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Abstract. We propose DeepExpr, a novel expression transfer app-
roach from humans to multiple stylized characters. We first train two
Convolutional Neural Networks to recognize the expression of humans
and stylized characters independently. Then we utilize a transfer learn-
ing technique to learn the mapping from humans to characters to create
a shared embedding feature space. This embedding also allows human
expression-based image retrieval and character expression-based image
retrieval. We use our perceptual model to retrieve character expressions
corresponding to humans. We evaluate our method on a set of retrieval
tasks on our collected stylized character dataset of expressions. We also
show that the ranking order predicted by the proposed features is highly
correlated with the ranking order provided by a facial expression expert
and Mechanical Turk experiments.

1 Introduction

Facial expressions are an important component of almost all human interac-
tion and face-to-face communication. As such, the importance of clear facial
expressions in animated movies and illustrations cannot be overstated. Dis-
ney and Pixar animators [1,2] have long understood that unambiguous expres-
sion of emotions helps convince an audience that an animated character has
underlying cognitive processes. The viewer’s emotional investment in a charac-
ter depends on the clear recognition of the character’s emotional state [3]. To
achieve lifelike emotional complexity, an animator must be able to depict char-
acters with clear, unambiguous expressions, while retaining the fine level control
over intensity and expression mix required for nuance and subtlety [4]. However,
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Fig. 1. Expressions are surprisingly difficult to create for professional animators. Three
professional animators were asked to make the character appear as surprised as possible.
None of the expressions achieved above 50% recognition on Mechanical Turk with 50
test subjects.

explicit expressions are notoriously difficult to create [5], as illustrated in Fig. 1.
This difficulty is in part due to animators and automatic systems relying on
geometric markers and features modeled for human faces, not stylized character
faces.

We focus our efforts on stylized 3D characters, defined as characters that no
human would mistake for another person, but would still be perceived as having
human emotions and thought processes. Our goal is to develop a model of facial
expressions that enables accurate retrieval of stylized character expressions given
a human expression query.

To achieve this goal, we created DeepExpr, a perceptual model of stylized
characters that accurately recognizes human expressions and transfers them to a
stylized character without relying on explicit geometric markers. Figure 2 shows
an overview of the steps to develop the framework of our model. We created
a database of labeled facial expressions for six stylized characters as shown in
Fig. 7. This database with expressions is created by facial expression artists and
initially labeled via Mechanical Turk (MT) [6]. Images are labeled for each of
six cardinal expressions: joy, sadness, anger, surprise, fear, disgust, and neutral.
First, we trained a Convolutional Neural Network (CNN) on a large database
of human expressions to input a human expression and output the probabilities
of each of the seven classes. Second, we trained a similar character model on an
artist-created character expression image database. Third, we learned a map-
ping between the human and character feature space using the transfer learning
approach [7]. Finally, we can retrieve character expressions corresponding to a
human using perceptual model mapping and human geometry.

We make the following contributions1:

1. A data-driven perceptual model of facial expressions.
2. A novel stylized character data set with cardinal expression annotations.
3. A mechanism to accurately retrieve plausible character expressions from

human expression queries.
1 Project page: http://grail.cs.washington.edu/projects/deepexpr/.

http://grail.cs.washington.edu/projects/deepexpr/
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Fig. 2. Overview of our pipeline. Feature extraction using CNNs and transfer learning
builds a model of expression mapping.

2 Related Work

There is a large body of literature classifying, recognizing, and characterizing
human facial expressions. Notably, Paul Ekman’s widely adopted Facial Action
Coding System (FACS) [8] is used as a common basis for describing and commu-
nicating human facial expressions. The FACS system is often used as a basis for
designing character animation systems [5,9] and for facial expression recognition
on scanned 3D faces [10]. However, despite these advances, creating clear facial
animations for 3D characters remains a difficult task.

2.1 Facial Expression Recognition and Perception

FACS for Animation. Though a reliable parameterization of emotion and
expression remains elusive, the six cardinal expressions pervade stories and face-
to-face interactions, making them a suitable focus for educators and facial expres-
sion researchers [11]. To guide and automate the process of expression anima-
tion, animators and researchers turn to FACS. For example, FACSGen [9] allows
researchers to control action units on realistic 3D synthetic faces. Though Roesch
et al. confirmed the tool’s perceptual validity settings by asking viewers to rate
the presence of emotions in faces developed using action unit combinations found
in “real life situations”, we found that their faces were unclear as demonstrated
in Fig. 3.

HapFACS [5], an alternative to FACSGen, allows users to control facial
movement at the level of both action units and whole expressions (EmFACS)
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according to Ekman’s formulas. The strict use of anatomy-based and constrained
motion by these systems limits their generalizability to characters with differ-
ent anatomy and limits their application, because the most believable animation
may require the violation of physical laws [1].

Fig. 3. DeepExpr yields clearer expressions than other approaches when tested on MT.
From left to right each generated face was intended to clearly convey an expression:
anger from MPEG-4 [12] scored 20% clarity for anger. Anger from HapFACS [5] scored
8% clarity for anger. Fear from HapFACS scored 20% clarity for fear. Fear using FAC-
SGen [9] scored 6% clarity for fear. Anger and fear faces retrieved with our approach,
both scored over 85% clarity.

Alternatively, the MPEG-4 standard [12] can describe motion in stylized faces
by normalizing feature motion to a standard distance. The MPEG-4 standard
provides users with archetypal expression profiles for the six cardinal expressions,
but like the FACS-based systems does not give the user feedback on the per-
ceptual validity of their expression, which may lead to unclear faces. As demon-
strated in Fig. 3, anatomically valid faces generated by these systems did not
consistently yield high recognition rates in MT with 50 test subjects.

Other Perceptual Models. The results shown in Fig. 3 support artists’ intu-
ition that anatomy based formulas for expressions must be tailored to each
unique face, and necessitate a perceptually guided system to find the optimal
configuration for a clear expression. Perceptual models such as Deng and Ma [13]
have also been explored for realistic faces with promising results. Deng and Ma
polled students’ perceptions of the expression of different motion-captured facial
configurations and ran Principal Component Analysis (PCA) [14] on the ver-
tices of the meshes of these faces. Using these results, they developed a Support
Vector Machine (SVM) [15] model for expression clarity as a function of PCA
weights for different areas of the face. They also showed significantly increased
expression clarity of generated speech animation by constraining the characters’
motion to fit their model. However, the scalability of their procedure is limited
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by its reliance on on-site subjects and the size and specificity of the seeding
dataset. We addressed these limitations by incorporating MT tests in our char-
acter expression data collection and training a deep learning model for expression
clarity.

2.2 Feature Extraction and Classification

Facial expression recognition can be broadly categorized into face detection, reg-
istration, feature extraction, and classification. In the detection step, landmark
points are used to detect a face in an image. In the registration step, the detected
faces are geometrically aligned to match a template image. Then the registered
image is used to extract numerical feature vectors as the part of the feature
extraction step.

These features can be geometry based such as facial landmarks [16,17],
appearance based such as Local Binary Patterns (LBP) [18], Gabor filters [19],
Haar features [20], Histogram of Oriented Gradients [21], or motion based such as
optical flow [22] and Volume LBP [23]. Recently, methods have been developed
to learn the features by using sparse representations [24,25]. A 3D shape model
approach has also been implemented to improve the facial expression recognition
rate [26]. A variety of fusion of features has also been utilized to boost up the
facial expression recognition performance [27,28]. They are mostly a combina-
tion of geometric and appearance based features. In the current practice of facial
expression analysis, CNNs have shown the capability to learn the features that
statistically allow the network to make the correct classification of the input
data in various ways [29,30]. CNN features fused with geometric features for
customized expression recognition [31] and Deep Belief Networks have also been
utilized to solve the Facial Expression recognition (FER) problem. A recent app-
roach [32] termed “AU (Action Unit)-Aware” Deep Networks demonstrated the
effectiveness in classifying the six basic expressions. Joint Fine-Tuning in Deep
Neural Networks [33] have also been used to combine temporal appearance fea-
tures from image sequences and temporal geometry features from temporal facial
landmark points to enhance the performance of the facial expression recognition.
Along similar lines, we have utilized deep learning techniques as a tool to extract
useful features from raw data for both human faces and stylized characters. We
then deploy a transfer learning approach, where the weights of the stylized char-
acter are initialized with those from a network pre-trained on a human face data
set, and then fine-tuned with the target stylized character dataset.

In the last step of classification, the algorithm attempts to classify the given
face image into seven different classes of basic emotions using machine learning
techniques. SVMs are most commonly used for FER tasks [18,34,35]. As SVMs
treat the outputs as scores for each class which are uncalibrated and difficult
to interpret, the softmax classifier gives a slightly more intuitive output with
normalized class probabilities and also has a probabilistic interpretation. Based
on that, we have used a softmax classifier to recognize the expressions in our
classification task using the features extracted by the deep CNNs.
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3 Methodology

We first describe the data collection approach and design of facial features that
can capture the seven expressions: joy, sadness, anger, surprise, fear, disgust, and
neutral. Then, we discuss our customized expression recognition and transfer
learning framework using deep learning.

3.1 Data Collection and Pre-processing

To learn deep CNN models that generalize well across a wide range of expres-
sions, we need sufficient training data to avoid over-fitting of the model. For
human facial expression data collection, we combined publicly available anno-
tated facial expression databases: extended CK+ [36], DISFA [37], KDEF [38]
and MMI [39]. We also created a novel database of facial expressions for six
stylized characters: the Facial Expression Research Group-Database (FERG-
DB). Both the databases have labels for the six cardinal expressions and neutral.

Fig. 4. Examples of registered faces from CK+, DISFA, KDEF, and MMI databases
showing disgust, joy, anger, and surprise emotion from left to right.

CK+: The Extended Cohn-Kanade database (CK+) includes 593 video
sequences recorded from 123 subjects. Subjects portrayed the six cardinal expres-
sions. We selected only the final frame of each sequence with the peak expression
for our method, which resulted in 309 images.

DISFA: Denver Intensity of Spontaneous Facial Actions (DISFA) database
consists of 27 subjects, each recorded while watching a four minutes video clip
by two cameras. As DISFA is not emotion-specified coded, we used the EMFACS
system [5] to convert AU FACS codes to expressions, which resulted in around
50,000 images using the left camera only.

KDEF: The Karolinska Directed Emotional Faces (KDEF) is a set of 4900
images of human facial expressions of emotion. This database consists of 70
individuals, each displaying 7 different emotional expressions. We used only the
front facing angle for our method and selected 980 images.

MMI: The MMI database includes expression labeled videos for more than
20 subjects of both genders for which subjects were instructed to display 79
series of facial expressions. We extracted static frames from each corresponding
sequence for the six cardinal emotions, resulting in 10,000 images.

We balanced out the final number of samples for each class for training our
network to avoid any bias towards a particular expression.
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Stylized Character Database. We created a novel database (FERG-DB)
of labeled facial expressions for six stylized characters. The animator created
the key poses for each expression, and they were labeled via MT to populate the
database initially. The number of key poses created depends on the complexity of
the expression for each character. We only used the expression key poses having
70% MT test agreement among 50 test subjects for the same pose. On average,
150 key poses (15–20 per expression) were created for each character. Interpo-
lating between the key poses resulted in 50,000 images (around 8,000 images per
character). The motivation behind the combination of different characters is to
have a generalized feature space among various stylized characters.

Data Pre-processing. For our combined human dataset, Intraface [40] was
used to extract 49 facial landmarks. We use these points to register faces to an
average frontal face via an affine transformation. Then a bounding box around
the face is considered to be the face region. Geometric measurements between
the points are also taken to produce geometric features for refinement of expres-
sion retrieval results as described in Sect. 3.2. Once the faces are cropped and
registered, the images are re-sized to 256× 256 pixels for analysis. Figure 4 shows
examples of registered faces from different databases using this method.

The corresponding 49 landmark points are marked on the neutral expression
of the 3D stylized character rig. This supplementary information is saved along
with each expression rendering and used later to perform geometric refinement
of the result. This step is performed only once per character.

3.2 Network Training Using Deep Learning

With approximately 70,000 images of labeled samples of human faces and 50,000
images for stylized character faces, the datasets are smaller in comparison to
other image classification datasets that have been trained from scratch in the
past. Moreover, since we have to use a portion of this data set for validation,
effectively only 80% of the data was available for training. We performed data
augmentation techniques to increase the number of training examples. This step
helps in reducing overfitting and improving the model’s ability to generalize.
During the training phase, we extracted 5 crops of 227× 227 from the four
corners and the center of the image and also used the horizontal mirror images
for data augmentation.

Training Human and Character CNN Models. Our human expression
network consists of three elements: multiple convolutional layers followed by
max-pooling layers and fully connected layers as in [41]. Our character network
is analogous to the human CNN architecture and does not require CONV4 for
the recognition task as the character images are not very complex. Unlike the
human dataset, there are fewer variations in the character dataset (light, pose,
accessories, etc.). To avoid overfitting, we limited our model to a fewer number
of convolutional parameters (until CONV3). Both networks are trained inde-
pendently. The details of the network layers are shown in Fig. 5 and network
parameters are given in the supplementary material.
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Fig. 5. Outline of the CNN architecture. The convolutional layers, max pooling layers
and fully connected layers are denoted as CONV, POOL and FC followed by the layer
number. Human expression image trained model (left), Stylized character expression
image trained model (middle) and fine-tuned character trained model (right) are shown.
In the transfer learning step, the last fully-connected layer (FC7 character) is fine-tuned
using stylized character data.

All three color channels are processed directly by the network. Images are
first rescaled to 256× 256 and a crop of 227× 227 is fed to the network. Finally,
the output of the last fully connected layer is fed to a softmax layer that assigns
a probability for each class. The prediction itself is made by taking the class
with the maximal probability for the given test image.

In the forward propagation step, the CONV layer computes the output of
neurons that are connected to local regions in the input (resized to 256× 256
in the data pre-processing step), each computing a dot product between their
weights and a small region they are connected to in the input volume, while the
POOL layer performs a downsampling operation along the spatial dimensions.
The output of each layer is a linear combination of the inputs mapped by an
activation function given as:

hi+1 = f((W i+1)Thi) (1)

where hi+1 is the ith layer output, W i is the vector of weights that connect to
each output node and f(·) is the non-linear activation function which is imple-
mented by the RELU layer given as: f(x) = max(0, x) where x is the input
to the neuron. The back-propagation algorithm to used to calculate the gradi-
ent with respect to the parameters of the model. The weights of each layer are
updated as:

δi = (W i)T δi+1.f ′(hi) (2)

where δi is the increment of weights at layer i. We train our networks using
stochastic gradient descent with hyperparameters (momentum = 0.9, weight
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decay = 0.0005, initial learning rate = 0.01). The learning rate is dropped by a
factor of 10 following every 10 epochs of training. The proposed network archi-
tectures were implemented using the Caffe toolbox [42] on a Tesla k40c GPU.

Transfer Learning. To create a shared embedding feature space, we fine-tuned
the CNN pre-trained on the human dataset with the character dataset for every
character by continuing the backpropagation step. The last fully connected layer
of the human trained model was fine-tuned, and earlier layers were kept fixed
to avoid overfitting. We decreased the overall learning rate while increasing the
learning rate on the newly initialized FC7 character layer which is highlighted
fine-tuned character trained model in Fig. 5. We set an initial learning rate of
0.001, so that the pre-trained weights are not drastically altered. The learning
rate is dropped by a factor of 10 following every 10 epochs of training. Our
fine-tuned model used 38 K stylized character image samples for training, 6K for
validation, and 6 K for test. The proposed architecture was trained for 50 epochs
with 40 K iterations on batches of size 50 samples.

Distance Metrics. In order to retrieve the stylized character closest expres-
sion match to the human expression, we used the Jensen—Shannon divergence
distance [43] for expression clarity and geometric feature distance for expression
refinement. It is described by minimizing the distance optimization function in
Eq. 3 given as:

φd = α |JS Distance| + β |Geometric Distance| (3)

where JS Distance is given as the Jensen—Shannon divergence distance between
FC6 feature vectors of human and character, and Geometric distance is given as
the L2 norm distance between geometric features of human and character. Our
implementation uses JS Distance as a retrieval parameter and then geometric
distance as a sorting parameter to refine the retrieved results with α and β as
relative weight parameters. Details of the computation are given as follows:

Expression Distance. For a given human expression query image, FC6 (512
outputs) features are extracted from the query image using the human expres-
sion trained model and for the test character images from the shared embed-
ding feature space using the fine-tuned character expression model. The FC7
(7 outputs) layer followed by a softmax can be interpreted as the probability
that a particular expression class is predicted for a given input feature vector.
By normalizing each element of the feature vector by the softmax weight, the
FC6 feature vectors are treated as discrete probability distributions. To measure
the similarity between human and character feature probability distributions,
we used the Jensen—Shannon divergence [43] which is symmetric and is com-
puted as:

JSD(H||C) =
1
2
D(H||M) +

1
2
D(C||M) (4)

where M = 1
2 (H +C), D(H||M) and D(C||M) represents the Kullback—Leibler

divergence [44] which is given as:
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D(X||M) =
∑

i

X(i)log
X(i)
M(i)

(5)

where X and M are discrete probability distributions.
We used this distance metric to order the retrievals from the closest distance

to the farthest in the expression feature space. Our results show that the retrieval
ordering matched the query image label, and retrievals were ordered in order
of similarity to the query label. To choose the best match out of the multiple
retrievals with the same label as shown in Fig. 6, we added a geometric refinement
step as described in the next section.

Geometric Distance. The JS Divergence distance results in the correct expres-
sion match, but not always the closest geometric match to the expression.
Figure 6 shows the retrieval of the correct label (joy). To match the geometry,
we extract geometric distance vectors and use them to refine the result.

Fig. 6. Multiple retrieval results for the joy query image

We use the facial landmarks as described in Sect. 3.1, to extract the geometric
features including the following measurements: the left/right eyebrow height
(vertical distance between top of the eyebrow and center of the eye), left/right
eyelid height (vertical distance between top of an eye and bottom of the eye),
nose width (horizontal distance between leftmost and rightmost nose landmarks),
mouth width (left mouth corner to right mouth corner distance), closed mouth
measure (vertical distance between the upper and the lower lip), and left/right lip
height (vertical distance between the lip corner from respective the lower eyelid).
The geometric distance is a normalized space. Each of the distances between
landmarks is normalized by the bounding box of the face. After normalization,
we compute the L2 norm distance between the human geometry vector and
character geometry vectors with the correct expression label. Finally, we re-order
the retrieved images within the matched label based on matched geometry.

4 Experimental Results

The combined DeepExpr features and geometric features produce significant
performance enhancement in retrieving the stylized character facial expressions
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based on human facial expressions. The top results for all seven expressions on six
stylized characters are shown in Fig. 7. Human expression-based image retrievals
and character expression-based image retrievals are shown in the supplementary
material.

Fig. 7. Results from our combined approach - DeepExpr and geometric features. The
leftmost image in each row is the query image and all six characters are shown por-
traying the top match of the same expression - anger, fear, joy, disgust, neutral, sad
and surprise (top to bottom).

5 Evaluation

5.1 Expression Recognition Accuracy

For human facial expression recognition accuracy, we performed the subject inde-
pendent evaluation, where the classifier is trained on the training set and eval-
uated on images in the same database (validation and test set) using K-fold
cross-validation with K = 5. On average, we used 56 K samples for training in
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batches of 50 samples, 10 K samples for validation and 10 K for testing. The
overall accuracy of human facial expression recognition was 85.27%. Similarly,
for stylized character expression, we used 38 K character images for training
in batches of 50 samples, 6 K for validation, and 6 K for testing, and achieved
the recognition accuracy of 89.02%. Our aim with human expression accuracy
was to achieve a good score on the expression recognition which is close to the
state-of-the-art results in order to extract relevant features corresponding to a
facial expression. The details of human expression recognition accuracy for each
expression are given in the supplementary material.

5.2 Expression Retrieval Accuracy

We analyze our retrieval results by computing the retrieval score to measure how
close is the retrieved character expression label is to the human query expression
label. We also compare our results with a facial expression expert by choosing 5
random samples from the retrieved results with the same label and rank order
them based on their similarity to the query image. The details of analysis are
discussed as follows:

Retrieval Score. We measured the retrieval performance of our method by cal-
culating the average normalized rank of relevant results (same expression label)
[45]. The evaluation score for a query human expression image was calculated as:

score(q) =
1

1 − N · Nrel

(
Nrel∑

k=1

Rk − Nrel

(
Nrel + 1

)

2

)
(6)

where N is the number of images in the database, Nrel the number of database
images that are relevant to the query expression label q (all images in the charac-
ter database that have the same expression label as the human query expression
label), and Rk is the rank assigned to the kth relevant image. The evaluation
score ranges from 0 to 1, where 0 is the best score as it indicates that all the
relevant database images are retrieved before all other images in the database. A
score that is greater than 0 denotes that some irrelevant images (false positives)
are retrieved before all relevant images.

The retrieval performance was measured over all the images in the human
test dataset using each test image in turn as a query image. The average retrieval
score for each expression class was calculated by averaging the retrieval score for
all test images in the same class. Table 1 shows the final class retrieval score,
which was calculated by averaging the retrieval scores across all characters for
each expression class using only geometry and DeepExpr expression features. The
best match results in Fig. 8 confirm that the geometric measure is not sufficient
to match the human query expression with clarity.

Comparison. In order to judge the effectiveness of our system, we compared
DeepExpr to a human expert and MT test subjects. We asked the expert and
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Table 1. Average retrieval score
for each expression across all char-
acters using only geometry and
DeepExpr features.

Expression Geometry DeepExpr

Anger 0.384 0.213

Disgust 0.386 0.171

Fear 0.419 0.228

Joy 0.276 0.106

Neutral 0.429 0.314

Sad 0.271 0.149

Surprise 0.322 0.125

Fig. 8. Best match results from
our Deep-Expr approach com-
pared to only geometric feature
based retrieval for Disgust (top)
and Fear (bottom).

the MT subjects to rank five stylized character expressions in order of decreasing
expression similarity to a human query image. The facial expression expert, 50
MT test subjects and DeepExpr ranked the same 30 validation test sets. We
aggregated the MT results into a single ranking using a voting scheme. We then
compared the DeepExpr ranking to the results, measuring similarity with two
measures. Both measures found a high correlation between DeepExpr ranking
compared with the expert and the MT ranking results. The details of the ranking
comparison tests are given in the supplementary material.

The Spearman rank correlation coefficient ρ measures the strength and
direction of the association between two ranked variables [46]. The closer the ρ
coefficient is to 1, the better the two ranks are correlated.

The average ρ coefficient for the expert rank orderings is 0.773 ± 0.336 and for
MT tests is 0.793 ± 0.3561. The most relevant correlation coefficient is between
the first rank chosen by the expert and the first rank chosen by DeepExpr as
they represent the best match with the query image. The Spearman correlation
with expert best rank is 0.934 and with MT best rank is 0.942, which confirms
the agreement on selection of the closest match to the human expression.

The Kendall τ test is a non-parametric hypothesis test for statistical depen-
dence based on the τ coefficient [47]. It is a pairwise error that represents how
many pairs are ranked discordant. The best matching ranks receive a τ value of
1. The average τ coefficient for expert validation rank orderings is 0.706 ± 0.355,
and the best rank correlation is 0.910. For the MT ranking, the average Kendall
correlation coefficient is 0.716 ± 0.343 and 0.927 is the best rank correlation.

The Spearman and Kendall correlation coefficients of DeepExpr ranking with
the expert ranking and MT test ranking for 30 validation experiments are shown
in Fig. 9. Note that more than half the rankings are perfectly correlated, and most
of them are above 0.8. Only two of the rankings had (small) negative correlations
in both correlation experiments: the order was confusing because of very subtle
difference in expressions (see supplementary material for details).
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Fig. 9. Correlation rank order result charts with (a) expert and (b) MT tests

6 Comparison with Character Animator

Currently to our knowledge, no other system performs stylized character retrieval
based on a learned feature set. The closest match to DeepExpr tool is Adobe
Character Animator (Ch) [48] which creates 2.5-D animations for characters. We
conducted an expression recognition experiment by creating a similar character
in Ch with different expressions as layers. We queried three human expression
images for each of the seven expressions. Then, we asked 50 MT test subjects to
recognize the expression for best matches from DeepExpr retrieved images and
Ch results. The results of the experiment are shown in Table 2. On an average,
joy, neutral and surprise had comparable recognition performance. DeepExpr
showed great improvement in recognition of fear and disgust. In Ch, fear was
confused with surprise due to the dependence on geometric landmarks of the face
showing an open mouth and disgust was most confused with anger. For anger
and sad, the closed mouth was most confused with neutral in Ch. An example of
a fear expression MT test is shown in Fig. 10. DeepExpr achieved higher (83%)
expression recognition accuracy as compared to the Ch animator tool (41%).

Table 2. Average expression recogni-
tion accuracy (%) for each expression
across all characters using Ch anima-
tor and DeepExpr.

Expression Ch animator DeepExpr

Anger 60 85

Disgust 47 86

Fear 42 81

Neutral 87 88

Joy 95 97

Sad 43 89

Surprise 93 95

Fig. 10. Expression matching results for
fear query image. Ch [48] result scored 41%
clarity for fear and DeepExpr result scored
83% clarity for fear.
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7 Conclusions and Future Work

We have demonstrated a perceptual model of facial expression clarity and geom-
etry using a deep learning approach combined with artistic input and crowd-
sourced perceptual data. Our results are highly correlated with a facial expres-
sion expert, in addition to MT subjects and have a higher expression recognition
accuracy as compared to Character Animator.

DeepExpr has several practical applications in the field of storytelling, pup-
peteering and animation content development. For example, the system could
assist animators during the initial blocking stage for 3D characters in any produc-
tion pipeline. When there are multiple animators working on the same character
during a production, using our expression recognition system will help enable a
consistent approach to the personality for that character. More importantly, our
approach provides a foundation for future facial expression studies. For example,
our perceptual model could be used to evaluate existing FACS.

Our system demonstrates a perceptual model of facial expressions that pro-
vides insight into facial expressions displayed by stylized characters. It can be
used to automatically create desired character expressions driven by human facial
expressions. The model can also be incorporated into the animation pipeline to
help animators and artists to better understand expressions, communicate how
to create expressions to others, transfer expressions from humans to charac-
ters, and to provide a mechanism for animators/storytellers to more quickly and
accurately create the expressions they intend.
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