
Head Reconstruction from Internet Photos

Shu Liang, Linda G. Shapiro, Ira Kemelmacher-Shlizerman

Computer Science & Engineering Department,
University of Washington

{liangshu,shapiro,kemelmi}@cs.washington.edu

Abstract. 3D face reconstruction from Internet photos has recently pro-
duced exciting results. A person’s face, e.g., Tom Hanks, can be modeled
and animated in 3D from a completely uncalibrated photo collection.
Most methods, however, focus solely on face area and mask out the rest
of the head. This paper proposes that head modeling from the Internet
is a problem we can solve. We target reconstruction of the rough shape
of the head. Our method is to gradually “grow” the head mesh starting
from the frontal face and extending to the rest of views using photo-
metric stereo constraints. We call our method boundary-value growing
algorithm. Results on photos of celebrities downloaded from the Internet
are presented.

Keywords: Internet photo collections, head modeling, in the wild, un-
constrained 3D reconstruction, uncalibrated

1 Introduction

“If two heads are better than one, then what about double chins? On
that note, I will help myself to seconds.” —Jarod Kintz

Methods that reconstruct 3D models of people’s heads from images need
to account for varying 3D pose, lighting, non-rigid changes due to expressions,
relatively smooth surfaces of faces, ears and neck, and finally, the hair. Great
reconstructions can be achieved nowadays in case the input photos are captured
in a calibrated lab setting or semi-calibrated setup where the person has to par-
ticipate in the capturing session (see related work). Reconstructing from Internet
photos, however, is an open problem due to the high degree of variability across
uncalibrated photos; lighting, pose, cameras and resolution change dramatically
across photos. In recent years, reconstruction of faces from the Internet have re-
ceived a lot of attention. All face-focused methods, however, mask out the head
using a fixed face mask and focus only on the face area. For real-life applications,
we must be able to reconstruct a full head.

So what is it there to reconstruct except for the face? At the minimum, to
create full head models we need to be able to reconstruct the ears, and at least
part of the neck, chin, and overall head shape. Additionally, hair reconstruction
is a difficult problem. One approach is to use morphable model methods. These,
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Fig. 1. By looking at the top row photos we can imagine how Bush’s head shape looks
in 3D; however, existing methods fail to do so on Internet photos, due to such facts
as inconsistency of lighting, challenging segmentation,and expression variation. Given
many more photos per 3D view (hundreds), however, we show that a rough full head
model can be reconstructed. The head mesh is divided into 7 parts, where each part is
reconstructed from a different view cluster while being constrained by the neighboring
view clusters.

however, do not fit the head explicitly but instead use fitting based on the face
and provide a mostly average (non-personalized) bald model for the head.

This paper addresses the new direction of head reconstruction directly from
Internet data. We propose an algorithm to create a rough head shape, and frame
the problem as follows. Given a photo collection, obtained by searching for photos
of a specific person on Google image search, we would like to reconstruct a 3D
model of that person’s head. Just like [1] (that focused only on the face area) we
aim to reconstruct an average rigid model of the person from the whole collection.
This model can be then used as a template for dynamic reconstruction, e.g., [2] ,
and hair growing techniques, e.g., [3]. Availability of a template model is essential
for those techniques.

Consider the top row photos in Fig. 1. The 3D shape of the head is clearly
outlined in the different views (different 3D poses). However, if we are given
only one or two photos per view, the problem is still very challenging due to
lighting inconsistency across views, difficulty in segmenting the face profile from
the background, and challenges in merging the images across views. Our key
idea is that with many more (hundreds) of photos per 3D view, the challenges
can be overcome. For celebrities, we can easily acquire such collections from the
Internet; for others, we can extract such photos from Facebook or from mobile
photos.

Our method works as follows: A person’s photo collection is divided to clus-
ters of approximately the same azimuth angle of the 3D pose. Given the clusters,
a depth map of the frontal face is reconstructed, and the method gradually grows
the reconstruction by estimating surface normals per view cluster and then con-
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straining using boundary conditions coming from neighboring views. The final
result is a head mesh of the person that combines all the views.

2 Related Work

The related work is in calibrated and semi-calibrated setting for head recon-
struction, and uncalibrated settings for face reconstruction.

Calibrated head modeling has achieved amazing results over the last decade
[4–6]. Calibrated methods require a person to participate in a capturing session
to achieve good results. These typically take as input a video with relatively con-
stant lighting, and large pose variation across the video. Examples include non
rigid structure from motion methods [7, 8], multiview methods [9, 10], dynamic
kinect fusion [11], and RGB-D based methods [12, 13].

Reconstruction of people from Internet photos recently achieved good results;
[14] showed that it is possible to reconstruct a face from a single Internet photo
using a template model of a different person. [1] later proposed a photometric
stereo method to reconstruct a face from many Internet photos of the same indi-
vidual. [15] showed that photometric stereo can be combined with face landmark
constraints, and recent work has shown that 3D dynamic shape [2, 16, 17] and
texture [18] can be recovered from Internet photos.

One way to approach the uncalibrated head reconstruction problem is to
use the morphable model approach. With morphable models [19, 20], the face is
fitted to a linear space of 200 face scans, and the head is reconstructed from the
linear space as well. In practice, morphable model methods work well for face
tracking [21, 22]. However, there is no actual fitting of the head, ears, and neck
of the person to the model, but rather an approximation derived from the face;
thus the reconstructed model is not personalized. A morphable model for ears
[23] was proposed, but it was not applied to uncalibrated Internet photos.

Hair modeling requires a multiview calibrated setup [24, 25] or can be done
from a single photo by fitting to a database of synthetic hairs [3], or by fitting
helices [26, 27]. Hair reconstruction methods assume that the user marks hair
strokes or that a rough model of the head, ears and face is provided. The goal
of this paper is to provide such a rough head shape model; thus our method is
complementary to hair modeling techniques.

3 Overview

We denote the set of photos in a view cluster as Vi. Photos in the same view
cluster have approximately the same 3D pose and azimuth angle. Specifically, we
divided the photos into 7 clusters with azimuths: i = 0,−30, 30,−60, 60,−90, 90.
Figure 2 shows the averages of each cluster after rigid alignment using fidu-
cial points (1st row) and after subsequent alignment using the Collection Flow
method [28] (2nd row), which calculates optical flow for each cluster photo to
the cluster average. A key observation is that each view cluster has one partic-
ularly well-reconstructed head area, e.g., the ears in views 90 and -90 are sharp
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while blurry in other views. Since our goal is to create a full head mesh, our
algorithm will combine the optimal parts from each view into a single model.
This is illustrated in Figure 1.

Fig. 2. Averages of view clusters’ photos after rigid alignment (1st row) and after
collection flow (2nd row). The arrows visualize head parts that are sharper in each
view, e.g., the ear is sharpest in 90 and -90 degrees (left and right). The key idea is to
use the sharp (well-aligned) parts from the corresponding views to create an optimal
mesh reconstruction.

It was shown in previous work that the face can be reconstructed from frontal
photos using Photometric Stereo [1]. Thus, one way to implement our idea, of
combining views into a single mesh, would be to reconstruct shape from each
view cluster independently and then stitch them together. This turned out to be
challenging as the individual shapes are reconstructed up to linear ambiguities.
Although the photos are divided into pose clusters, the precise pose for each pose
cluster is unknown. For example, V30 could have a variance from 25 to 35 in the
azimuth rotation angle, depending on the dominant pose of the image cluster.
This misalignment will also increase the difficulty of stitching all the views. We
solve those challenges by growing the shape in stages works well. We begin by
describing estimation of surface normals and a depth map for view cluster V0
(frontal view) in section 4. This will be the initialization for our algorithm. In
section 5, we describe how each view cluster uses its own photos and the depth of
its neighbors to contribute to the creation of a full head mesh. Data acquisition
and alignment details are given in the experiments section (Section 6).

4 Head Mesh Initialization

Our goal is to reconstruct the head mesh M . We begin by estimating a depth
map and surface normals of the frontal cluster V0, and assign each reconstructed
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pixel to a vertex of the mesh. The depth map is estimated by extending the
method of [1] to capture more of the head in the frontal face photos, i.e. , we
extend the reconstruction mask to a bigger area to capture the chin, part of the
neck and some of the hair. The algorithm is as follows:

1. Dense 2D alignment: Photos are first rigidly aligned using 2D fiducial
points as the pipeline of [29]. The head region including neck and shoul-
der in each image is segmented using semantic segmentation by [30]. Then
Collection Flow [28] is run on all the photos in V0 to densely align them to
the average photo of that set. Note that the segementation works remarkably
well on most photos. The challenging photos do not affect our method; given
that the majority of the photos are segmented well, Collection Flow will cor-
rect for inconsistencies. Also, Collection Flow helps overcome differences in
hair style by warping all the photos to the dominant style. See more details
about alignment in Section 6.

2. Surface normals estimation: We used a template face mask to find the
face region on all the photos. Photometric Stereo (PS) is then applied to
the face region of the flow-aligned photos. The face region of the photos are
arranged in an n× pk matrix Q, where n is the number of images and pk is
the number of face pixels determined by the template facial mask. Rank-4
PCA is computed to factorize into lighting and normals: Q = LN . After we
get the lighting estimation L for each photo, we can compute N for all p
head pixels including ear, chin and hair regions.

Two key components that made PS work on uncalibrated head photos are:

1) resolving the Generalized Bas-Relief (GBR) ambiguity using a template
3D face of a different individual, i.e., minA ||Ntemplate −ANface||2,

2) using a per-pixel surface normal estimation, where each point uses a differ-
ent subset of photos to estimate the normal. We follow the per-pixel surface
estimation idea as in previous work, i.e., given the initial lighting estimate L,
the normal is computed per point by selecting a subset of Q’s rows that sat-
isfy the re-projection constraint. In the full head case, we extend it to handle
cases when the head is partially cropped out, by adding a constraint that a
photo participates in normal estimation if it satisfies both the reprojection
constraint and is inside the desired head area, i.e., part of the segmentation
result from [30]. If the number of selected subset images is not enough (less
than n/3), we will not use them in our depth map estimation step.

3. Depth map estimation: The surface normals are integrated to create a
depth map D0 by solving a linear system of equations that satisfy gradi-
ent constrains dz/dx = −nx/ny and dz/dy = −nx/ny where (nx, ny, nz)
are components of the surface normal of each point [31]. Combining these
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constraints, for the z-value on the depth map, we have:

nz(zx+1,y − zx,y) = nx (1)

nz(zx,y+1 − zx,y) = ny (2)

In the case of nz ≈ 0, we use a different constraint,

ny(zx,y − zx+1,y) = nx(zx,y − zx,y+1) (3)

This generate a sparse matrix of 2p× 2p matrix M, and we can solve for:

arg min
z
||Mz − v||2 (4)

We do a least squares fit to solve for the z-value for each pixel.

Potentially, we could run the same algorithm for each view cluster. This, however,
does not perform well, as we will see in the experiments section. Instead we are
going to introduce two constraints, which we describe in the next section.

5 Boundary-Value Growing

In this section we describe our “growing” algorithm to complete the side views of
the mesh. Starting from the frontal view mesh V0, we gradually complete more
regions of the head in the order of V30, V60, V90 and V−30, V−60, V−90. For each
view cluster we repeat the same algorithm as in Section 4 with two additional
key constraints:

1. Ambiguity recovery: Rather than recovering the ambiguity A that arises
from Q = LA−1AN using the template model, we use the already computed
neighboring cluster, i.e., for V±30, N0 is used, for V±60 we use N±30, and for
V±90 we use N±60. Specifically, we estimate the out-of-plane pose from our
3D initial mesh V0 to the average image of pose cluster V30 using the method
proposed in [2]. We render the rotated mesh V ′0 as a reference depth map D′0
to pose cluster V30, accounting for visibility and occlusion using zbuffer. The
normals on each projected pixels of D′0 will serve as the reference normals
to solve for the GBR ambiguity of the overlapping head region as well as the
newly grown head region.

2. Depth constraint: In addition to the gradient constraints that are specified
in Sec. 4, we modify the boundary constraints from Neumann to Dirichlet.
Let Ω0 be the boundary of D′0. Then we impose that the part of Ω0 that in-
tersects the mask ofD30 will have the same depth values:D30(Ω0) = D′0(Ω0).
With both boundary constraints and gradient constraints, our optimization
function can be written as:

arg min
z
||Mz − v||2 + ||Wz −Wz0||2 (5)
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where z0 is the depth constraint from D′0, and W is a blend mask with
values decreasing from 1 to 0 on the boundary of D′0. We will get the new
vertex positions for grown regions and we can also update vertices on the
boundary of the already computed depth map, eliminating the distortion
caused by lack of photos and inaccurate nz. This process is repeated for
every neighboring pair of depths.

After each depth stage reconstruction (0,30,60,.. degrees), the estimated
depth is projected to the head mesh. By this process, the head is gradually
filled in by gathering vertices from all the views.

6 Experiments

We describe the data collection process, alignment, evaluations and comparisons
with other methods.

6.1 Data Collection and Processing

We collected around 1, 000 photos per person (George Bush, Vladimir Putin,
Barack Obama and Hillary Clinton) by searching for photos on Google image
search. The numbers of images in each pose cluster are shown in Table 1. We
noticed that the numbers of side view photos are usually much smaller than
frontal view photos. In order to get more photos, we searched for “Bush shakes
hands”, “Bush shaking hand”, “Bush portrait”, “Bush meets” etc. to collect
more non-frontal photos. The number of photos in each cluster will affect the
final result; we will demonstrate the reconstruction quality vs. number of photos
later in this section.

Table 1. Number of photos we used in each pose cluster

Pose -90 -60 -30 0 30 60 90

Bush 185 62 118 371 113 80 191
Putin 131 58 151 413 121 61 151
Obama 65 51 126 284 177 55 75
Clinton 115 47 114 332 109 61 66

We ran face detection and fiducial detection using IntraFace[32]. For extreme
side views, none of the state of the art fiducial detection algorithms was able to
perform, and often times the face was not even detected. We therefore manually
annotated each photo with 7 fiducials.

Once photos are aligned we run collection flow [28] on each view cluster. For
completeness we review the method. The idea is to estimate a lighting subspace
from all the photos in a particular cluster Vi via PCA. Then each photo in the
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cluster V j
i is projected to the subspace to produce photo

ˆ
V j
i , which has a similar

lighting as V j
i but an average shape. Optical flow is then estimated between V j

0

and its relighted version
ˆ
V j
0 . The process is iterated over the whole collection. In

the end, all photos are warped to approximately average shape; however, they
retain their lighting which makes them amenable for photometric stereo methods.

6.2 Results and Evaluation

Fig. 3 shows the reconstruction per view that was later combined to a single
mesh. For example, the ear in 90 and -90 views is reconstructed well, while the
other views are not able to reconstruct the ear.

Fig. 3. Individual reconstructions per view cluster, with depth and ambiguity con-
straints. We can see that the individual views provide different shape components. For
each view we show the mesh in two poses.

In Figure 4, we shows how our two key constraints work well in the degree
90 view reconstruction result. Without the correct reference normals and depth
constraint, the reconstructed shape is flat and the profile facial region is blurred,
which increased the difficulty of aligning it back to the frontal view.

Fig. 5 shows the reconstruction result for 4 subjects, each mesh is rotated
to five different views. Note that the back and top part of the head are partly
missing due to the lack of photos.

To evaluate how the number of photos affects the reconstruction quality, we
took 600 photos for George Bush and estimated pose, lighting, texure for each
image. We report the L2 intensity difference between the rendered photos and
original photos. We tested our reconstruction method with 1/2, 1/4, 1/8 and
1/16 of the photos in each view cluster (see number of photos per cluster in
Table 1.) The method did not work in 1/16 case because some view clusters
have less than 10 photos and there was not enough lighting variation within
the collection for photometric stereo. Generally, we suggest using more than
100 photos for frontal view. The number of photos in side view clusters can be
smaller (but larger than 30) because the side view of a human’s head is more
rigid than the frontal view.
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Fig. 4. Comparison between without and with two key constraints. The left two shapes
show the two views of 90 degree view shape reconstructed independently without two
key constraints. The right two shapes show the two views of our result with two key
constraints.

Table 2. Reconstruction Quality vs. Number of Photos

Number of photos N N/2 N/4 N/8 N/16

Reprojection Error(intensity) 18.29± 4.07 18.70± 4.07 18.71± 4.07 18.80± 4.04 N/A

We also rendered a 3D model from the FaceWareHouse dataset [33] with 100
lights and 7 poses. We applied our method on these synthetic photos and got
a reconstruction result as shown in Fig 6. Since we use a template 3D model
to correct GBR ambiguity, we cannot get the exact scale of the groundtruth.
We do not claim that we have recovered the perfect shape, but the result looks
reasonable with an average reprojection error of 11.1± 5.72.

6.3 Comparison

In Figure 7 we show a comparison to the software FaceGen that implements a
morphable model approach. For each person, we manually selected three photos
(one frontal view and two side view photos) and used them as the input for
FaceGen. The results of FaceGen are too averaged out and not personalized.
Note that their ears look the same as each other.

We also tried the Space Carving method [34]. For each subject, we manually
selected about 30 photos in different poses with a neutral expression. We used the
segmentation result obtained from Section 4 as the silhouette. We assumed the
camera focus length to be 100 and estimated the camera extrinisic parameters
using a template 3D head model. We smoothed the carved results using [35] and
showed the reconstruction in Figure 8. The Space Carving method can produce
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Fig. 5. Final reconstructed mesh rotated to 5 views to show the reconstruction from all
sides. Each color image is an example image among our around 1, 000 photo collection
for each person.

Fig. 6. Reconstruction result from the synthetic photos rendered from a 3D model
in FaceWarehouse. The left three shapes are the −90, 0, 90 views for the groundtruth
shape, and the right three shapes are our reconstruction result.
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Fig. 7. Comparison to FaceGen (morphable model). We show the textured results
and shape results from FaceGen in the middle and our results are on the right as
comparisons. Note that the head shape reconstructed by morphable models is average
like and not personalized. Additionally, texture hides shape imperfections.

a rough shape of the head. Increasing the number of photos to use does not
improve the result.

We have also experimented with VisualSfM [36], but the software could not
find enough feature points to run a structure from motion method. This is prob-
ably due to the lighting variation and expression change in the photo collection.
Similarly, we have tried http://www.123dapp.com/catch, and it was not able to
reconstruct from such photos.

Table 3. Reprojection error from 3 reconstruction methods.

Reprojection error FaceGen Visual Hull Our method

Bush 20.6± 3.80 19.6± 3.55 18.3± 4.04
Putin 20.1± 4.84 17.2± 4.68 15.1± 5.06

Obama 21.5± 4.62 20.7± 4.58 19.7± 4.40

For a quantitative comparison, for each person, we calculated the reprojection
error of the shapes from three methods (ours, Space Carving and FaceGen) to
600 photos in different poses and lighting variations. The 3D shape comes from
each reconstruction method. The albedo all comes from average shapes of our
clusters, since the Space Carving method and the FaceGen results do not include
albedos. The average reprojection error is shown in Table 3. The error map of
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Fig. 8. Comparison to Space Carving method. 5 example segmented images are shown
on the left for each person. The segmentations were used as silhouettes. We used around
30 photos per person.

an example image is shown in Fig 9. We calculated the error for the overlapping
pixels of the three rendered images. Notice that the shapes from FaceGen and
Space Carving might look good from the frontal view, but they are not correct
when rotating to the target view. See how different the ear part is in the figure.

In future work, we will test the algorithm on more people. Collecting side view
images is time consuming. Currently, there are no sets of Internet photos with
their corresponding 3D models, thus it is challenging to evaluate quantitatively.
We would like to help to solve that by providing our dataset. Furthermore, our
GBR ambiguity is just roughly solved by a template model, so the scale might be
not exactly the same as the actual mesh. We do not claim to have recovered the
perfect shape, but rather show that it is possible to do so from Internet photos,
and to encourage further research.

7 Discussion

We have shown the first results of head reconstructions from Internet photos.
Our method has a number of limitations. First, we assume a Lambertian model
for surface reflectance. While this works well, accounting for specularities should
improve results. Second, fiducials for side views were labeled manually; we hope
that this application will encourage researchers to solve the challenge of side view
fiducial detection. Third, we have not reconstructed a complete model; the top
of the head is missing. To solve this we would need to add photos with different
elevation angles, rather than just focusing on the azimuth change.

We see several possible extensions to our method. The two we are most ex-
cited about are 1) reconstructing 3D non-rigid motion that includes the head
part (not only face, as was done until now), and 2) combining with hair growing
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Fig. 9. Visualization of the reprojection error for 3 methods.

methods that can use our reconstructed shape as initialization, e.g., in [26] the
template was produced manually.
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