose to emphasize on high level im-

age features for pose and scale and the multi-scale features

for identity and expression. Our network architecture is de-

signed such that different layers embed image features at

different resolutions, and these multi-scale features help in

disentangling the parameter groups from each other. In the

second part, we propose a single end-to-end trainable net-

work to jointly detect the face bounding boxes and regress

the 3DMM parameters for multiple faces in a single image.

Inspired by YOLO[33] and its variants[34, 35], we design

our Multiple Face Network (MFN) architecture that takes

a 2D image as input and predicts the centroid position and

dimensions of the bounding box as well as the 3DMM pa-

rameters for each face in the image. Unfortunately, existing

publicly available multi-face image datasets provide ground

truth for face bounding boxes only and not 3DMM param-

eters. Hence, we leverage our SFN to generate the weakly

labelled “ground truth” for 3DMM parameters for each face

to train our MFN. Experimental results show that our MFN

not only performs well for multi-face retargeting but also

improves the accuracy of face detection. Our main contri-

butions can be summarized as follows:

1. We design a multitask learning network, specifically

tailored for facial motion retargeting by casting the

scale prior into a novel network topology to disentan-

gle the representation learning. Such network has been

proven to be crucial for both single face and multiple

face 3DMM parameters estimation.

2. We present a novel top-down approach using an end-

to-end trainable network to jointly learn the face

bounding box locations and the 3DMM parameters

from an image having multiple faces with different

poses and expressions.

3. Our system is easy to deploy into practical applications

without requiring separate face detection for pose and

expression retargeting. Our joint network can be run in

real-time on mobile devices without engineering level

optimization, e.g. only 39ms on Google Pixel 2.

2. Related Work

2.1. 2D Face Alignment and 3D Face Reconstruction

Early methods like [27] used a cascade of decision trees

or other regressors to directly regress the facial landmark

locations from a face image. Recently, the approach of re-

gressing 3DMM parameters using CNNs and fitting 3DMM

to the 2D image has become popular. While Jourabloo

et al. [26] use a cascade of CNNs to alternately regress

the shape (identity and expression) and pose parameters,

Zhu et al. [61, 60] perform multiple iterations of a single

CNN to regress the shape and pose parameters together.

These methods use large networks and require 3DMM in

the network during testing, thereby requiring large memory

and execution time. Regressing 3DMM parameters using

CNNs is also popular in face reconstruction [46, 38, 18, 45].

Richardson et al. [39] uses a coarse-to-fine approach to cap-

ture fine details in addition to face geometry. However, re-

construction methods also regress texture and focus more
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on capturing fine geometric details. For joint face alignment

and reconstruction, [17] regresses a position regression map

from the image and [47] regresses the parameters of a non-

linear 3DMM using an unsupervised encoder-decoder net-

work. For joint face detection and alignment, recent meth-

ods either use a mixture of trees [31] or a cascade of CNNs

[12, 55]. In [15], separate networks are trained to perform

different tasks like proposing regions, classifying and re-

gressing the bounding boxes from the regions, predicting

the landmark locations in those regions etc. In [32], region

proposals are first generated with selective search algorithm

and bounding box and landmark locations are regressed for

each proposal using a multitask learning network. In con-

trast, we use a single end-to-end network to do join face

detection and 3DMM fitting for face retargeting purposes.

2.2. PerformanceBased Animation

Traditional performance capture systems (using either

depth cameras or 3D scanners for direct mesh registra-

tion with depth data) [43, 6, 48] require complex hard-

ware setup that is not readily available. Among the meth-

ods which use 2D images as input, the blendshape interpo-

lation technique [8, 41] is most popular. However, these

methods require dense correspondence of facial points [37]

or user-specific adaptations [30, 9] to estimate the blend-

shape weights. Recent CNN based approaches either re-

quire depth input [29, 19] or regress character-specific pa-

rameters with several constraints [3]. Commercial software

products like Faceshift [1], Faceware [2] etc. perform real-

time retargeting but with poor expression accuracy [3].

2.3. Object Detection and Keypoint Localization

In the literature of multiple object detection and classifi-

cation, Fast RCNN [36] and YOLO [33] are the two most

popular methods with state-of-the-art performance. While

[36] uses a region proposal network to get candidate regions

before classification, [33] performs joint object location re-

gression and classification. Keypoint localization for mul-

tiple objects is popularly used for human pose estimation

[28, 11] or object pose estimation [44]. In case of faces,

landmark localization for multiple faces can be done in two

approaches: top-down approach where landmark locations

are detected after detecting face regions and bottom-up ap-

proach where the facial landmarks are initially predicted in-

dividually and then grouped together into face regions. In

our method, we adopt the top-down approach.

3. Methodology

3.1. 3D Morphable Model

The 3D mesh of a human face can be represented by a

multilinear 3D Morphable Model (3DMM) as

M = V × bid × bexp (1)

where V is the mean neutral face, bid are the identity bases

and bexp are the expression bases. We use the face ten-

sor provided by FacewareHouse [10] as 3DMM, where

V ∈ R
11510×3 denotes 11, 510 3D co-ordinates of the mesh

vertices, bid denotes 50 shape bases obtained by taking PCA

over 150 identities and bexp denotes 47 bases corresponding

to 47 blendshapes (1 neutral and 46 micro-expressions). To

reduce the computational complexity, we manually mark 68

vertices in V as the facial landmark points based on [31] and

create a reduced face tensor M̂ ∈ R
204×50×47 for use in our

networks. Given a set of identity parameters wid ∈ R
50×1,

expression parameters wexp ∈ R
47×1, 3D rotation matrix

R ∈ R
3×3, 3D translation parameters t ∈ R

3×1 and a scale

parameter (focal length) f , we use weak perspective projec-

tion to get the 2D landmarks Plm ∈ R
68×2 as:

Plm =

[

f 0 0
0 f 0

]

[R ∗ (M̂ ∗ wid ∗ wexp) + t] (2)

where wexp[1] = 1 −
∑

47

i=2
wexp[i] and wexp[i] ∈ [0, 1], i =

2, . . . , 47. We use a unit quaternion q ∈ R
4×1 [60] to rep-

resent 3D rotation and convert it into rotation matrix for use

in equation 2. Please note that, for retargeting purposes, we

omit the learning of texture and lighting in the 3DMM.

3.2. Multiscale Representation Disentangling

A straightforward way of holistically regressing all the

3DMM parameters together through a fully connected layer

on top of one shared representation will not be optimal par-

ticularly for our problem where each group of parameters

has strong semantic meanings. Intuitively speaking, head

pose learning does not require detailed local face represen-

tations since it is fundamentally independent of skin texture

and subtle facial expressions, which has also been observed

in recent work on pose estimation [58]. However, for iden-

tity learning, a combination of both local and global rep-

resentations would be necessary to differentiate among dif-

ferent persons. For example, some persons have relatively

small eyes but fat cheek while others have big eyes and thin

cheek, so both the local features around the eyes and the

overall face silhouette would be important to approximate

the face shape. Similarly, expression learning possibly re-

quires even fine-grained granularity of different scales of

representations. Single eye wink, mouth grin and big laugh

clearly require three different levels of representations to

differentiate them from other expressions.

Another observation is, given the 2D landmarks of an

image, there exist multiple combinations of 3DMM param-

eters that can minimize the 2D landmark loss. This am-

biguity would cause additional challenges to the learning

to favor the semantically more meaningful combinations.

For example, as shown in Fig. 2, we can still minimize the

2D landmark loss by rotating the head and using different
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Figure 2: Importance of representation disentangling. Left: cor-

rectly fitted mesh with jaw left; Middle: incorrectly fitted mesh

with large roll angle; Right: projected landmarks from both the

meshes are still the same.

Figure 3: Synthesized images for disentangled regularization.

identity coefficients to accommodate the jaw left even with-

out a correct jaw left expression coefficient. Motivated by

both the multi-scale prior and the ambiguous nature of this

problem, we designed a novel network architecture that is

specifically tailored for facial retargeting applications as il-

lustrated in Fig. 1, where pose is only learned through the

final global features while expression learning depends on

the concatenation of multi-scale representations.

Disentangled Regularization In addition to the above

network design, we add regularization during the train-

ing to further enforce the disentangled representation learn-

ing. We augment each face image by random transla-

tion/rotation/scale to generate multiple different images

with the same identity and expression coefficients. In ad-

dition, we edit the images using image warping techniques

to slightly change the facial expression without changing

the pose and identity. Fig. 3 shows a few such synthesized

examples for the same identity.

3.3. Single Face Retargeting Network

When the face bounding box is given, we can train a

single face retargeting network to output 3DMM parame-

ters for each cropped face image using the network archi-

tecture proposed above. Fortunately, many public datasets

[40, 10, 22, 61] already provide bounding boxes along with

68 2D facial landmark points. To encourage disentangling,

we fit 3DMM parameters for each cropped single face im-

age using the optimization method of [7] and treat them as

ground truth for our network in addition to the landmarks.

Although individual optimization may result in over-fitting

and noisy ground truth, our network can intrinsically focus

more on the common global patterns from the training data.

To achieve this, we initially train with a large weight on the

L1 loss with respect to the ground truth (g) parameters, and

then gradually decay this weight to trust more on the 2D

landmark loss, as shown in the following loss function:

τ ∗

{

1

50

50
∑

i=1

|widi − w
g
idi
|+

1

46

46
∑

i=1

|wexpi
− wg

expi
|

+
1

4

4
∑

i=1

|Ri −R
g
i |

}

+

√

√

√

√

1

68

68
∑

i=1

(Plmi
−P

g
lmi

)2 (3)

where τ denotes decay parameter with respect to epoch. We

choose τ = 10/epoch across all experiments. Note that, al-

though we drop the 3D translation and scale ground truth

loss to allow 2D translation and scaling augmentation, the

translation and scale parameters can still be learned by the

2D landmark loss.

3.4. Joint Face Detection and Retargeting

Our goal is to save computation cost by performing both

face detection and 3DMM parameter estimation simultane-

ously instead of sequentially running a separate face detec-

tor and then single face retargeting network on each face

separately. The network could potentially also benefit from

the cross domain knowledge, especially for detection task,

where introducing 3DMM gives the prior on how the face

should look like in 3D space which complements the 2D

features in separate face detection framework.

Inspired by YOLO [33], our joint network is designed

to predict 3DMM parameters for each anchor point in ad-

ditional to bounding box displacement and objectness. We

divide the input image into 9 × 9 grid and predict a vector

of length 4+1+ (50+46+4+3+1) = 109 for a bound-

ing box in each grid cell. Here 4 denotes 2D co-ordinates

of the centroid, width and height of the face bounding box,

1 denotes the confidence score for the presence of a face in

that cell and the rest denote the 3DMM parameters for the

face in the cell. We also adopt the method of starting with

5 anchor boxes as bounding box priors. Our final loss func-

tion is the summation of Eq. 3 across all grids and anchors,

as shown in the following:

τ ∗

{

1

50

9
2

∑

j=1

5
∑

k=1

50
∑

i=1

✶ijk|widijk − w
g
idijk

|

+
1

46

9
2

∑

j=1

5
∑

k=1

46
∑

i=1

✶ijk|wexpijk
− wg

expijk
|

+
1

4

9
2

∑

j=1

5
∑

k=1

4
∑

i=1

✶ijk|Rijk −R
g
ijk|

}

+

√

√

√

√

1

68

92
∑

j=1

5
∑

k=1

68
∑

i=1

✶ijk(Plmijk
−P

g
lmijk

)2 (4)
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where ✶ijk denotes whether a kth bounding box predictor

in cell j contains a face. Since there are no publicly avail-

able multi-face datasets that provide both bounding box lo-

cation and 3DMM parameters for each face, for proof-of-

concept, we obtain the 3DMM ground truth by running our

single face retargeting network on each face separately. The

centroid co-ordinates and the bounding box dimensions are

calculated in the same manner as in [33] and we use the

same loss functions for these values (see supplementary).

4. Experimental Setup

4.1. Datasets

For single face retargeting, we combine multiple datasets

to have a good training set for accurate prediction of each

group of 3DMM parameters. 300W-LP contains many

large poses and Facewarehouse is a rich dataset for ex-

pressions. The ground truth 68 2D landmarks provided by

these datasets are used to obtain 3DMM ground truth by [7].

LFW and AFLW2000-3D are used as test sets for static im-

ages and 300VW is used as test set for tracking on videos.

For multiple face retargeting, AFW has ground truth bound-

ing boxes, pose angles and 6 landmarks and is used as a

test set for static images, while FDDB and WIDER only

provide bounding box ground truth and are therefore used

for training (WIDER test set is kept separate for testing).

Music videos dataset is used to test our MFN performance

on videos. We remove all images with more than 20 faces

and also remove faces whose bounding box dimensions are

<2% of the image dimensions from both the training and

test sets. This mainly includes faces in the background

crowd with size less than 5×5 pixels. The reason is that

determining the facial expressions for such small faces is

ambiguous even for human eyes and hence retargeting is not

meaningful. More dataset details are summarized in Table

1. We use an 80-20 split of the training set for training and

validation. To measure the performance of expression accu-

racy, we manually collect an expression test set by selecting

some extreme expression images (Fig. 7). The number of

images in each of the expression categories are: eye close:

185, eye wide: 70, brow raise: 124, brow anger: 100, mouth

open: 81, jaw left/right: 136, lip roll: 64, smile: 105, kiss:

143, total: 1008 images.

4.2. Evaluation Metrics

We use 4 metrics: 1) Average Precision (AP) with differ-

ent intersection-over-union thresholds as defined in [35] to

evaluate our MFN performance for face detection, 2) Nor-

malized Mean Error (NME) defined as the Euclidean dis-

tance between the predicted and ground truth 2D landmarks

averaged over 68 landmarks and normalized by the bound-

ing box dimensions, 3) Area under the Curve (AUC) of the

Cumulative Error Distribution curve for landmark error nor-

Dataset #images #faces

SFN

300W-LP [40, 61] 61225 61225

FacewareHouse [10] 5000 500

LFW [22] 12639 12639

AFLW2000-3D [61] 2000 2000

300VW [42] 114 (videos) 218K

MFN

FDDB [24] 2845 5171

WIDER [53] 11905 56525

AFW [31] 205 1000

Music videos [57] 8 (videos) -

Table 1: Number of images or videos and faces for each dataset

used in training and testing of our networks.

malized by the diagonal distance of ground truth bounding

box [15], and 4) expression metric defined as the mean ab-

solute distance between the predicted expression parame-

ters with respect to the ground truth. The value of each

expression parameter lies between 0 and 1 as in [10].

4.3. Implementation Details

4.3.1 Training Configuration

Our networks are implemented in Keras [14] with Tensor-

flow backend and trained using Adam optimizer with batch

size 32. The initial learning rate (10−3 for SFN and 10−4

for MFN) is decreased by 10 times (up to 10−6) when the

validation loss does not change over 5 consecutive epochs.

Training takes about a day on a Nvidia GTX 1080 for each

network. For data augmentation, we use random scaling in

the range [0.8,1.2], random translation of 0-10%, color jitter

and in-plane rotation. These augmentation techniques im-

prove the performance of SFN and also help in generating

more accurate ground truth for individual faces for MFN.

4.3.2 Single Face Retargeting Architecture

Our network takes 128x128 resized image as input. In the

first layer, we use a 7 × 7 convolution layer with 64 fil-

ters and stride 2 followed by a 2 × 2 maxpooling layer to

capture the fine details in the image. The following lay-

ers are made up of Fire Modules(FM) of SqueezeNet [23]

(with 16 and 64 filters in squeeze and expand layers respec-

tively) and squeeze-and-excite modules(SE) of [21] in order

to compress the model size and reduce the model execution

time without compromising the accuracy. At the end of net-

work, we use a global average pooling layer followed by

fully connected (FC) layers to generate the parameters. The

penultimate FC layers each has 64 units with ReLU activa-

tion and sigmoid activation is used for the last FC layer of

the expression branch to restrict the values between 0 and

1. To realize the multiscale prior and the disentangled learn-

ing, we concatenate the features at different scales and form

separate branches for each group of parameters. The extra

branches are built with the same blocks as the main branch,
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Figure 4: Visualization of learned features. From left to right in

each row: input image, features for single scale SFN, features for

expression branch of multi-scale SFN, features for identity branch

of multi-scale SFN, features for pose branch of multi-scale SFN.

but we reduce the channel size by half to restrict the extra

computation cost.

4.3.3 Joint Detection and Retargeting Architecture

Our joint detection and retargeting network architecture is

similar to Tiny DarkNet [33] with the final layer changed to

predict a tensor of size 9 × 9 × 5 × 109. However, since

we only have one object class (face) in our problem, we

reduce the number of filters in each layer to a quarter of

their original values. For multi-scale version, we change

the input image size to 288×288 and extend the multi-scale

backbone for single face retargeting by changing the output

of each branch to accommodate grid output (Fig. 1). The

pose branch outputs change from 4 (R) + 3 (T ) + 1 (f ) = 8

to 9×9×5×8. The expression branch outputs change from

46 to 9×9×5×46, and identity branch outputs change from

50 to 9×9×5×50. One extra branch is also added to output

objectness and bounding box location (9×9×5× (4+1)).
In total, multi-scale version outputs the same dimension as

single-scale, but the output channels are split with respect

to each type of branch.

5. Results

5.1. Importance of MultiScale Representation

Our multi-scale network design, unlike the single scale

design (refer to the supplementary material), reduces the

load on the network to learn complex features by allowing

the network to concentrate on different image features to

learn different parameters. In Fig. 4, we see that single

scale network learns generic facial features that combine

the representations for identity, expression and pose. On

the other hand, multi-scale network learns different levels

of representation (pixel-level detailed features for expres-

sion, region level features for identity and global aggregate

features for pose). We have randomly chosen only 25 fil-

ter outputs at level 3 of our SFN for clearer visualization.

Table 2 shows that our multi-scale design not only reduces

NME for single face images using SFN but also improves

the performance of MFN in terms of both NME (by gener-

ating a better weakly supervised ground truth) and AP for

Model

Evaluation

NME

(%)

Multi Face

AP AP50 AP75

(1) MFN (detection only) - 92.1 99.2 94.3

(2) Single scale SFN 2.16 - - -

(3) Multi-scale SFN 1.91 - - -

(4) SS-MFN + GT from (2) 2.89 97.5 99.8 98.1

(5) SS-MFN + GT from (3) 2.65 98.2 100 98.9

(6) MS-MFN + GT from (3) 2.23 98.8 100 99.3

Table 2: Quantitative evaluation of our SFN and MFN. SS-MFN

and MS-MFN denote single scale and multi-scale MFN respec-

tively. NME values are calculated for LFW (single faces) and AP

values are calculated for AFW.

e

Figure 5: 2D face alignment results for AFLW2000-3D. Column

1: original image with ground truth landmarks; Column 2: results

using [7]; Column 3: our single scale SFN; Column 4: our multi-

scale SFN.

detection. Clearly, different feature representations are cru-

cial to accurately learn different groups of parameters. By

reducing the network load, this design also allows model

compression so that multi-scale networks can be of compa-

rable size with respect to single scale networks while hav-

ing better accuracy. Fig. 5 shows that the multi-scale design

predicts more accurate expression parameters (first row has

correct landmarks for closed eyes) and identity parameters

(second row has correct landmarks that fit the face shape)

while being robust to large poses (second row), illumina-

tion (first row) and occlusion (third row).

5.2. Comparison with 2D Alignment Methods

Even though we aim to predict the 3DMM parameters

for retargeting applications, our model can naturally serve

the purpose for 2D face alignment (via 3D). Therefore, we

can evaluate our model from the performance of 2D align-

ment perspective. Table 3 compares the performance of

our single scale and multi-scale SFN with state-of-the-art

2D face alignment methods (compared under the same set-

tings). As can be seen, our model achieves much smaller er-
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Method [0◦,30◦] [30◦,60◦] [60◦,90◦] Mean

SDM [50] 3.67 4.94 9.67 6.12

3DDFA [61] 3.78 4.54 7.93 5.42

3DDFA2 [61] 3.43 4.24 7.17 4.94

Yu et al. [54] 3.62 6.06 9.56 6.41

3DSTN [4] 3.15 4.33 5.98 4.49

DFF [25] 3.20 4.68 6.28 4.72

PRN [16] 2.75 3.51 4.61 3.62

SS-SFN (ours) 3.09 4.27 5.59 4.31

MS-SFN (ours) 2.91 3.83 4.94 3.89

Table 3: Comparison of NME(%) for 68 landmarks for

AFLW2000-3D (divided into 3 groups based on yaw angles).

3DDFA2 refers to 3DDFA+SDM [61].

Method Scenario 1 Scenario 2 Scenario 3

Yang et al. [51] 0.791 0.788 0.710

Xiao et al. [49] 0.760 0.782 0.695

CFSS [59] 0.784 0.783 0.713

MTCNN [56] 0.748 0.760 0.726

MHM [15] 0.847 0.838 0.769

MS-SFN (ours) 0.901 0.884 0.842

Table 4: Landmark localization performance of our method on

videos in comparison to state-of-the-art face tracking methods.

The values are reported in terms of Area under the Curve (AUC)

for Cumulative Error Distribution of the 2D landmark error for

300VW test set.

rors compared to most of the methods that are dedicated for

precise landmark localization. While PRN [16] has lower

NME, its network size is 80 times bigger than ours and takes

9.8ms on GPU compared to <1ms required by our network.

In addition to evaluations on static images, we also measure

the face tracking performance in a video using our SFN. We

set the bounding box of the current frame using the bound-

aries of the 2D landmarks detected in the previous frame

and perform retargeting on a frame-by-frame basis. Table

4 compares the AUC values on 300VW dataset for three

scenarios categorized by the dataset (compared under the

same settings). Our method performs significantly better

than other methods (about 9% improvement over the sec-

ond best method for Scenario 3) with negligible failure rate

because extensive data augmentation helps our tracking al-

gorithm to quickly recover from failures.

5.3. Importance of Joint Training

Joint regression of both face bounding box locations and

3DMM parameters forces the network to learn exclusive fa-

cial features that characterize face shape, expression and

pose in addition to differentiating face regions from the

background. This helps in more precise face detection in-

the-wild by leveraging both 2D information from bounding

boxes and 3D information from 3DMM parameters. Table

2 shows that Average Precision (AP) is improved by a large

margin with joint training compared to when the same net-

work is trained to only regress bounding box locations. The

retargeting accuracy for MFN is also comparable to that of

SFN and the slight decrease in NME is because of training

MFN on multi-face images and testing on single face im-

ages. Nevertheless, we observe improved performance in

terms of both NME and AP by using better ground truth

generated by multi-scale model. Our detection accuracy

(mAP: 98.8%) outperforms Hyperface [32] (mAP: 97.9%)

and Faceness-Net [52] (mAP: 97.2%) on the entire AFW

dataset when compared under the same settings. Results of

our MFN on multi-face images are illustrated in Fig. 6.

5.4. Evaluation of Expressions

Our expression evaluation results in Table 5 emphasize

the improvement of multi-scale design on SFN. MS-MFN

performs better than SS-SFN for all expressions except the

eye expressions. This is because eye patches are small com-

pared to the entire image for MFN whereas they are zoomed

in on cropped images for SFN. Attention network for em-

phasizing small eye regions could be a future work for our

MFN. However, MS-MFN shows less accuracy compared

to MS-SFN because it is being tested on single face images

while being trained on multi-face images. For the multi-

person test set images, we found similar visual results by

applying MS-MFN on the whole image and by applying

MS-SFN on each face individually cropped from the image.

This is expected because MFN is trained with ground truth

from SFN. The performance of MS-SFN on our expression

test set is shown in Fig. 7. The face shape fitting can be

improved by using more landmarks or identity parameters,

but we are limited by the available 3DMM and ground truth

annotations. We also conducted live performance capture

experiments to evaluate the efficiency our system in retar-

geting facial motion from face(s) to 3D character(s). Fig. 8

shows some screenshots recorded during the experiments.

5.5. Computational Complexity

Excluding the IO time, SFN can run at 15ms/frame on

Google Pixel 2 (assuming single face and excluding face de-

tector runtime). Face detection with our compressed detec-

tor model is 34ms, so separate face detection and retargeting

requires 49ms for 1 face, 109ms for 5 faces and 184ms for

10 faces. On the other hand, our proposed MFN performs

joint face detection and retargeting at 39ms on any number

of faces. The model sizes for compressed face detector is

11.5MB and SFN is 2MB, so the combination is 13.5MB,

while our MFN is only 13MB. Hence our joint network re-

duces both memory requirement and execution time.

6. Conclusion

We propose a lightweight multitask learning network for

joint face detection and facial motion retargeting on mobile

9725



Figure 6: Testing results of our joint detection and retargeting model. Columns 1-3: Sampled from AFW; Columns 4-6: Sampled from

WIDER. We show both the predicted bounding boxes and the 3D meshes constructed from 3DMM parameters.

Model
Eye

Close

Eye

Wide

Brow

Raise

Brow

Anger

Mouth

Open

Jaw

L/R

Lip

Roll
Smile Kiss Avg

(1) Single scale SFN 0.082 0.265 0.36 0.451 0.373 0.331 0.359 0.223 0.299 0.305

(2) Multi-scale SFN 0.016 0.257 0.216 0.381 0.334 0.131 0.204 0.245 0.277 0.229

(3) MS-MFN + GT from (2) 0.117 0.407 0.284 0.405 0.284 0.173 0.325 0.248 0.349 0.288

Table 5: Quantitative evaluation of expression accuracy (measured by the expression metric) on our expression test set. Lower error means

the model performs better for extreme expressions when required.

Figure 7: Results by applying MS-SFN on our expression test set.

Figure 8: Retargeting from face(s) to 3D character(s).

devices in real time. The lack of 3DMM training data for

multiple faces is tackled by generating weakly supervised

ground truth from a network trained on images with sin-

gle faces. We carefully design the network architecture and

regularization to enforce disentangled representation learn-

ing inspired by key observations. Extensive results have

demonstrated the effectiveness of our design.
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