
Offline Evaluation of Online Reinforcement Learning Algorithms

Travis Mandel1, Yun-En Liu2, Emma Brunskill3, and Zoran Popović1,2
1Center for Game Science, Computer Science & Engineering, University of Washington, Seattle, WA

2EnlearnTM, Seattle, WA
3School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

{tmandel, zoran}@cs.washington.edu, yunliu@enlearn.org, ebrun@cs.cmu.edu

Abstract

In many real-world reinforcement learning problems, we
have access to an existing dataset and would like to use it to
evaluate various learning approaches. Typically, one would
prefer not to deploy a fixed policy, but rather an algorithm
that learns to improve its behavior as it gains more experi-
ence. Therefore, we seek to evaluate how a proposed algo-
rithm learns in our environment, meaning we need to eval-
uate how an algorithm would have gathered experience if it
were run online. In this work, we develop three new evalu-
ation approaches which guarantee that, given some history,
algorithms are fed samples from the distribution that they
would have encountered if they were run online. Addition-
ally, we are the first to propose an approach that is provably
unbiased given finite data, eliminating bias due to the length
of the evaluation. Finally, we compare the sample-efficiency
of these approaches on multiple datasets, including one from
a real-world deployment of an educational game.

1 Introduction
There is a growing interest in deploying reinforcement learn-
ing (RL) agents in real-world environments, such as health-
care or education. In these high-risk situations one cannot
deploy an arbitrary algorithm and hope it works well. In-
stead one needs confidence in an algorithm before risking
deployment. Additionally, we often have a large number of
algorithms (and associated hyperparameter settings), and it
is unclear which will work best in our setting. We would
like a way to compare these algorithms without needing to
collect new data, which could be risky or expensive.

An important related problem is developing testbeds on
which we can evaluate new reinforcement learning algo-
rithms. Historically, these algorithms have been evaluated
on simple hand-designed problems from the literature, often
with a small number of states or state variables. Recently,
work has considered using a diverse suite of Atari games as
a testbed for evaluating reinforcement learning algorithms
(Bellemare et al. 2013). However, it is not clear that these
artificial problems accurately reflect the complex structure
present in real-world environments. An attractive alternative
is to use precollected real-world datasets to evaluate new RL

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithms on real problems of interest in domains such as
healthcare, education, or e-commerce.

These problems have ignited a recent renewal of interest
in offline policy evaluation in the RL community (Mandel et
al. 2014; Thomas, Theocharous, and Ghavamzadeh 2015),
where one uses a precollected dataset to achieve high-quality
estimates of the performance of a proposed policy. How-
ever, this prior work focuses only on evaluating a fixed pol-
icy learned from historical data. In many real-world prob-
lems, we would instead prefer to deploy a learning algo-
rithm that continues to learn over time, as we expect that
it will improve over time and thus (eventually) outperform
such a fixed policy. Further, we wish to develop testbeds for
RL algorithms which evaluate how they learn over time, not
just the final policy they produce.

However, evaluating a learning algorithm is very different
from evaluating a fixed policy. We cannot evaluate an algo-
rithm’s ability to learn by, for example, feeding it 70% of the
precollected dataset as training data and evaluating the pro-
duced policy on the remaining 30%. Online, it would have
collected a different training dataset based on how it trades
off exploration and exploitation. In order to evaluate the per-
formance of an algorithm as it learns, we need to simulate
running the algorithm by allowing it to interact with the eval-
uator as it would with the real (stationary) environment, and
record the resulting performance estimates (e.g. cumulative
reward). See figure 1.1

A typical approach to creating such an evaluator is to build
a model using the historical data, particularly if the envi-
ronment is known to be a discrete MDP. However, this ap-
proach can result in error that accumulates at least quadrati-
cally with the evaluation length (Ross, Gordon, and Bagnell
2011). Equally important, in practice it can result in very
poor estimates, as we demonstrate in our experiments sec-
tion. Worse, in complex real-world domains, it is often un-
clear how to build accurate models. An alternate approach is
to try to adapt importance sampling techniques to this prob-
lem, but the variance of this approach is unusably high if
we wish to evaluate an algorithm for hundreds of timesteps
(Dudı́k et al. 2014).

1In the bandit community, this problem setup is called nonsta-
tionary policy evaluation, but we avoid use of this term to prevent
confusion, as these terms are used in many different RL contexts.

Reinforcement

Learning

AlgorithmEvaluator

Previously-collected

Dataset

Desired actions (or distributions over actions)

Transitions/Observations

Performance

Estimates

Figure 1: Evaluation process: We are interested in develop-
ing evaluators that use a previously-collected dataset to in-
teract with an arbitrary reinforcement learning algorithm as
it would interact with the true environment. As it interacts,
the evaluator produces performance estimates (e.g. cumula-
tive reward).

In this paper, we present, to our knowledge, the first meth-
ods for using historical data to evaluate how an RL algo-
rithm would perform online, which possess both meaningful
guarantees on the quality of the resulting performance esti-
mates and good empirical performance. Building upon state-
of-the-art work in offline bandit algorithm evaluation (Li et
al. 2011; Mandel et al. 2015), we develop three evaluation
approaches for reinforcement learning algorithms: queue-
based (Queue), per-state rejection sampling (PSRS), and
per-episode rejection sampling (PERS). We prove that given
the current history, and that the algorithm receives a next ob-
servation and reward, that observation and reward is drawn
from a distribution identical to the distribution the algorithm
would have encountered if it were run in the real world. We
show how to modify PERS to achieve stronger guarantees,
namely per-timestep unbiasedness given a finite dataset, a
property that has not previously been shown even for ban-
dit evaluation methods. Our experiments, including those
that use data from a real educational domain, show these
methods have different tradeoffs. For example, some are
more useful for short-horizon representation-agnostic set-
tings, while others are better suited for long-horizon known-
state-space settings. For an overview of further tradeoffs see
Table 1. We believe this work will be useful for practition-
ers who wish to evaluate RL algorithms in a reliable manner
given access to historical data.

2 Background and Setting
A discrete Markov Decision Process (MDP) is specified by
a tuple (S,A,R, T , sI) where S is a discrete state space, A
is a discrete action space,R is a mapping from state, action,
next state tuples to a distribution over real valued rewards, T
is a transition model that maps state, action, next state tuples
to a probability between 0 and 1, and sI denotes the starting
state2. We consider an episode to end (and a new episode to
begin) when the system transitions back to initial state sI .

2Our techniques could still apply given multiple starting states,
but for simplicity we assume a single starting state sI

We assume, unless otherwise specified, that the domain
consists of an episodic MDPM with a given state space S
and action space A, but unknown reward modelR and tran-
sition model T . As input we assume a setD ofN transitions,
(s, a, r, s′) drawn from a fixed sampling policy πe.

Our objective is to use this data to evaluate the perfor-
mance of a RL algorithm A. Specifically, without loss of
generality3 we will discuss estimating the discounted sum
of rewards obtained by the algorithm A for a sequence of
episodes, e.g. RA(i) =

∑L(i)−1
j=0 γjrj where L(i) denotes

the number of interactions in the ith episode.
At each timestep t = 1 . . .∞, the algorithm A outputs a

(possibility stochastic) policy πb from which the next action
should be drawn, potentially sampling a set of random num-
bers as part of this process. For concreteness, we refer to this
(possibly random length) vector of random samples used by
A on a given timestep with the variable χ. Let HT be the
history of (s, a, r, s′) and χ consumed by A up to time T .
Then, we can say that the behavior of A at time T depends
only on HT .

Our goal is to create evaluators (sometimes called replay-
ers) that enable us to simulate running the algorithm A in
the true MDPM using the input dataset D. One key aspect
of our proposed evaluators is that they terminate at some
timestep. To that end, let gt denote the event that we do not
terminate before outputting an estimate at timestep t (so gt
implies g1, . . . , gt−1). In order to compare the evaluator to
reality, let PR(x) denote the probability (or pdf if x con-
tains continuous rewards4) of generating x under the evalu-
ator, and PE(x) denote the probability of generating x in the
true environment (the MDPM). Similarly, ER[x] is the ex-
pected value of a random variable x under the evaluator, and
EE [x] is the expected value of x under the true environment
(M).

We will shortly introduce several evaluators.
Due to space limitations, we provide only proof
sketches: full proofs are in the appendix (available at
http://grail.cs.washington.edu/projects/nonstationaryeval).

What guarantees do we desire on the estimates our eval-
uators produce? Unbiasedness of the reward estimate on
episode i is a natural choice, but it is unclear what this
means if we do not always output an estimate of episode
i due to termination caused by the limited size/coverage of
our dataset. Therefore, we show a guarantee that is in some
sense weaker, but applies given a finite dataset: Given some
history, the evaluator either terminates or updates the algo-
rithm as it would if run online. Given this guarantee, the
empirical question is how early termination occurs, which
we address experimentally. We now highlight some of the
properties we would like an evaluator to possess, which are
summarized in Table 1.

1. Given some history, the (s, a, r, s′) tuples provided to
A have the same distribution as those the agent would

3It is easy to modify the evaluators to compute other statistics
of the interaction of the algorithm A with the evaluator, such as the
cumulative reward, or the variance of rewards.

4In this case, sums should be considered to be integrals

Samples
true

Unbiased estimate of i-th
episode performance

Allows unknown
sampling distribution

Does not as-
sume Markov

Computationally
efficient

Queue X × X × X
PSRS X × × × X
PERS X ×(Variants:X) × X Not always

Table 1: Desired properties of evaluation approaches, and a comparison of the three evaluators introduced in this paper. We did
not include the sample efficiency, because although it is a key metric it is typically domain-dependent.

receive in the true MDP M. Specifically, we desire
PR(s, a, r, s

′, χ|HT , gT) = PE(s, a, r, s
′, χ|HT) so that

PR(HT+1|HT , gT) = PE(HT+1|HT). As mentioned
above, this guarantee allows us to ensure that the algo-
rithm is fed on-policy samples, guaranteeing the algo-
rithm behaves similarly to how it would online.

2. High sample efficiency. Since all of our approaches only
provide estimates for a finite number of episodes before
terminating due to lack of data in D, we want to make
efficient use of data to evaluate A for as long as possible.

3. Given an input i, outputs an unbiased estimate of RA(i).
Specifically, ER[RA(i)] = EE [RA(i)]. Note that this is
non-trivial to ensure, since the evaluation may halt before
the i-th episode is reached.

4. Can leverage data D collected using an unknown sam-
pling distribution πe. In some situations it may be difficult
to log or access the sampling policy πe, for example in the
case where human doctors choose treatments for patients.

5. Does not assume the environment is a discrete MDP with
a known state space S. In many real world problems, the
state space is unknown, partially observed, or continuous,
so we cannot always rely on Markov assumptions.

6. Computationally efficient.

3 Related work
Work in reinforcement learning has typically focused on
evaluating fixed policies using importance sampling tech-
niques (Precup 2000). Importance sampling is widely-used
in off-policy learning, as an objective function when us-
ing policy gradient methods (Levine and Koltun 2013;
Peshkin and Shelton 2002) or as a way to re-weight samples
in off-policy TD-learning methods (Mahmood, van Has-
selt, and Sutton 2014; Sutton, Mahmood, and White 2015;
Maei and Sutton 2010). Additionally, this approach has
recently enabled practitioners to evaluate learned policies
on complex real-world settings (Thomas, Theocharous, and
Ghavamzadeh 2015; Mandel et al. 2014). However, this
work focuses on evaluating fixed policies, we are not aware
of work specifically focusing on the problem of evaluating
how an RL algorithm would learn online, which involves
feeding the algorithm new training samples as well as eval-
uating its current performance. It is worth noting that any
of the above-mentioned off-policy learning algorithms could
be evaluated using our methods.

Our methods do bear a relationship to off-policy learning
work which has evaluated policies by synthesizing artificial

trajectories (Fonteneau et al. 2010; 2013). Unlike our work,
this approach focuses only on evaluating fixed policies. It
also assumes a degree of Lipschitz continuity in some con-
tinuous space, which introduces bias. There are some con-
nections: our queue-based estimator could be viewed as re-
lated to their work, but focused on evaluating learning algo-
rithms in the discrete MDP policy case.

One area of related work is in the area of (possibly contex-
tual) multi-armed bandits, in which the corresponding prob-
lem is termed “nonstationary policy evaluation”. Past work
has showed evaluation methods that are guaranteed to be un-
biased (Li et al. 2011), or have low bias (Dudı́k et al. 2012;
2014), but only assuming an infinite data stream. Other work
has focused on evaluators that perform well empirically but
lack this unbiasedness (Mary, Preux, and Nicol 2014). Work
by Mandel et al. 2015 in the non-contextual bandit setting
show guarantees similar to ours, that issued feedback comes
from the true distribution even with finite data. However,
in addition to focusing on the more general setting of re-
inforcement learning, we also show stronger guarantees of
unbiasedness even given a finite dataset.

Algorithm 1 Queue-based Evaluator

1: Input: Dataset D, RL Algorithm A, Starting state sI
2: Output: RA s.t. RA(i) is sum of rewards in ep. i
3: Q[s, a] = Queue(RandomOrder((si, ai, r, s

′) ∈ D,
s.t. si = s, ai = a)), ∀s ∈ S, a ∈ A

4: for i = 1 to∞ do
5: s = sI , t = 0, ri = 0
6: Let πb be A’s initial policy
7: while ¬(t > 0 and s == sI) do
8: ab ∼ πb(s)
9: if Q[s, ab] is empty then return RA

10: (r, s′) = Q[s, ab].pop()
11: Update A with (s, a, r, s′), yields new policy πb
12: ri = ri + γtr, s = s′, t = t+ 1

13: RA(i) = ri

4 Queue-based Evaluator
We first propose a queue-based evaluator for evaluating al-
gorithms for episodic MDPs with a provided state S and ac-
tionA space (Algorithm 1). This technique is inspired by the
queue-based approach to evaluation in non-contextual ban-
dits (Mandel et al. 2015). The key idea is to place feedback
(next states and rewards) in queues, and remove elements

based on the current state and chosen action, terminating
evaluation when we hit an empty queue. Specifically, first
we partition the input dataset D into queues, one queue per
(s, a) pair, and fill each queue Q(s, a) with a (random) or-
dering of all tuples (r, s′) ∈ D s.t. (si = s, ai = a, ri =
r, s′i = s′) To simulate algorithm A starting from a known
state sk, the algorithm A outputs a policy πb, and selects an
action a sampled from πb(sk).5

The evaluator then removes a tuple (r, s′) from queue
Q[sk, a], which is used to update the algorithm A and its pol-
icy πb, and simulate a transition to the next state s′. By the
Markov assumption, tuples (r, s′) are i.i.d. given the prior
state and selected action, and therefore an element drawn
without replacement from the queue has the same distribu-
tion as that in the true environment. The evaluator terminates
and outputs the reward vector RA, when it seeks to draw a
sample from an empty queue.6

Unlike many offline evaluation approaches (such as im-
portance sampling for policy evaluation), our queue evalua-
tor does not require knowledge of the sampling distribution
πe used to generate D. It can even use data gathered from a
deterministic sampling distribution. Both properties are use-
ful for many domains (for example, it may be hard to know
the stochastic policy used by a doctor to make a decision).

Theorem 4.1. Assuming the environment is an MDP with
state space S and the randomness involved in draw-
ing from πb is treated as internal to A, given any his-
tory of interactions HT , if the queue-based evaluator pro-
duces a (s, a, r, s′) tuple, the distribution of this tuple
and subsequent internal randomness χ under the queue-
based evaluator is identical to the true distribution the
agent would have encountered if it was run online. That
is, PR(s, a, r, s′, χ|HT , gT) = PE(s, a, r, s

′, χ|HT), which
gives us that PR(HT+1|HT , gT) = PE(HT+1|HT).

Proof Sketch. The proof follows fairly directly from the
fact that placing an (r, s′) tuple drawn from M in Q[s, a]
and sampling from Q without replacement results in a sam-
ple from the true distribution. See the appendix (available at
http://grail.cs.washington.edu/projects/nonstationaryeval).

Note that theorem 4.1 requires us to condition on the fact
that A reveals no randomness, that is, we consider the ran-
domness involved in drawing from πb on line 8 to be consid-
ered as internal, that is (included in χ). This means the guar-
antee is slightly weaker than the approaches we will present
in sections 5 and 6, which condition on general πb.

5 Per-State Rejection Sampling Evaluator
Ideally, we would like an evaluator that can recognize when
the algorithm chooses actions similarly to the sampling dis-
tribution, in order use more of the data. For example, in the
extreme case where we know the algorithm we are evaluat-
ing always outputs the sampling policy, we should be able

5Note that since we only use πb to draw the next action, this
does not prevent A from internally using a policy that depends on
more than s (for example, s and t in finite horizon settings).

6For details about why this is necessary, see the appendix (avail-
able at http://grail.cs.washington.edu/projects/nonstationaryeval).

to make use of all data, or close to it. However, the queue
method only uses the sampled action, and thus cannot de-
termine directly whether or not the distribution over actions
at each step (πb) is similar to the sampling policy (πe). This
can make a major difference in practice: If πb and πe are both
uniform, and the action space is large relative to the amount
of data, we will be likely to hit an empty queue if we sample
a fresh action from πb. But, if we know the distributions are
the same we can simply take the first sampled action from
πe. Being able to take advantage of stochastic distributions
in this way is sometimes referred to as leveraging revealed
randomness in the candidate algorithm (Dudı́k et al. 2012).

To better leverage this similarity, we introduce the Per-
State Rejection Sampling (PSRS) evaluator (see Algo-
rithm 2), inspired by approaches used in contextual ban-
dits (Li et al. 2011; Dudı́k et al. 2012). PSRS divides data
into streams for each state s, consisting of a (randomized)
list of the subsequent (a, r, s′) tuples that were encountered
from s in the input data. Specifically, given the current state
s, our goal is to sample a tuple (a, r, s′) such that a is sam-
pled from algorithm A’s current policy πb(s), and r and s′
are sampled from the true environment. We already know
that given the Markov property, once we select an action a
that r and s′ in a tuple (s, a, r, s′) represent true samples
from the underlying Markov environment. The challenge
then becomes to sample an action a from πb(s) using the
actions sampled by the sampling distribution πe(s) for the
current state s. To do this, a rejection sampling algorithm7

samples a uniform number u between 0 and 1, and accepts a
sample (s, a, r, s′) from D if u < πb(a|s)

Mπe(a|s) , where πb(a|s)
is the probability under the candidate distribution of sam-
pling action a for state s, πe(a|s) is the corresponding quan-
tity for the sampling distribution, and M is an upper bound
on their ratio, M ≥ maxa

πb(a|s)
πe(a|s) . M is computed by iter-

ating over actions8 (line 8). It is well known that samples
rejection sampling accepts represent true samples from the
desired distribution, here πb (Gelman et al. 2014).

Slightly surprisingly, even if A always outputs
the sampling policy πe, we do not always con-
sume all samples (in other words PSRS is not
self-idempotent), unless the original ordering of
the streams is preserved (see appendix, available at
http://grail.cs.washington.edu/projects/nonstationaryeval).
Still, in the face of stochasticity PSRS can be significantly
more data-efficient than the Queue-based evaluator.
Theorem 5.1. Assume the environment is an MDP with
state space S, πe is known, and for all a, πe(a) > 0 if
πb(a) > 0. Then if the evaluator produces a (s, a, r, s′) tu-
ple, the distribution of (s, a, r, s′) tuple returned by PSRS

7One might wonder if we could reduce variance by using an im-
portance sampling instead of rejection sampling approach here. Al-
though in theory possible, one has to keep track of all the different
states of the algorithm with and without each datapoint accepted,
which is computationally intractable.

8This approach is efficient in the since that it takes time linear
in |A|, however in very large action spaces this might be too expen-
sive. In certain situations it may be possible to analytically derive a
bound on the ratio to avoid this computation.

Algorithm 2 Per-State Rejection Sampling Evaluator

1: Input: Dataset D, RL Algorithm A, Start state sI , πe
2: Output: Output: RA s.t. RA(i) is sum of rewards in ep. i
3: Q[s] = Queue(RandomOrder((si, ai, r, s

′) ∈ D s.t.
si = s)),∀s ∈ S

4: for i = 1 to∞ do
5: s = sI ,t = 0, ri = 0
6: Let πb be A’s initial policy
7: while ¬(t > 0 and st == sI) do
8: M = maxa

πb(a|s)
πe(a|s)

9: (a, r, s′) = Q[s].pop()
10: if Q[s] is empty then return RA

11: Sample u ∼ Uniform(0, 1)

12: if u > πb(a|s)
Mπe(a|s) then

13: Reject sample, go to line 9
14: Update A with (s, a, r, s′), yields new policy πb
15: ri = ri + γtr, s = s′, t = t+ 1

16: RA(i) = ri

(and subsequent internal randomness χ) given any history
of interactions HT is identical to the true distribution the
agent would have encountered if was run online. Precisely,
PR(s, a, r, s

′, χ|HT , gT) = PE(s, a, r, s
′, χ|HT), which

gives us that PR(HT+1|HT , gT) = PE(HT+1|HT).

Proof Sketch. The proof follows fairly directly
from the fact that given finite dataset, rejection
sampling returns samples from the correct distri-
bution (Lemma 1 in the appendix, available at
http://grail.cs.washington.edu/projects/nonstationaryeval).

6 Per-Episode Rejection Sampling
The previous methods assumed the environment is a MDP
with a known state space. We now consider the more general
setting where the environment consists of a (possibly high
dimensional, continuous) observation space O, and a dis-
crete action space A. The dynamics of the environment can
depend on the full history of prior observations, actions, and
rewards, ht = o0, . . . , ot, a0, . . . , at−1, r0, . . . , rt−1. Multi-
ple existing models, such as POMDPs and PSRs, can be rep-
resented in this setting. We would like to build an evaluator
that is representation-agnostic, i.e. does not require Markov
assumptions, and whose sample-efficiency does not depend
on the size of the observation space.

We introduce the Per-Episode Rejection Sampler (PERS)
evaluator (Algorithm 3) that evaluates RL algorithms in
these more generic environments. In this setting we assume
that the dataset D consists of a stream of episodes, where
each episode e represents an ordered trajectory of actions,
rewards and observations, (o0, a0, r0, o1, a1, r1, . . . , rl(e))
obtained by executing the sampling distribution πe for l(e)−
1 time steps in the environment. We assume that πe may
also be a function of the full history ht in this episode up
to the current time point. For simplicity of notation, instead
of keeping track of multiple policies πb, we simply write πb
(which could implicitly depend on χ).

Algorithm 3 Per-Episode Rejection Sampling Evaluator

1: Input: Dataset of episodes D, RL Algorithm A, πe
2: Output: Output: RA s.t. RA(i) is sum of rewards in ep. i
3: Randomly shuffle D
4: Store present state A of algorithm A
5: M = calculateEpisodeM(A, πe) (see the appendix)
6: i = 1, Let πb be A’s initial policy
7: for e ∈ D do
8: p = 1.0, h = [], t = 0, ri = 0
9: for (o, a, r) ∈ e do

10: h→ (h, o)

11: p = pπb(a|h)
πe(a|h)

12: Update A with (o, a, r), output new policy πb
13: h→ (h, a, r), ri = ri + γtr

14: Sample u ∼ Uniform(0, 1)
15: if u > p

M then
16: Roll back algorithm: A = A
17: else
18: Store present state A of algorithm A
19: M = calculateEpisodeM(A, πe)
20: RA(i) = ri, i = i+ 1

21: return RA

PERS operates similarly to PSRS, but performs rejection
sampling at the episode level. This involves computing

the ratio of Π
l(e)
t=0πb(at|ht)

MΠ
l(e)
t=0πe(at|ht)

, and accepting or rejecting the

episode according to whether a random variable sampled
from the uniform distribution is lower than the computed
ratio. As M is a constant that represents the maximum
possible ratio between the candidate and sampling episode
probabilities, it can be computationally involved to com-
pute M exactly. Due to space limitations, we present
approaches for computing M in the appendix (available at
http://grail.cs.washington.edu/projects/nonstationaryeval).
Note that since the probability of accepting an episode is
based only on a ratio of action probabilities, one major
benefit to PERS is that its sample-efficiency does not
depend on the size of the observation space. However, it
does depend strongly on the episode length, as we will see
in our experiments.

Although PERS works on an episode-level, to handle
algorithms that update after every timestep, it updates A
throughput the episode and “rolls back” the state of the al-
gorithm if the episode is rejected (see Algorithm 3).

Unlike PSRS, PERS is self-idempotent, meaning if A al-
ways outputs πe we accept all data. This follows since if

πe(at|ht) = πb(at|ht), M = 1 and Π
l(e)
t=0πb(at|ht)

MΠ
l(e)
t=0πe(at|ht)

= 1.

Theorem 6.1. Assuming πe is known, and πb(e) > 0 →
πe(e) > 0 for all possible episodes e and all πb, and PERS
outputs an episode e, then the distribution of e (and subse-
quent internal randomness χ) given any history of episodic
interactionsHT using PERS is identical to the true distribu-
tion the agent would have encountered if it was run online.
That is, PE(e, χ|HT) = PR(e, χ|HT , gT), which gives us

that PR(HT+1|HT , gT) = PE(HT+1|HT).

Proof Sketch. The proof follows fairly directly
from the fact that given finite dataset, rejection
sampling returns samples from the correct distri-
bution (Lemma 1 in the appendix, available at
http://grail.cs.washington.edu/projects/nonstationaryeval).

7 Unbiasedness Guarantees in the
Per-Episode case

Our previous guarantees stated that if we return a sample, it
is from the true distribution given the history. Although this
is fairly strong, it does not ensure RA(i) is an unbiased esti-
mate of the reward obtained byA in episode i. The difficulty
is that across multiple runs of evaluation, the evaluator may
terminate after different numbers of episodes. The probabil-
ity of termination depends on a host of factors (how random
the policy is, which state we are in, etc.). This can result in
a bias, as certain situations may be more likely to reach a
given length than others.

For example, consider running the queue-based approach
on a 3-state MDP: sI is the initial state, if we take action a0

we transition to state s1, if we take action a1 we transition
to s2. The episode always ends after timestep 2. Imagine the
sampling policy chose a1 99% of the time, but our algorithm
chose a1 50% of the time. If we run the queue approach
many times in this setting, runs where the algorithm chose
a1 will be much more likely to reach timestep 2 than those
where it chose a0, since s2 is likely to have many more sam-
ples than s1. This can result in a bias: if the agent receives a
higher reward for ending in s2 compared to s1, the average
reward it receives at timestep 2 will be overestimated.

One approach proposed by past work (Mandel et al.
2015; Dudı́k et al. 2014) is to assume T (the maximum
timestep/episode count for which we report estimates) is
small enough such that over multiple runs of evaluation we
usually terminate after T; however it can be difficult to fully
bound the remaining bias. Eliminating this bias for the state-
based methods is difficult, since the the agent is much more
likely to terminate if it transitions to a sparsely-visited state,
and so the probability of terminating is hard to compute as
it depends on the unknown transition probabilities.

However, modifying PERS to use a fixed M throughout
its operation allows us to show that if PERS outputs an es-
timate, that estimate is unbiased (Theorem 7.1). In practice
one will likely have to overestimate this M, for example by
bounding p(x) by 1 (or (1− ε) for epsilon-greedy) and cal-
culating the minimum q(x).

Theorem 7.1. If M is held fixed throughout the operation
of PERS, πe is known, and πb(e) > 0 → πe(e) > 0 for
all possible episodes e and all πb, then if PERS outputs an
estimate of some function f(HT) at episode T, that estimate
is an unbiased estimator of f(HT) at episode T, in other
words, ER[f(HT)|gT , . . . , g1] =

∑
HT

f(HT)PE(HT) =

EE [f(HT)]. For example, if f(HT) = RA(T), the estimate
is an unbiased estimator of RA(T) given gT , . . . , g1.

Proof Sketch. We first show that if M is fixed, the proba-
bility that each episode is accepted is constant (1/M). This

allows us to show that whether we continue or not (gT)
is conditionally independent of HT−1. This lets us remove
the conditioning on HT−1 in Theorem 6.1 to give us that
PR(HT |gT , . . . , g1) = PE(HT), meaning the distribution
over histories after T accepted episodes is correct, from
which conditional unbiasedness is easily shown.

Although useful, this guarantee has the downside that the
estimate is still conditional on the fact that our approach
does not terminate. Theorem 7.2 shows that it is possible
to use a further modification of Fixed-M PERS based on
importance weighting to always issue unbiased estimates
for N total episodes. For a discussion of the empirical
downsides to this approach, see the appendix (available at
http://grail.cs.washington.edu/projects/nonstationaryeval).

Theorem 7.2. Assuming for each T , RA(T) is divided by
by φ = 1− Binomial(N, 1/M).cdf(k − 1), and after ter-
minating at timestep k we output 0 as estimates of reward
for episodes k + 1, . . . , N , and M is held fixed throughout
the operation of PERS, and πe is known, and πb(e) > 0 →
πe(e) > 0 for all possible episodes e and all πb, then the
estimate of reward output at each episode T = 1 . . . N is an
unbiased estimator of RA(T).

Proof Sketch. Outputting an estimate of the reward at an
episode T by either dividing the observed reward by the
probability of reaching T (aka P (gT , ..., g1)), for a run of
the evaluator that reaches at least T episodes, or else out-
putting a 0 if the evaluation has terminated, is an importance
weighting technique that ensures the expectation is correct.

8 Experiments
Any RL algorithm could potentially be run with these eval-
uators. Here, we show results evaluating Posterior Sampling
Reinforcement Learning (PSRL) (Osband et al. 2013, Strens
2000), which has shown good empirical and theoretical per-
formance in the finite horizon case. The standard version of
PSRL creates one deterministic policy each episode based
on a single posterior sample; however, we can sample the
posterior multiple times to create multiple policies and ran-
domly choose between them at each step, which allows us to
test our evaluators with more or less revealed randomness.

Comparison to a model-based approach We first
compare PSRS to a model-based approach on SixArms
(Strehl and Littman 2004), a small MDP environment.
Our goal is to evaluate the cumulative reward of PSRL
run with 10 posterior samples, given a dataset of 100
samples collected using a uniform sampling policy.
The model-based approach uses the dataset to build an
MLE MDP model. Mean squared error was computed
against the average of 1000 runs against the true en-
vironment. For details see the appendix (available at
http://grail.cs.washington.edu/projects/nonstationaryeval).
In Figure 2a we see that the model-based approach starts
fairly accurate but quickly begins returning very poor
estimates. In this setting, the estimates it returned indicated
that PSRL was learning much more quickly than it would in
reality. In contrast, our PSRS approach returns much more
accurate estimates and ceases evaluation instead of issuing
poor estimates.

0 10 20 30 40 50
Episodes

0.0

0.2

0.4

0.6

0.8

1.0
M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

1e7

PSRS
Model

(a) PSRS tends to be much more ac-
curate than a model-based approach.

0 50 100 150 200 250 300
Number of episodes per run

0

5

10

15

20

25

30

35

40

45

P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

Fixed-M PERS

(b) Comparing on Treefrog Treasure with
3 timesteps and 1 PSRL posterior sample.

0 500 1000 1500 2000 2500
Number of episodes per run

0

10

20

30

40

50

60

70

P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

Fixed-M PERS

(c) Comparing on Treefrog with 3
timesteps and 10 PSRL posterior samples.

Figure 2: Experimental results.

Figure 3: Treefrog Treasure: players guide a frog through a
dynamic world, solving number line problems.

Length Results All three of our estimators produce sam-
ples from the correct distribution at every step. However,
they may provide different length trajectories before termi-
nation. To understand the data-efficiency of each evaluator,
we tested them on a real-world educational game dataset, as
well as a small but well-known MDP example.

Treefrog Treasure is an educational fractions game (Fig-
ure 3). The player controls a frog to navigate levels and
jump through numberlines. We have 11 actions which con-
trol parameters of the numberlines. Our reward is based
on whether students learn (based on pretest-to-postest im-
provement) and whether they remain engaged (measured
by whether the student quit before the posttest). We used
a state space consisting of the history of actions and
whether or not the student took more than 4 tries to pass
a numberline (note that this space grows exponentially
with the horizon). We varied the considered horizon be-
tween 3 and 4 in our experiments. We collected a dataset
of 11,550 players collected from a child-focused educa-
tional website, collected using a semi-uniform sampling
policy. More complete descriptions of the game, exper-
imental methodology, method of calculating M, and de-
tails of PSRL can be found in the appendix (available at
http://grail.cs.washington.edu/projects/nonstationaryeval).

Figure 2 shows results on Treefrog Treasure, with his-
tograms over 100 complete runs of each evaluator. The
graphs show how many episodes the estimator could evalu-
ate the RL algorithm for, with more being better. PERS does
slightly better in a short-horizon deterministic setting (Fig-
ure 2b). Increasing the posterior samples greatly improves
performance of rejection sampling methods (Figure 2c).

We also examined an increased horizon of
4 (graphs provided in appendix, available at
http://grail.cs.washington.edu/projects/nonstationaryeval).
Given deterministic policies on this larger state space, all
three methods are more or less indistinguishable; however,
revealing more randomness causes PERS to overtake PSRS
(mean 260.54 vs. 173.52). As an extreme case, we also tried
a random policy: this large amount of revealed randomness
benefits the rejection sampling methods, especially PERS,
which evaluates for much longer than the other approaches.
PERS outperforms PSRS here because there are small
differences between the random candidate policy and the
semi-random sampling policy, and thus if PSRS enters a
state with little data it is likely to terminate.

The fixed-M PERS method does much worse than the
standard version, typically barely accepting any episodes,
with notable exceptions when the horizon is short (Figure
2b). Since it does not adjust M it cannot take advantage of
revealed randomness (Figure 2c). However, we still feel that
this approach can be useful when one desires truly unbiased
estimates, and when the horizon is short. Finally, we also
note that PERS tends to have the lowest variance, which
makes it an attractive approach since to reduce bias one
needs to have a high percentage of runs terminating after
the desired length.

The state space used in Treefrog Treasure grows expo-
nentially with the horizon. To examine a contrasting case
with a small state space (6 states), but a long horizon (20),
we also test our approaches in Riverswim (Osband, Russo,
and Van Roy 2013), a standard toy MDP environment.
The results can be found in the appendix (available at
http://grail.cs.washington.edu/projects/nonstationaryeval),
but in general we found that PERS and its variants suffer
greatly from the long horizon, while Queue and PSRS

do much better, with PSRS doing particularly well if
randomness is revealed.

Our conclusion is that the PERS does quite well, espe-
cially if randomness is revealed and the horizon is short. It
appears there is little reason to choose Queue over PSRS,
except if the sampling distribution is unknown. This is sur-
prising because it conflicts with the results of Mandel et al.
2015. They found a queue-based approach to be more effi-
cient than rejection sampling in a non-contextual bandit set-
ting, since data remained in the queues for future use instead
of being rejected. The key difference is that in bandits there
is only one state, so we do not encounter the problem that
we happen to land on an undersampled state, hit an empty
queue by chance, and have to terminate the whole evaluation
procedure. If the candidate policy behaves randomly at un-
visited states, as is the case with 10-sample PSRL, PSRS can
mitigate this problem by recognizing the similarity between
sampling and candidate distributions to accept the samples
at that state, therefore being much less likely to terminate
evaluation when a sparsely-visited state is encountered.

9 Conclusion
We have developed three novel approaches for evaluating
how RL algorithms perform online: the most important dif-
ferences are summarized in Table 1. All methods have guar-
antees that, given some history, if a sample is output it comes
from the true distribution. Further, we developed a variant
of PERS with even stronger guarantees of unbiasedness.
Empirically, there are a variety of tradeoffs to navigate be-
tween the methods, based on horizon, revealed randomness
in the candidate algorithm, and state space size. We antici-
pate these approaches will find wide use when one wishes
to compare different reinforcement learning algorithms on
a real-world problem before deployment. Further, we are
excited at the possibility of using these approaches to cre-
ate real-world testbeds for reinforcement learning problems,
perhaps even leading to RL competitions similar to those
which related contextual bandit evaluation work (Li et al.
2011) enabled in that setting (Chou and Lin 2012). Future
theoretical work includes analyzing the sample complexity
of our approaches and deriving tight deviation bounds on the
returned estimates. Another interesting direction is develop-
ing more accurate estimators, e.g. by using doubly-robust
estimation techniques (Dudı́k et al. 2012).

Acknowledgments This work was supported by the NSF BIG-
DATA grant No. DGE-1546510, the Office of Naval Research grant
N00014-12-C-0158, the Bill and Melinda Gates Foundation grant
OPP1031488, the Hewlett Foundation grant 2012-8161, Adobe,
Google, and Microsoft.

Appendix
A Algorithm Details

Queue Based Evaluation: Termination Upon
Empty Queue
One question raised by the queue-based method is why do we ter-
minate as soon as we hit an empty stream (meaning, run out of
(r, s′) tuples at the current (s, a))? Especially in an episodic set-
ting, why not just throw away the episode, and start a new episode?

The reason is that this would no longer draw samples from the true
environment. To see why, imagine that after starting in sI , half the
time the agent goes to s1, otherwise it goes to s2. The candidate
algorithm A picks action 1 in s1, but the sampling policy avoids it
99% of the time. In s2, both sampling and candidate approaches
pick each action with equal probability. If we run a “restart if no
data” approach, it is very unlikely to ever include a transition from
sI to s1, since there aren’t many episodes going through s1 that
picked the action we chose, causing us to quickly run out of data.
So the algorithm will almost always be fed s2 after sI , leading to
the incorrect distribution of states. Our approach does not have this
problem, since in this case it will stop as soon as it hits a lack of
data at s2, leading to a balanced number of samples. However, a
downside of this approach is that with very large spaces, we may
not be able to produce long sequences of interactions, since in these
scenarios we may very quickly run into an empty queue.

Calculating M for PERS

Algorithm 4 Efficient M calculation

1: Input: Candidate policy πb, Exploration policy πe, com-
mon state space S,

2: Binary transition matrix T denoting whether a nonzero
transition probability from s and s′ is possible a priori,
maximum horizon H .

3: Initialize Ms = 1.0 for all s ∈ S
4: for t = 1 to H do
5: for s ∈ S do
6: M ′s = maxa

πb(s,a)
πe(s,a)maxs′T (s, a, s

′)Ms′

7: M =M ′

8: return MsI

Let πb(e) be shorthand for Π
l(e)
t=0πb(at|ht), and similarly for

πe(e)
In order to ensure that rejection sampling returns a sample from

the candidate distribution, it is critical that M be set correctly.
One way to understand the necessity of M is to consider that
since the ratio πb(e)

πe(e)
can grow extremely large, we need an M

such that πb(e)
Mπe(e)

is a probability between 0 and 1. Therefore,

M ≥ maxe
πb(e)
πe(e)

Obviously, taking the maximum over all pos-
sible episodes is a bit worrisome from a computational standpoint,
although in some domains it may be feasible. Alternatively, one
can always use an overestimate. Some examples that may be useful
are: maxT

maxes.t.l(e)=T πb(e)

mines.st.l(e)=T πe(e)
or maxe πb(e)

mine πe(e)
or even 1.0

mine πe(e)
.

However, one needs to be careful that the overestimate is not too
extreme, or else rejection sampling will accept very few samples,
since an overly large M lowers all probabilities (for example, dou-
bling M means all probabilities will be normalized to [0,0.5]).

In certain cases, even if we are not willing to assume a state
space for the purposes of evaluation, we know that πb uses a dis-
crete state space S1 and πe uses a discrete state space S2 . In this
case we can formulate a common state space, either as a cross prod-
uct of the two spaces or by observing that one is contained within
the other, which allows us to avoid an exponential enumeration of
histories as follows. Assume A does make use of additional inter-
nal randomness over the course of a single episode, and the horizon
is upper bounded, and we have access to a binary transition matrix
T denoting whether a nonzero transition probability from s and s′

is possible a priori. Then the maximum from an episode starting at
each state Ms, satisfies the following recursion:

Ms,0 = 1.0

Ms,t = maxa
πb(s, a)

πe(s, a)
maxs′T (s, a, s′)Ms′,t−1

One can use a dynamic programming approach to efficiently
solve this recurrence. See algorithm 4.

PSRS: Self-Idempotent or Not?
If we randomize the data in our streams and use PSRS, scenarios
such as the following can occur. Imagine we have three states, s1,
s2, and s3, and a candidate policy that is identical to the sampling
policy, so that rejection sampling accepts samples with probability
1. In our initial dataset, assume we took 1 transition from s1 to
s2, N transitions from s2 to s2, and one transition from s2 to s3.
If we keep the order fixed, the trace will accept every transition in
the order they occurred and thus behave exactly the same as the
sampling policy, accepting all data. But, if we randomize the order,
as will happen in general, we are very likely to spend less than N
transitions in s2 before we draw the tuple fromQ[s2] that causes us
to transition to s3, leaving the remaining samples at s2 uncollected.

B Sample from True Distribution
Guarantees

Properties of Rejection Sampling
Rejection sampling is guaranteed to return a sample from p(x)
given an infinite stream of samples from q(x). However, in prac-
tice we only have a finite stream of size N and would like to know
whether, conditioned on the fact that rejection sampling outputs an
estimate before consuming the dataset, the accepted sample is dis-
tributed according to p(x). Or formally,
Lemma 1. PR(x = a|r1 ∨ · · · ∨ rN) = PE(a), where PR de-
notes the probability (or pdf) under rejection sampling, PE denotes
the probability under the candidate distribution, and ri means all
samples before the ith are rejected, and x is accepted on the ith

sample.

Proof. Proof by induction on N. The base case (N=0) is triv-
ial because we never return an estimate given zero data. Assume
PR(x = a|r1 ∨ · · · ∨ rN−1) = PE(x = a) and show for N .

PR(x = a|r1 ∨ . . . ∨ rN)

= PR(rN)PR(x = a|rN)

+ (1− PR(rN))PR(x = a|r1 ∨ · · · ∨ rN−1)

By the inductive hypothesis we have:

PR(x = a|r1 ∨ · · · ∨ rN)

= PR(rN)PR(x = a|rN) + (1− PR(rN))PE(x = a)

So it suffices to show PR(x = a|rN) = PE(x = a).

PR(x = a|rN) =
PR(x = a, rN)

PR(rN)

PR(x = a|rN) =
PR(x = a, rN)∑
b PR(x = b, rN)

Since we perform rejection sampling:

=
q(a) PE(a)

Mq(a)∑
b q(b)

PE(b)
Mq(b)

where q is the sampling distribution.

=
PE(a)
M∑

b
PE(b)
M

=
PE(a)
M
1
M

=
MPE(a)

M

= PE(a)

A note on the base case
Note that our guarantees say that, if our evaluators do not terminate,
our the produced pair of tuple (or episode) and χ comes from the
correct distribution given some history. However, these guarantees
does not explicitly address how the initial historyH0 is chosen. The
following lemma (with trivial proof) addresses this issue explicitly:

Lemma 2. Under evaluators Queue, PSRS, and PERS,PR(H0) =
PE(H0).

Proof. For all of our evaluators, the initial state is correctly ini-
tialized to sI , and the initial χ is drawn correctly according to A,
so the initial history H0 (consisting of initial state and initial χ) is
drawn from the correct distribution.

Queue-based evaluator guarantees
Theorem 4.1. Assuming the environment is an MDP with state
space S and the randomness involved in drawing from πb is
treated as internal to A, given any history of interactions HT , if
the queue-based evaluator produces a (s, a, r, s′) tuple, the dis-
tribution of this tuple and subsequent internal randomness χ un-
der the queue-based evaluator is identical to the true distribution
the agent would have encountered if it was run online. That is,
PR(s, a, r, s′, χ|HT , gT) = PE(s, a, r, s

′, χ|HT), which gives us
that PR(HT+1|HT , gT) = PE(HT+1|HT).

Proof. Recall that for the queue-based evaluator we treat the ran-
domness involved in drawing an action from the distribution πb
as part of the χ stored in the history. Therefore, given HT (which
includes χ), A deterministically selects aT given HT . Given an
MDP and the history of interactions HT at timestep t, and as-
suming for convenience s−1 = sI , PE(s, a, r, s′|HT) = I(s =
s′t−1, a = at)PE(r, s

′|s, a), where the conditional independences
follow from the fact that in an MDP, the distribution of (r, s′) only
depends on s, a. Under our evaluator, PR(s, a, r, s′|HT , gT) =
I(s = s′t−1, a = aT)PR(Q[s, a].pop() = (r, s′)), since the state
is properly translated from one step to the next, and the action
a is fixed to aT . So we just need to show PR(Q[s, a].pop() =
(r, s′)) = PE(r, s

′|s, a). But since the (r, s′) tuple at the front
of our Q[s, a] was drawn from the true distribution9 given s, a,
but independent of the samples in our history, it follows im-
mediately that PR(Q[s, a].pop() = (r, s′)) = PE(r, s

′|s, a),
and thus PR(s, a, r, s′|HT , gT) = PE(s, a, r, s

′|HT). Given
an (s, a, r, s′), the algorithm’s internal randomness χ is drawn
from the correct distribution and thus PR(s, a, r, s′, χ|HT , gT) =
PE(s, a, r, s

′, χ|HT).

9For further discussion of this property of queues see Joulani,
Gyorgy, and Szepesvari 2013

Per-state RS evaluator Guarantees
Theorem 5.1. Assume the environment is an MDP with state space
S, πe is known, and and for all a, πe(a) > 0 if πb(a) > 0.
Then if the evaluator produces a (s, a, r, s′) tuple, the distribu-
tion of (s, a, r, s′) tuple returned by PSRS (and subsequent inter-
nal randomness χ) given any history of interactions HT is iden-
tical to the true distribution the agent would have encountered
if was run online. Precisely, in the case that we accept a tuple,
PR(s, a, r, s′, χ|HT) = PE(s, a, r, s

′, χ|HT), which gives us that
PR(HT+1|HT) = PE(HT+1|HT).

Proof. Note that the candidate distribution πb is deterministically
output given HT , since HT includes any internal randomness χ by
definition.

Given some HT at timestep T , and assuming for convenience
s−1 is a fixed start state, we know s = s′t−1. So, we accept each
(a, r, s′) tuple with probability:

πb(a|s)
M ∗ πe(a|s)

where M = maxa
πb(a|s)
πe(a|s) always. Equivalently, we can say we

accept each tuple with probability:

πb(a|s)PE(r, s′|s, a)

M ∗ πe(a|s)PE(r, s′|s, a)

Let Pexplore denote the probability in the true environment un-
der the sampling policy. Then we have the probability of accepting
this tuple is:

PE(a, r, s
′|s,HT)

M ∗ Pexplore(a, r, s′|s)
where the conditioning on HT is introduced because the specific
πb chosen depends on HT . We can write M = maxa

πb(a|s)
πe(a|s) =

maxa,r,s′
πb(a|s)
πe(a|s) = maxa,r,s′

πb(a|s)PE (r,s′|s,a)
πe(a|s)PE (r,s′|s,a)

=

maxa,r,s′
PE (a,r,s

′|s,HT)
Pexplore(a,r,s

′|s) . The (a, r, s′) tuples in each PSRS

stream Q[s] are drawn according to Pexplore(a, r, s
′|s), since

the actions in each stream are drawn according to πe(a|s) and r
and s′ are then drawn according to PE(r, s′|s, a) by the Markov
assumption. Therefore, since we draw (a, r, s′) according to
Pexplore(a, r, s

′|s) but we wish to draw from PE(a, r, s
′|s,HT),

this is a straightforward application of rejection sampling. Since
M ≥ maxa,r,s′

PE (a,r,s
′|s,HT)

Pexplore(a,r,s
′|s) , rejection sampling guarantees

that a returned sample is sampled according to PE(a, r, s′|s,HT),
even if conditioned on only having a finite dataset (Lemma 1). In
other words, PR(a, r, s′|s,HT , gT) = PE(a, r, s

′|s,HT). Since
in both cases s is deterministically extracted from the last tuple of
HT , this implies PR(s, a, r, s′|HT , gT) = PE(s, a, r, s

′|HT)
Given an (s, a, r, s′), the algorithm’s internal random-

ness χ is drawn from the correct distribution and thus
PR(s, a, r, s′, χ|HT , gT) = PE(s, a, r, s

′, χ|HT).

Per-Episode Rejection Sampling Guarantees
Theorem 6.1. Assuming πe is known, and πb(e) > 0→ πe(e) >
0 for all possible episodes e and all πb, and PERS outputs an
episode e, then the distribution of e (and subsequent internal ran-
domness χ) given any history of episodic interactions HT us-
ing PERS is identical to the true distribution the agent would
have encountered if it was run online. That is, PE(e, χ|HT) =
PR(e, χ|HT , gT), which gives us that PR(HT+1|HT , gT) =
PE(HT+1|HT).

Proof. An episode e consists of some sequence of actions,
observations and rewards o0, a0, r0, o1, a1, r1, Let χt de-
note the internal randomness generated by algorithm A af-
ter receiving rt and ot+1, so that χ = χ0, . . . , χl(e). Let
ht denote the within-episode history at time t, namely ht =
o0, . . . , ot, a0, . . . , at−1, r0, . . . , rt−1, χ0, . . . , χt−1. Given HT ,
for notational convenience we assume the algorithm A outputs a
single policy πb which maps ht (recall this includes any internal
randomness) to action probabilities, that is A chooses actions ac-
cording to πb(at|ht). The sampling policy likewise chooses actions
according to πe(at|ht) (however the χ component of ht is not used
by the sampling policy). The environment generates observations
and rewards from some unknown distributionPE given the past his-
tory, in other words according to PE(rt, ot+1|at, ht).10 We accept
episodes with probability:∏l(e)

t=0 πb(at|ht)
M
∏l(e)
t=0 πb(at|ht)

where M ≥
∏l(e)

t=0 πb(at|ht)∏l(e)
t=0 πe(at|ht)

always. This can also be written as:

∏l(e)
t=0 πb(at|ht)PE(rt, ot+1|at, ht)PE(χt|ht, rt, ot+1, HT)

M
∏l(e)
t=0 πe(at|ht)PE(rt, ot+1|at, ht)PE(χt|ht, rt, ot+1, HT)

(1)
Let Pexplore(e) denote the probability of episode e under the

exploration policy πe in the true environment. Then we have the
probability of accepting this episode is:

PE(e, χ|HT)

M ∗ Pexplore(e)
∏l(e)
t=0 PE(χt|ht, rt, ot+1, HT)

(2)

where the conditioning on HT in the numerator is introduced
because how A updates πb depends on HT . We can write M ≥
maxe

∏l(e)
t=0 πb(at|ht)PE (rt,ot+1|at,ht)PE(χt|ht,rt,ot+1,HT)∏l(e)
t=0 πe(at|ht)PE (rt,ot+1|at,ht)PE(χt|ht,rt,ot+1,HT)

=

maxe
PE (e,χ|HT)

Pexplore(e)
∏l(e)

t=0 PE(χt|ht,rt,ot+1,HT)
. The episodes e in

our dataset are drawn according to Pexplore(a, r, s
′|s), since

the action at each timestep is drawn according to πe(at|ht),
and then the next reward and observation are drawn ac-
cording to PE(rt, ot+1|at, ht) by the episodic assumption.
And during the operation of PERS A draws the internal
randomness χ according to the correct distribution at each
step, PE(χt|ht, rt, ot+1, HT). Since we draw e, χ according to
Pexplore(e)

∏l(e)
t=0 PE(χt|ht, rt, ot+1, HT), but wish to draw from

PE(e, χ), this is a straightforward application of rejection sam-
pling. Since M ≥ maxe

PE (e,χ|HT)

Pexplore(e)
∏l(e)

t=0 PE(χt|ht,rt,ot+1,HT)
,

rejection sampling guarantees that any returned sample is sampled
according to PE(e, χ|HT), even if conditioned on only having a
finite dataset (Lemma 1). So PR(e, χ|HT , gT) = PE(e, χ|HT).

C Empirical Performance of
Importance-Weighted Fixed-M PERS

Despite the stronger guarantees, one should be cautious about in-
terpreting the empirical results generated by the variant proposed
in Theorem 7.2. Although the expectation is correct, for a single
run of the algorithm, the estimates will tend to rise above their true

10We assume whether the episode continues or not is an obser-
vation, i.e. is it also drawn from an unknown distribution given the
history.

value due to the importance weights (leading one to believe the al-
gorithm is learning more than it truly is) before abruptly dropping
to zero. Averaging together multiple unbiased estimates is more
likely to give a better picture of behavior.

D Unbiasedness Proofs
Theorem 7.1. If M is held fixed throughout the operation of the
per-episode rejection sampling replayer, πe is known, and πb(e) >
0 → πe(e) > 0 for all possible episodes e and all πb, then if the
evaluator outputs an estimate of some function f(HT) at episode
T, that estimate is an unbiased estimator of f(HT) at episode T, in
other words, ER[f(HT)|gT , . . . , g1] =

∑
HT

f(HT)PE(HT) =

EE [f(HT)]. For example, if f(HT) = RA(T), the estimate is an
unbiased estimator of RA(T) given gT , . . . , g1.

Proof Sketch. We first show that if M is fixed, the probability
that each episode is accepted is constant (1/M). This allows us to
show that whether we continue or not (gT) is conditionally inde-
pendent of HT−1. This lets us remove the conditioning on HT−1

in Theorem 6.1 to give us that PR(HT |gT) = PE(HT), meaning
the distribution over histories after T accepted episodes is correct,
from which conditional unbiasedness is easily shown.

Proof. First, we will calculate the probability (over randomiza-
tion in the dataset, algorithm, and evaluator) that we accept the ith

episode in our dataset, ei, given some HT (over some sequence S
of acceptances/rejections in the first i− 1 episodes).

P (Accept ei|HT , S) =
∑
e

P (ei = e)P (e is accepted |HT , S)

(3)
If we let q(e) refer to the probability of the episode under the

sampling distribution,

P (Accept ei|HT , S) =
∑
e

q(e)P (e is accepted |HT , S) (4)

Recall that as part of Theorem 6.1 (equation (1)) we showed the
per-episode rejection replayer accepted an episode with probability

∏l(e)
t=0 πb(at|ht)PE(rt, ot+1|at, ht)PE(χt|ht, rt, ot+1, HT)

M
∏l(e)
t=0 πe(at|ht)PE(rt, ot+1|at, ht)PE(χt|ht, rt, ot+1, HT)

=

∏l(e)
t=0 πb(at|ht)PE(rt, ot+1|at, ht)

M
∏l(e)
t=0 πe(at|ht)PE(rt, ot+1|at, ht)

=
PE(e|HT)

Mq(e)

where PE(e|HT) refers to the probability of episode e under the A
given HT , and M denotes the normalizer, which is constant in this
variant of the algorithm. So we have:

P (Accept ei|HT , S) =
∑
e

P (e sampled |HT , S)
PE(e|HT)

Mq(e)

(5)

P (Accept ei|HT , S) =
∑
e

q(e)
PE(e|HT)

Mq(e)
(6)

P (Accept ei|HT , S) =
1

M

∑
e

PE(e|HT) (7)

And since
∑
e PE(e|HT) = 1,

P (Accept ei|HT , S) =
1

M
(8)

P (Accept ei|HT , S) is a constant it is independent of HT and
S, so:

P (Accept ei|HT , S) = P (Accept ei) =
1

M
(9)

So we accept the ith episode with probability 1/M , where M
is a constant, and therefore independent of S and HT . We will now
proceed to show that since this is a constant, it does not cause any
histories to be more likely than others, from which the unbiased
property will follow.

Next, we will prove by induction that PR(HT |gT , . . . , g0) =
PE(HT). Recall that HT denotes a trajectory of T episodic inter-
actions, gT denotes the event that we continue11 (i.e. do not ter-
minate evaluation) from time T − 1 to time T , PR(x) denotes
the probability of x under the replayer, and PE(x) denotes the
probability of x in the true (online) environment under the can-
didate policy. The base case is trivial (Since g0 always occurs,
PR(H0|g0) = PR(H0), and by Lemma 2, PR(H0) = PE(H0)).
We now assume this holds for T − 1 and we will show it holds for
T .

PR(HT |gT , . . . , g0)

=
∑
HT−1

PR(HT |HT−1, gT , . . . , g0)PR(HT−1|gT , . . . , g0)

(10)

Our next step is to show that gT ⊥ HT−1|gT−1, so that we can
turn the right term of equation (10) into the inductive hypothesis (⊥
denotes independance). Let i be the number of episodes consumed
after accepting the (T − 1)th episode, so that there are exactly
N − i episodes remaining after accepting the (T − 1)th. Since, as
we showed in equation (9), P (Accept ei) = 1

M
, given gT−1 and

N − i episodes remaining, gT is drawn from a Bernoulli(1 −
(1− 1

M
)N−i) distribution. So, since M and N are both constants,

gT ⊥ HT−1|gT−1, i. So we can write:

P (gT , HT−1|gT−1) =
∑
i

P (gT , HT−1|gT−1, i)P (i|gT−1)

(11)

=
∑
i

P (gT |gT−1, i)P (HT−1|gT−1, i)P (i|gT−1) (12)

So we need to show HT−1 ⊥ i|gT−1.

P (HT−1, i|gT−1) =
1

P (gT−1)
P (HT−1, gT−1, i) (13)

Now, we know the ith episode must have been accepted, but
the (T − 2)th acceptances could have occurred anywhere in the
(i − 1)th steps. The probability of the jth e, χ pair in the history,
HT−1[j] being accepted on the next episode given some sequence
of previously accepted/rejected episodes S is

11Since we always generate the initial history H0, for the pur-
poses of induction we here condition on g0 even though that is not
strictly necessary since it always occurs.

P (HT−1[j] produced|Hj−1, S)

= P (HT−1[j] sampled|Hj−1, S)P (HT−1[j] accepted|Hj−1, S)

= q(HT−1[j]|Hj−1)
PE(HT−1[j]|Hj−1)

Mq(HT−1[j]|Hj−1)
,

(14)

where q(HT−1[j]|Hj−1) denotes the probabilities of producing
the jth e, χ tuple in the history given Hj−1 and sampling actions
according to πe, and P (HT−1[j] accepted) is derived as per equa-
tion (2) in Theorem 6.1. Equation (14) can be simplified:

P (HT−1[j] produced|Hj−1, S) =
PE(HT−1[j]|Hj−1)

M
(15)

Note that this depends on Hj−1 but is independent of S. The
probability of rejection given S, Hj−1 is a constant 1 − 1

M
(see

equation (9)), so returning to equation 13 we have:

P (HT−1, i|gT−1) (16)

=
1

P (gT−1)

∑
S s.t. S compat (i, T − 1)

P (S, HT−1) (17)

where (S compat (i, T − 1)), means |S| = i, there are T − 1
acceptances in S, and S[i − 1] is not a rejection. Now, com-
puting P (S, HT−1) would consist of multiplying quantities like
P (reject episode k | S up to k − 1)
∗ P (accept HT−1[3] on episode k+1 |H2, S up to k) ∗ Note,
however, that the probability of rejecting an episode is independent
of the particular past sequence of acceptances and rejections (see
equation (9)), and so is the probability of accepting the next item in
the history (see equation (15)). Therefore, for every S, P (S, HT−1)
is the multiplication of the probability of the initial history P (H0)
with i−T+1 rejection probabilities together with the probabilities
of accepting the T − 1 items in the history. There are

(
i−1
T−2

)
pos-

sible different sequences S such that (S compat (i, T − 1)), since
the last element is always accepted. Therefore:

P (HT−1, i|gT−1)

=
P (H0)

P (gT−1)

(
i− 1

T − 2

)
(1− 1

M
)i−T+1

T−1∏
j=1

PE(HT−1[j]|Hj−1)

M

(18)

since the probability of rejecting the kth episode is (1− 1
M

) from
(9), and from (15) the probability of accepting the jth element in
the history on the kth episode is PE (HT−1[j]|Hj−1)

M
.

By Lemma 2, PR(H0) = PE(H0), so:

P (HT−1, i|gT−1)

=
PE(H0)

P (gT−1)

(
i− 1

T − 2

)
(1− 1

M
)i−T+1

T−1∏
j=1

PE(HT−1[j]|Hj−1)

M

(19)

=(PE(H0)

T−1∏
j=1

PE(HT−1[j]|Hj−1))
1

P (gT−1)

∗

(
i− 1

T − 2

)
(1− 1

M
)i−T+1

T−1∏
j=1

1

M

(20)

Where (20) follows by simply reordering the
multiplication. Now by definition, PE(HT−1) =

PE(H0)
∏T−1
j=1 PE(HT−1[j]|Hj−1), so we have:

P (HT−1, i|gT−1)

=PE(HT−1)
1

P (gT−1)

(
i− 1

T − 2

)
(1− 1

M
)i−T+1

T−1∏
j=1

1

M

(21)

Now by induction, PE(HT−1) = PR(HT−1|gT−1), so:

P (HT−1, i|gT−1)

=P (HT−1|gT−1)
1

P (gT−1)

(
i− 1

T − 2

)
(1− 1

M
)i−T+1

T−1∏
j=1

1

M

(22)

Note that
(
i−1
T−2

)
(1 − 1

M
)i−T+1∏T−1

j=1
1
M

is just the probability
of consuming i elements and accepting exactly T − 1 of them
(namely the binomial formula, where the probability of success
(acceptance) is 1

M
), so:

P (HT−1, i|gT−1) = P (HT−1|gT−1)
P (i, gT−1)

P (gT−1)
(23)

By the definition of conditional probability:

P (HT−1, i|gT−1) =P (HT−1|gT−1)P (i|gT−1) (24)

So since P (HT−1, i|gT−1) = P (HT−1|gT−1)P (i|gT−1),
HT−1 ⊥ i|gT−1. Now returning to equation (12) we have:

P (gT , HT−1|gT−1)

=
∑
i

P (gT |gT−1, i)P (HT−1|gT−1, i)P (i|gT−1) (25)

Since HT−1 ⊥ i|gT−1:

P (gT , HT−1|gT−1) (26)

=
∑
i

P (gT |gT−1, i)P (HT−1|gT−1)P (i|gT−1) (27)

=P (HT−1|gT−1)
∑
i

P (gT |gT−1, i)P (i|gT−1) (28)

=P (HT−1|gT−1)
∑
i

P (gT , gT−1, i)

P (i, gT−1)

P (i, gT−1)

P (gT−1)
(29)

=P (HT−1|gT−1)

∑
i P (gT , gT−1, i)

P (gT−1)
(30)

=P (HT−1|gT−1)
P (gT , gT−1)

P (gT−1)
(31)

=P (HT−1|gT−1)P (gT |gT−1) (32)

Where equation (31) follows since i is marginalized out, and
(32) follows by the definition of conditional probability. So equa-
tion (32) tells us that gT ⊥ HT−1|gT−1.

Given this conditional independence,
PR(HT−1|gT , gT−1, . . . , g1) = PR(HT−1|gT−1, . . . , g0),
and PR(HT−1|gT−1, . . . , g0) = PE(HT−1) by induction. So
PR(HT−1|gT , . . . , g0) = PE(HT−1). Therefore, picking up
from (10), we have:

PR(HT |gT , . . . , g0)

=
∑
HT−1

PR(HT |HT−1, gT , . . . , g0)PR(HT−1|gT , . . . , g0)

(33)

=
∑
HT−1

PR(HT |HT−1, gT , . . . , g0)PE(HT−1) (34)

Now observe that, as we showed in Theorem 6.1, given
that we update, the update is drawn from the true distribution
given the current history, namely12 PR(HT |HT−1, gT , . . . , g0) =
PE(HT |HT−1). Plugging this in we have:

PR(HT |gT , . . . , g0) =
∑
HT−1

PE(HT |HT−1)PE(HT−1) (35)

PR(HT |gT , . . . , g0) =
∑
HT−1

PE(HT , HT−1) (36)

Marginalizing out HT−1:

PR(HT |gT , . . . , g0) = PE(HT) (37)

Which completes the induction. All that remains is to show that
the expectation is correct. For any function f over histories of in-
teractions (such as cumulative reward, final reward, etc.),

ER[f(HT)|gT , . . . , g1] =
∑
HT

f(HT)PR(HT |gT , . . . , g1) (38)

Since g0 always occurs we can freely condition on it:

ER[f(HT)|gT , . . . , g1] =
∑
HT

f(HT)PR(HT |gT , . . . , g0) (39)

By (37):

ER[f(HT)|gT , . . . , g1] =
∑
HT

f(HT)PE(HT) (40)

=EE [f(HT)] (41)

Therefore the estimate is unbiased.

Theorem 7.2. Assuming for each T , RA(T) is divided by by
φ = 1 − Binomial(N, 1/M).cdf(T − 1), and after terminating
after k episodes are produced we output 0 as estimates of reward
for episodes k + 1, . . . , N , and M is held fixed throughout the op-
eration of the per-episode rejection sampling replayer, and πe is
known, and πb(e) > 0 → πe(e) > 0 for all possible episodes
e and all πb, then the estimate of reward output at each episode
T = 1 . . . N is an unbiased estimator of RA(T).

Proof. The expectation of reward at episode T can be written as:

ER[RA(T)] =P (gT , ..., g1)ER[RA(T)|gT , ..., g1]

+ P (¬(gT , ..., g1))ER[RA(T)|¬(gT , ..., g1)]
(42)

12Recall that gT implies gT−1, . . . , g0.

where, as above, gT , ..., g1 denotes the probability of not termi-
nating before episode T. If we do not reach epsiode T (the second
case), modified PERS outputs 0, so:

ER[RA(T)] = P (gT , ..., g1)ER[RA(T)|gT , ..., g1] (43)

Now, in the remaining case (that we reach T), we divide the
original value by φ. In theorem 7.1 we showed that the expectation
of the the unweighted estimates conditioned on reaching T was
unbiased, giving us:

ER[RA(T)] = P (gT , ..., g1)
EE [RA(T)]

φ
(44)

Now, since the probability of accepting each episode i is
1/M (see Theorem 7.1, equation (9)) and there are N to-
tal episodes, the probability that we reach episode T (aka
P (gT , ..., g1)) is P (Binomial(N, 1/M) ≥ T) = 1 −
Binomial(N, 1/M).cdf(T − 1) = φ. So:

ER[RA(T)] = φ
EE [RA(T)]

φ
(45)

ER[RA(T)] = EE [RA(T)] (46)

E Experiments
PSRL PSRL leaves open the choice of prior. Additionally, in
many cases, one has additional knowledge that can help speed
learning (for example one may know there is only a certain set
of discrete reward possibilities, or one may know certain transi-
tions are impossible). A convenient way to incorporate this kind of
knowledge, and also simplify the choice of prior, is the relative out-
comes framework (Asmuth et al. 2009). In this setting, at each state
action pair, one of k discrete outcomes occurs. Given a state, action
and outcome, it is possible to deterministically extract the reward
and next state. In theory any MDP can be encoded in this frame-
work, but it gives us the ability to limit the space of possibilities to
speed learning. Given a set of k discrete outcomes, we must clear
a categorical distribution (probability) vector over outcomes. Then
we can use the conjugate prior, a k-dimensional Dirichlet. Since we
did not have any additional information the prior was flat (αi = 1
for all outcomes i).

Details of comparison to model-based The comparison
shown in Figure 2a was done in the SixArms environment (Strehl
and Littman 2004) (Figure 4), an environment with six actions and
seven states. We defined 14 relative outcomes for use with PSRL,
one for remaining put in a state, six for moving to each outer state,
six for staying in the same state and receiving one of the non-zero
rewards, and one for moving to the start state. We treated this a fi-
nite horizon problem, where episodes could be at most length 10.
The algorithm evaluated was PSRL (Osband, Russo, and Van Roy
2013), with 10 posterior samples after each episode.

The model-based approach works by building the MLE MDP
model from data, and sampling from it to generate experience.
Specifically, in the relative outcome setting it need only estimate
the probability of getting any outcome given a state an action, as
well as the distribution over initial outcomes. These were estimated
in the MLE sense, so for example if we had only 1 observed out-
come of o at (s,a), 100% probability was put on o at (s,a). For state-
action pairs with no data, a uniform distribution over outcomes was
used.

To carry out the evaluation, we first calculated the “true” cu-
mulative reward by averaging 1000 runs of PSRL against the true

Figure 4: The SixArms environment. The labels on each
edge are (a, p, r) tuples, where p is the probability of tak-
ing that transition. Image taken from Strehl et al. 2004.

environment. Then, for each evaluator (PSRS and model-based) we
sampled 100 different datasets of 100 episodes from SixArms us-
ing a uniform sampling policy. We then ran 10 complete runs of
the evaluator on that dataset, each of which returned estimates of
cumulative reward. For PSRS, we only reported estimates up to the
minimum evaluation length across those ten runs13. The squared
error was computed between the mean of the 10 runs and the true
cumulative reward curve. Finally, to compute the MSE, the average
over the 100 runs was taken (ignoring cases where no estimate was
returned).

Treefrog Treasure Experiment Setup Treefrog Treasure is
an educational fractions game (Figure 3). The player controls a frog
to navigate levels and jump through numberlines. Our action set is
defined as follows: After giving an in-game pretest we give a first
set of lines, then we want to either increase the difficulty level of
one parameter (e.g. removing tick marks), stay, or go back, which
we encoded as 11 actions. Our reward is terminal and ranges from
-2 to 4. It measures engagement (measured by whether the stu-
dent quit before the posttest) and learning (measured by pretest-
to-posttest improvement). After each step we additionally receive
a binary observation informing us whether the student took more
than 4 attempts on the last pair of lines. The relative outcomes de-
fined for PSRL included either terminating with some reward (-2 -
4) or continuing with one of the two observations. We used a state
space consisting of the history of actions and the last observation.
The true horizon is 5, but for reasons of data sparsity (induced by a
large action space and thus large state space) we varied the horizon
between 3 and 4 in our experiments.

Our dataset of 11,550 players was collected from Brain-
POP.com, an educational website focused on school-aged children.
The sampling policy used was semi-uniform and changed from
day-to-day. We logged the probabilities for use with the rejection-
sampling evaluator, modifying the rejection sampling approaches
slightly to recalculate M at every step based on the changing sam-
pling policy.

For PERS we use14 Algorithm 4 to calculate M , updating it
based both on the change in the algorithm and the change in the

13This was following the approach proposed in (Mandel et al.
2015) to mitigate the bias introduced by having a wide variance in
evaluation lengths, a problem we discuss in section 7.

14With straightforward extensions to handle policies that depend
on both s and t.

sampling policy. We also tried a variant which fixed M so as to
achieve the unbiasedness guarantees in Theorem 7.1. To calculate
this M we upper bounded the probability of an episode under our
candidate distribution by 1, and calculated the minimum probabil-
ity our sampling distribution could place on any episode.15

Further Treefrog Treasure Results We also examined an
increased horizon of 4. Given deterministic policies on this larger
state space, all three methods are more or less indistinguishable
(Figure 5a) ; however, revealing more randomness causes PERS
to overtake PSRS (mean 260.54 vs. 173.52), Figure 5b). As an
extreme case, we also tried a random policy in Figure 5c: this
large amount of revealed randomness benefits the rejection sam-
pling methods, especially PERS, who evaluates for much longer
than the other approaches. PERS outperforms PSRS here because
there are small differences between the random candidate policy
and the semi-random sampling policy, and thus if PSRS enters a
state with little data it is likely to terminate.

Riverswim RiverSwim is described in Figure 6a.
In this domain we defined a space of 5 relative out-
comes: {MovedRight, MovedLeft, Staywith0reward, Stay-
with5/1000reward,Staywith1reward}. To generate histograms over
100 sizes, for each evaluator we sampled 10 datasets of 10000
episodes from this MDP, using a uniform sampling policy, and
used each dataset for 10 runs of evaluation.

The results with 10-sample PSRL are shown in figure 6b.
The per-episode rejection sampler was only able to accept a few
episodes due to their length, while the two state-based evaluators
leveraged the known state space to accept a substantially larger
number of episodes. To more clearly understand sensitivity to re-
vealed randomness, we tested two versions of a random policy:
one which revealed its randomness and one which did not. In the
case where the randomness was hidden (Figure 6c), we see that the
per-episode rejection sampling approach does so poorly it never ac-
cepts any episodes and thus is hard to see on the graph, the per-state
rejection sampling has fairly mediocre performance, and the queue-
based method does the best. This is because the per-state rejection
sampler, by treating the data as a stream, discards a lot of data for
arms it did not choose to pull, unlike the queue-based approach
which only discards data when it is consumed by the algorithm.
We suspect the effect is particularly visible here for two reasons:
(a) There are a small number of states, making it more similar to the
bandit case where Queue does well (Mandel et al. 2015) and (b) the
policy is not explicitly driving exploration towards poorly-visited
states, which often causes both state-based methods to fail fairly
quickly. When the randomness is revealed (Figure 6d), the two re-
jection sampling approaches improve greatly in performance. One
can observe how the per-episode version is self-idempotent (since
the sampling policy was the same as the candidate policy, all 10,000
episodes were accepted) while the per-state is not.

References
Asmuth, J.; Li, L.; Littman, M. L.; Nouri, A.; and Wingate, D.
2009. A bayesian sampling approach to exploration in reinforce-
ment learning. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, 19–26. AUAI Press.

15This is probably fairly close to the minimum fixed M , since
PSRL randomly generates distributions by sampling N times from
the posterior, and we have to consider the worst case over that ran-
domization, which always has a small probability of placing prob-
ability 1 on the minimum-probability episode under the sampling
distribution.

0 20 40 60 80 100 120
Number of episodes per run

0

5

10

15

20

25

30

35

40
P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

Fixed-M PERS

(a) Comparing with 4 timesteps and 1
PSRL posterior sample.

0 100 200 300 400 500 600 700 800
Number of episodes per run

0

5

10

15

20

25

30

35

40

45

P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

Fixed-M PERS

(b) Comparing with 4 timesteps and 10
PSRL posterior samples.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of episodes per run

0

5

10

15

20

25

30

35

40

P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

(c) Comparing a revealed, uniformly-
random policy with 4 timesteps.

Figure 5: Further treefrog experimental results. Recall that in Treefrog treasure, more timesteps means a larger state space.

(a) RiverSwim: A 6-state MDP where
one can either stay to the left for
small reward, or venture nosily to the
right for higher reward. (Osband et al.
2013)

0 20 40 60 80 100
Number of episodes per run

0

20

40

60

80

100

P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

Fixed-M PERS

(b) Comparing on RiverSwim with 10
PSRL posterior samples.

0 2000 4000 6000 8000 10000
Number of episodes per run

0

20

40

60

80

100

P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

(c) Comparing on RiverSwim with a
uniformly-random policy which does not
reveal its randomness. Per-episode rejec-
tion sampling is invisible because it al-
ways accepts 0 samples.

6500 7000 7500 8000 8500 9000 9500 10000 10500
Number of episodes per run

0

20

40

60

80

100

P
e
rc

e
n
t

o
f

ru
n
s

Queue

PSRS

PERS

(d) Comparing on RiverSwim with a
uniformly-random policy which reveals
its randomness. PERS is the fine line at
10,000, since it always accepts all data.

Figure 6: Evaluator data-efficiency results on RiverSwim.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013.
The arcade learning environment: an evaluation platform for gen-
eral agents. Journal of Artificial Intelligence Research 47(1):253–
279.

Chou, K.-C., and Lin, H.-T. 2012. Balancing between estimated
reward and uncertainty during news article recommendation for

ICML 2012 exploration and exploitation challenge. In ICML 2012
Workshop: Exploration and Exploitation, volume 3.

Dudı́k, M.; Erhan, D.; Langford, J.; and Li, L. 2012. Sample-
efficient nonstationary policy evaluation for contextual bandits.
UAI.

Dudı́k, M.; Erhan, D.; Langford, J.; Li, L.; et al. 2014. Dou-

bly robust policy evaluation and optimization. Statistical Science
29(4):485–511.
Fonteneau, R.; Murphy, S.; Wehenkel, L.; and Ernst, D. 2010.
Model-free monte carlo-like policy evaluation. In Thirteenth Inter-
national Conference on Artificial Intelligence and Statistics (AIS-
TATS 2010).
Fonteneau, R.; Murphy, S. A.; Wehenkel, L.; and Ernst, D. 2013.
Batch mode reinforcement learning based on the synthesis of arti-
ficial trajectories. Annals of operations research 208(1):383–416.
Gelman, A.; Carlin, J. B.; Stern, H. S.; and Rubin, D. B. 2014.
Bayesian data analysis, volume 2. Taylor & Francis.
Joulani, P.; Gyorgy, A.; and Szepesvari, C. 2013. Online learning
under delayed feedback. In Proceedings of The 30th International
Conference on Machine Learning, 1453–1461.
Levine, S., and Koltun, V. 2013. Guided policy search. In Proceed-
ings of The 30th International Conference on Machine Learning,
1–9.
Li, L.; Chu, W.; Langford, J.; and Wang, X. 2011. Unbiased of-
fline evaluation of contextual-bandit-based news article recommen-
dation algorithms. In WSDM, 297–306. ACM.
Maei, H. R., and Sutton, R. S. 2010. GQ (λ): A general gradient
algorithm for temporal-difference prediction learning with eligibil-
ity traces. In Proceedings of the Third Conference on Artificial
General Intelligence, volume 1, 91–96.
Mahmood, A. R.; van Hasselt, H. P.; and Sutton, R. S. 2014.
Weighted importance sampling for off-policy learning with linear
function approximation. In Advances in Neural Information Pro-
cessing Systems, 3014–3022.
Mandel, T.; Liu, Y.-E.; Levine, S.; Brunskill, E.; and Popović, Z.
2014. Offline policy evaluation across representations with appli-
cations to educational games. In AAMAS, 1077–1084. IFAAMAS.
Mandel, T.; Liu, Y.-E.; Brunskill, E.; and Popović, Z. 2015. The
queue method: Handling delay, heuristics, prior data, and evalua-
tion in bandits. AAAI.
Mary, J.; Preux, P.; and Nicol, O. 2014. Improving offline evalua-
tion of contextual bandit algorithms via bootstrapping techniques.
In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), 172–180.
Osband, I.; Russo, D.; and Van Roy, B. 2013. (More) efficient rein-
forcement learning via posterior sampling. In Advances in Neural
Information Processing Systems, 3003–3011.
Peshkin, L., and Shelton, C. R. 2002. Learning from scarce expe-
rience. ICML.
Precup, D. 2000. Eligibility traces for off-policy policy evaluation.
Computer Science Department Faculty Publication Series 80.
Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2011. A reduction
of imitation learning and structured prediction to no-regret online
learning. AISTATS.
Strehl, A. L., and Littman, M. L. 2004. An empirical evaluation
of interval estimation for Markov decision processes. In Tools with
Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International
Conference on, 128–135. IEEE.
Strens, M. 2000. A Bayesian framework for reinforcement learn-
ing. In ICML, 943–950.
Sutton, R. S.; Mahmood, A. R.; and White, M. 2015. An emphatic
approach to the problem of off-policy temporal-difference learning.
arXiv preprint arXiv:1503.04269.
Thomas, P. S.; Theocharous, G.; and Ghavamzadeh, M. 2015. High
confidence off-policy evaluation. AAAI.

