
Efficient Bayesian Clustering for Reinforcement Learning

Travis Mandel1, Yun-En Liu2, Emma Brunskill3, and Zoran Popović1,2
1Center for Game Science, Computer Science & Engineering, University of Washington, Seattle, WA

2EnlearnTM, Seattle, WA
3School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

{tmandel, zoran}@cs.washington.edu, yunliu@enlearn.org, ebrun@cs.cmu.edu

Abstract
A fundamental artificial intelligence challenge is
how to design agents that intelligently trade off ex-
ploration and exploitation while quickly learning
about an unknown environment. However, in order
to learn quickly, we must somehow generalize ex-
perience across states. One promising approach is
to use Bayesian methods to simultaneously cluster
dynamics and control exploration; unfortunately,
these methods tend to require computationally in-
tensive MCMC approximation techniques which
lack guarantees. We propose Thompson Cluster-
ing for Reinforcement Learning (TCRL), a fam-
ily of Bayesian clustering algorithms for reinforce-
ment learning that leverage structure in the state
space to remain computationally efficient while
controlling both exploration and generalization.
TCRL-Theoretic achieves near-optimal Bayesian
regret bounds while consistently improving over
a standard Bayesian exploration approach. TCRL-
Relaxed is guaranteed to converge to acting opti-
mally, and empirically outperforms state-of-the-art
Bayesian clustering algorithms across a variety of
simulated domains, even in cases where no states
are similar.

1 Introduction
Developing agents that trade off exploration and exploitation
while making decisions under uncertainty is a fundamental
problem in AI, with applications in domains such as health-
care, robotics, and education. Typical solutions, based on op-
timism under uncertainty, treat under-sampled states and ac-
tions as high-value to encourage exploration. However, re-
cent breakthroughs have come from observing that a non-
optimistic Bayesian posterior sampling approach [Thomp-
son, 1933] can outperform optimistic methods empirically
[Chapelle and Li, 2011; Osband et al., 2013], while achiev-
ing strong theoretical guarantees [Agrawal and Goyal, 2013;
Osband et al., 2013].

Another fundamental problem is that of generalization.
We typically know a ground state space, but learning over
it directly can be slow due to data sparsity. In many cases,
there are similarities between states, which can be exploited

to speed learning. Much work seeks to find these similari-
ties in order to aggregate the state space [McCallum, 1996;
Chapman and Kaelbling, 1991; Lin and Wright, 2010], and
there is a rich literature on other feature-based generalization
approaches such as deep neural networks [Mnih et al., 2015].

These problems are usually solved separately. Either we
explore/exploit without generalization (e.g. [Osband et al.,
2013; Auer and Ortner, 2007]), or we learn to generalize
while including some amount of random exploration (e.g.
[Timmer and Riedmiller, 2006; McCallum, 1996]). These ar-
eas are non-trivial to combine because acting with respect to
a representation which is too compact may prevent us from
collecting the kind of data necessary to refine it. To do both
at once, we need some uncertainty over not just the transi-
tions and rewards given the most likely representation, but
also over the representation itself. Ideally, we could tackle
exploration and generalization simultaneously in a way that
guarantees asymptotically optimal performance, while also
ensuring good performance given limited data. However, this
is more challenging and has been less well-studied, especially
if we desire powerful nonlinear generalization methods such
as clustering.

A Bayesian approach to clustering state dynamics might
be to use a prior that specifies states which are likely to share
parameters, and sample from the resulting posterior to guide
exploration. With limited data, this approach will prefer a
smaller model and improve initial performance, but perfor-
mance will continue to improve as more data leads us to con-
sider dissimilar states to be distinct. However, sampling ex-
actly from a clustering prior is intractable, as there are O(nn)
interdependent clusterings to consider among n states. There-
fore, past work has used Gibbs sampling, an MCMC tech-
nique, to sample approximately from a clustering prior [As-
muth et al., 2009]; unfortunately, these methods are compu-
tationally expensive and lack guarantees except in the limit of
infinite runtime.

We propose Thompson Clustering for Reinforcement
Learning (TCRL), a family of simple-to-understand Bayesian
algorithms for reinforcement learning in discrete MDPs with
a medium/small state space. TCRL carefully trades off ex-
ploration and exploitation using posterior sampling while
simultaneously learning a clustering of the dynamics. Un-
like MCMC approaches, both variants of TCRL are com-
putationally efficient, run quickly in practice, and require

no parameter tuning. TCRL-Theoretic achieves near-optimal
Bayesian regret bounds, while improving empirically over a
standard Bayesian exploration approach. And TCRL-Relaxed
is guaranteed to converge to optimal behavior while empiri-
cally showing substantial improvement over state-of-the-art
Bayesian state clustering algorithms across a variety of do-
mains from the literature, even when no states are similar.

2 Setting and Background
We consider Markov decision problems, but depart slightly
from the standard Markov Decision Process (MDP) formu-
lation by defining the dynamics in terms of relative out-
comes [Leffler et al., 2007; Asmuth et al., 2009]. Relative
outcomes are useful in situations where a small number of
events can summarize the dynamics, although they can en-
code any MDP. Specifically, we assume a discrete state space
S and an action set A. In addition, one is given a set of rel-
ative outcomes O such that after taking an action a ∈ A
from a state s ∈ S the agent observes an outcome o ∈ O.
The agent knows the reward function R(s, a, o), which de-
terministically outputs a scalar value in [rmin, rmax], and
the transition function T (s, a, o), which deterministically out-
puts a next state s′. However, it does not know the dis-
tribution over relative outcomes at each state. Experience
comes in episodes of maximum length τ . The goal of the
agent is to learn from experience to maximize the sum of
rewards over time. For example, in an educational setting
the state might be a partial history of problems and re-
sponses, an action might be to give a problem, and the out-
comes indicate the student response, giving us reward and
allowing us to determine how to update the state. In keep-
ing with past posterior sampling work [Osband et al., 2013;
Asmuth et al., 2009], we focus on state spaces small enough
to plan in exactly.

PSRL Posterior Sampling for Reinforcement Learning
(PSRL) [Osband et al., 2013; Strens, 2000] translates pos-
terior sampling [Thompson, 1933], a state-of-the-art explo-
ration/exploitation method [Chapelle and Li, 2011], to rein-
forcement learning over an MDP. Given a prior distribution
over possible MDPs, PSRL samples an MDP from the pos-
terior, solves the sampled MDP, and then runs that policy for
an episode. Despite this very general formulation, the existing
PSRL work in the non-factored MDP setting [Osband et al.,
2013] learns the parameters of each state in S independently,
due to the independent paramater priors used.

3 Related Work
Combining generalization with state-of-the-art explo-
ration A small amount of past work has explored simultane-
ously generalizing and using state-of-the-art methods to con-
trol exploration in a way that provides guarantees. Typically
such generalization has been guided by known properties of
the environments, such as linear-quadratic systems [Abbasi-
Yadkori and Szepesvári, 2011] or factored MDPs with known
structure [Osband and Van Roy, 2014]. We are not aware of
another approach which combines powerful nonlinear gen-
eralization with state-of-the-art exploration in a way that is

guaranteed to both run efficiently and converge to optimal be-
havior.

General State Aggregation Generalization in reinforce-
ment learning is widely studied. Due to space, we discuss
the most related work, state aggregation. Typically, these ap-
proaches focus on aggregating states instead of state-action
pairs, aside from some recent work on aggregating state-
action pairs given a fully-specified model [Anand et al.,
2015], and work considering homomorphisms among actions
when clustering at the state level [Taylor et al., 2009]. State
aggregation work often lacks formal guarantees [Lin and
Wright, 2010; Timmer and Riedmiller, 2006; Singh et al.,
1995]. Limited work has focused on careful exploration while
clustering, either in deterministic systems [Timmer and Ried-
miller, 2007], when selecting among a small number of mod-
els/aggregations [Ortner et al., 2014] or when clustering is
used solely to decrease computation [Ortner, 2013].

Further, we focus on clustering dynamics, not states: clus-
tered states share similar relative outcomes, but may have
different values and transitions. Thus the focus here is not
on speeding planning but on more efficient learning. Related
work clustering outcome dynamics either assumes a known
clustering [Leffler et al., 2007; Brunskill et al., 2009] or
makes additional assumptions, e.g. that states can be clustered
in a very small number of ways [Diuk et al., 2009].

Bayesian State Aggregation iPOMDP [Doshi-Velez,
2009] is a Bayesian method to learn in a POMDP environ-
ment while growing the state space. iPOMDP lacks guaran-
tees when run for a finite time, is quite computationally ex-
pensive, and it is unclear how to leverage a known MDP state
space in iPOMDP.

Bayesian RL Work in Bayesian reinforcement learning
(e.g. [Guez et al., 2013; Wang et al., 2005]) provides meth-
ods to optimally explore while learning an optimal policy.
However, these approaches are typically computationally in-
tractable, and are based on maximizing discounted returns
across episodes which can lead to incomplete learning [Scott,
2010], in contrast to our approach which is guaranteed to con-
verge to optimal behavior.

BOSS The most related work is Best of Sampled Set
(BOSS) [Asmuth et al., 2009] which uses posterior sampling
(with added optimism), and an (optional) clustering prior.
Its theoretical guarantees are contingent upon drawing ex-
act samples from the posterior, but empirically BOSS only
draws approximate samples when using a clustering prior.
BOSS clusters dynamics on a state-level, in contrast to our
more flexible state-action clustering method. We experimen-
tally compare to an enhanced version of their MCMC-based
clustering method.

4 TCRL
Although PSRL (see Section 2) has good theoretical and em-
pirical performance, Osband et al. 2013 uses priors which
treat the parameters of each state as independent (unless fac-
tored structure is known [Osband and Van Roy, 2014]). This
leaves room for improvement by considering richer priors,
such as assuming (some) nearby states share similar relative
outcomes. For example, honking a horn on a robotic car likely

has the same effect in most places, while the effects of turning
are highly state-dependent. A good clustering of dynamics
across state-action pairs would help us require less data about
honking while preserving the distinction between turning in
different locations.

A principled way to approach this problem is to formal-
ize the intuition that many state-action pairs are similar as a
clustering prior, and use it in the PSRL framework [Osband
et al., 2013]. Ideally we could sample exactly from this clus-
tering prior; however, this is known to be intractable. Past
work [Asmuth et al., 2009] used MCMC approaches to draw
an approximate sample given such a prior, but this approach
is computationally expensive, sensitive to initialization, and
lacks guarantees.

Here we present Thompson Clustering for Reinforcement
Learning (TCRL), a family of approaches each of which
leverage the structure of the state space1 to efficiency clus-
ter while simultaneously retaining good performance without
a need for parameter tuning. The key idea of our TCRL ap-
proaches is that they prefer to cluster states that are nearby in
the original state space. Although it may be possible to con-
struct examples where this causes TCRL to underperform, we
believe this is a good fit for many real-world domains. For
example, in e-commerce, a user’s preferences are unlikely to
drastically change after a single advertisement. Or in educa-
tion, the state of a student is unlikely to change much after a
single problem.

We introduce two specific algorithms which vary in the de-
tails of how this structure is used: TCRL-Relaxed and TCRL-
Theoretic. However, both of these approaches cluster states
separately for each action, ensuring a more flexible represen-
tation than an typical state-clustering approach.

4.1 Preliminaries: Choosing among a small
number of clusterings

Let us first examine the simplified case of clustering the dy-
namics of two states, A and B, given some fixed action a.
This will form a key building block for our approaches. One
can define a prior probability P (C), where C is the event
that the two states are clustered (i.e. share identical dynamics
given a). Given a set of data D (consisting of (s, a, o) tuples
where s = A or s = B), we then need to compute P (D|C)
and P (D|¬C). Once these are computed we can compute the
posterior probability that these states are clustered2 :

P (C|D) =
P (D|C)P (C)

P (D|C)P (C) + P (D|¬C)P (¬C)
. (1)

Associated with the pair (s, a) is a continuous param-
eter vector ~θ, where the ith component θi denotes the

1By structure, we refer to properties that can be deduced without
any data, specifically the topology of the space as indicated by the
transitions and rewards possible due to the relative outcomes, as well
as the location of the start state.

2Note that this is just an application of Bayes’ Rule: We compute
P (D,C) and P (D,¬C) and then normalize. This approach bears a
close connection to the Bayes Factor (and likelihood ratio) tests for
comparing two competing hypotheses.

Figure 1: The balanced tree TCRL-Theoretic constructs in
this gridworld if east children are processed before south chil-
dren. S is the start state; the arrows go from parents to children
in the tree. After constructing the tree, we cluster. Clustering
options are shown for the 2nd layer of the tree.

probability of generating the ith relative outcome given s
and a. Then P (D|C) can be computed as P (D|C) =∫
P (D|~θ, C)P (~θ|C)d~θ and similarly for P (D|¬C). Since ~θ

are the parameters of a categorical distribution over relative
outcomes, the conjugate prior is a Dirichlet, and a closed-
form solution to this integral for Dirichlet distributions is
well-known. For N observations, the Dirichlet has param-
eters α1, . . . , αN , and the integral is P (D|α1, . . . αN) =∫
P (D|~θ)P (~θ|α1, . . . αN)d~θ which is equal to:

Γ(
∑
i αi)

Γ(
∑
i ni + αi)

N∏
i=1

Γ(ni + αi)

Γ(αi)
, (2)

where ni is the number of occurrences of the ith outcome in
the dataset.

To compute P (D|C), we first sum up the counts of the
data over both A and B, that is let ni = ni,A + ni,B ,
and then compute the probability of the data as in (2). To
compute P (D|¬C), since states A and B are separate, their
respective datasets DA and DB are conditionally indepen-
dent given ¬C, so we can simply multiply the likelihoods.
P (DA, DB |¬C) = P (DA|¬C)P (DB |¬C), so:

P (DA, DB |¬C) = P (DA| ~αA)P (DB | ~αB). (3)

So, if we are given two states, we can sample from a simple
clustering posterior exactly in constant time. Similarly, if we
have a very small number of different clusterings we wish to
choose between (e.g. all clustered, predefined half clustered,
none clustered), we simply calculate the data likelihood for
each cluster using equation (2) and multiply across clusters
as in equation (3). However, so far we have not addressed
how to scale up in order to perform clustering over a full state
space. TCRL-Theoretic and TCRL-Relaxed offer two differ-
ent solutions to this problem.

4.2 TCRL-Theoretic
There are O(nn) interdependent clusterings to consider
among n states, so, if we wish to generate an exact sam-
ple from a posterior efficiently, we must reduce the cluster-
ing space. TCRL-Theoretic utilizes the structure of the state
space to reduce the space of clusterings in a way that (as we
will show experimentally) is sufficient to enable improve-
ments in learning, while retaining near-optimal theoretical
guarantees on the expected Bayesian regret. The general ap-
proach to reducing the space is to partition the states into

independent groups, and then within each group propose a
small number of clusterings.

To automatically construct this breakdown a priori, we rely
on the structure of the MDP state space. Specifically, our al-
gorithm creates a tree where the nodes are states and the root
is the provided start state. The goal is to ensure the tree is
fairly balanced, but at the same time ensure that states which
are closely connected in the original MDP are closely con-
nected in the tree. To achieve this we traverse the state-space
starting from the start state, in a breadth-first fashion, where
the traversal follows the transitions that are a priori possible
due to the set of possible outcomes. However, since we wish
the tree to be roughly balanced and binary, the procedure is
complicated by the fact that each state may not have exactly
two children. Therefore we use a subroutine getTwoChil-
dren(p) which initiates another breadth-first traversal starting
at state p looking for two unseen children to add as children
of p. One complication here is that, since transitions may be
one-directional, we may orphan nodes. To avoid this we first
make sure to include likely orphans as children (immediate
children of p without a link back to p). Any remaining or-
phans are added in a postprocessing step. See Figure 1 for an
example, and algorithm 4 in section 8 for pseudocode detail-
ing how the tree is constructed.

Given a tree, a natural way to reduce the number of clus-
terings is to cluster only within each depth. However, further
reduction is needed as each depth is still too large to allow us
to consider all possible clusterings within it. Given that the
tree structure tends to put nodes which are closer in the origi-
nal state space graph closer in the tree (for example see Figure
1), it generally seems reasonable to say that states which have
the same parent are more likely to cluster than nodes which
only share the same grandparent, etc. So for each depth d we
consider only O(log n) clusterings: clustered by depth d (un-
clustered), clustered by depth d− 1 (states with same parents
clustered together), clustered by depth d−2 (states with same
grandparents clustered together),. . . clustered by depth 0 (ev-
erything clustered), which allows us to naturally interpolate
between different levels of clustering at each depth. See Fig-
ure 1 for an example. For each depth d we use a prior on this
clustering scheme which puts 0.5 probability on uncluster-
ing and 0.5

d on clustering by the other depths. The reason for
putting more probability mass on the unclustered hypothesis
is to reduce the risk of clustering too aggressively.

Next we calculate the probability of each of the clusterings
at each depth using Bayes rule, as explained in Section 4.1.
After building the tree and sampling a clustering, we sample
the parameters of the MDP and solve it to produce the policy
to run during the next episode. For details see Algorithm 1.

The runtime of the clustering step is O(log2 n), allowing
the procedure to remain highly efficient and scalable. Note
that a large part of the benefit is due to the independence
among clustering decisions between depths: the total number
of possible clusterings is O((log n)logn), so this does not re-
duce to making the total number of clusterings very small, un-
like some previous work [Diuk et al., 2009; Vien et al., 2013;
Ortner et al., 2014].

Note that TCRL-Theoretic samples exactly from the poste-
rior at each step. This allows us to bound the expected regret

Algorithm 1 TCRL-Theoretic
1: Input: MDP with unknown dynamics, initial state I
2: tree = BUILDBALANCEDTREE(I)
3: for e = 1 to∞ do
4: for a ∈ A do
5: Ca = DOCLUSTER(tree)
6: Sample parameters θac for each cluster c ∈ Ca
7: Create MDP M, using parameters θac
8: Solve M to get an optimal policy π
9: Run π for an episode and update posterior

10: procedure DOCLUSTER(tree)
11: clustersF = {}
12: for depth = 1 to tree.maxDepth do
13: probs = {}, clusters = {}
14: depthNodes = tree.getStatesAtDepth(depth)
15: for d = 0 to depth do
16: prior = 0.5/depth
17: if d = depth then prior = 0.5
18: clusters[d]={}
19: for s in depthNodes do
20: ancestor = tree.getAncestorAtDepth(s, d)
21: clusters[d][ancestor].add(s)
22: probs[d] = prior ∗∏

a∈clusters[d].keys() a.logLikelihood(data)
23: (likelihood computed per (2) with ∀i, αi = 1)
24: dF ∼ normalize(probs)
25: clustersF.add(clusters[dF])
26: return clustersF
27: end procedure

of TCRL-Theoretic. We define regret as in Osband et al. [Os-
band et al., 2013]: R(T) =

∑dT/τe
e=1 V ∗ − Vπe

, where V ∗ is
the optimal expected per-episode reward, and Vπe

is the ex-
pected reward of running the policy generated at episode e,
πe, for one episode. Now we present the following theorem.

Theorem 4.1. The Bayesian regret of TCRL-Theoretic is at
most:

O((rmax − rmin)τ |S|
√
|A|T log(|S||A|T)).

Theorem 4.1 does not require a separate proof as it fol-
lows directly from the guarantees of PSRL [Osband et al.,
2013], the only difference being scaling to [rmin, rmax] due
to the rewards not necessarily being in [0, 1]. Note that this
is a Bayesian bound, which means that it applies assuming
MDPs are truly drawn from the (in our case clustering) prior
distribution; however, there is a close connection between fre-
quentist and Bayesian regret [Osband et al., 2013].

4.3 TCRL-Relaxed
In order to sample exactly from the posterior (and thus re-
tain the regret bounds of PSRL) while remaining efficient,
TCRL-Theoretic restricts the set of clusterings severely, by
only considering clusterings within each depth. A richer set of
possible clusterings would likely improve performance if we

Figure 2: The first 4 clustering decisions that could be made
by TCRL-Relaxed on an example DAG. In this run TCRL-
Relaxed chose not to cluster first pair of states.

could sample over them efficiently. TCRL-Relaxed is an ap-
proximate posterior sampling method that lacks regret guar-
antees, but it allows more powerful clusterings, remains com-
putationally efficient, and is guaranteed to converge to the op-
timal policy in the true (unclustered) MDP.

TCRL-Relaxed uses a semi-greedy agglomerative cluster-
ing approach. For each action it iterates through pairs of
states, clustering them based on the procedure for cluster-
ing two states (Section 4.1). Note that, in contrast to TCRL-
Theoretic, this is an approximation because the clustering de-
cisions of future states are dependent on how we clustered
past states, but we do not integrate over future clustering de-
cisions when calculating the probability of clustering a pair.

In order to define the sequence of pairwise clustering deci-
sions, we exploit structure in the state space to build a directed
acyclic graph (DAG). To construct this DAG, we traverse the
state space in a breadth-first fashion, ignoring states we have
seen before, following edges based on the possible transitions
(as defined by relative outcomes) from any given state. All
parents of a state s which we reach before s are considered its
parents in the DAG (and therefore, their ancestors are also the
ancestors of s). Note that unlike TCRL-Theoretic, we do not
attempt to balance the DAG. See algorithm 3 in section 8 for
full details about how the DAG was constructed.

For each node, we walk through its ancestors in the DAG,
testing whether the node (and all others clustered with it so
far) can be added to the cluster of the next ancestor. See Fig-
ure 2 for an example, and Algorithm 2 for the pseudocode.
Although clustering only with ancestors has its limitations
(siblings cannot be directly clustered, although they can indi-
rectly cluster through a common parent), ancestors are likely
to have much more data than siblings as they are closer to
the start state, so the benefit of clustering with them is larger.
Further, clustering only with ancestors can often greatly in-
crease computational efficiency (from O(n2) to O(n log n) if
the state space is naturally balanced).

Theorem 4.2. TCRL-Relaxed converges to optimal behavior
in the limit of infinite experience.

Proof. Recall we are in the finite-horizon setting, where ex-
perience comes in episodes of maximum length τ . First, we
show that if, under an optimal policy π∗ in the true MDP,
state-action pair (s,a) could be visited, it will be visited an
infinite number of times by TCRL-Relaxed. Consider the de-
cision of whether to cluster state A with a cluster C. Con-

Algorithm 2 TCRL-Relaxed
1: Input: MDP with unknown dynamics, initial states I
2: for e = 1 to∞ do
3: for a ∈ A do
4: Ca = DOCLUSTER(I)
5: Sample parameters θac for each cluster c ∈ Ca
6: Create MDP M, using parameters θac
7: Solve M to get an optimal policy π
8: Run π for an episode and update posterior
9: procedure DOCLUSTER(I)

10: dag = BUILDDAG(I), clusters = {}
11: for s ∈ dag.TraverseBreadthFirst() do
12: clusters[s] = [s], aClusters = []
13: for anc ∈ dag.getAncestors(s) do
14: aClusters.union(clusters[anc])
15: for ac ∈ aClusters do
16: if SAMPLEMERGE(ac, clusters[s]) then
17: ac.add(clusters[s])
18: for s’ in clusters[s] do:
19: clusters[s’] = ac
20: return clusters
21: end procedure
22: procedure SAMPLEMERGE(s1,s2)
23: Compute posterior probability using data based on

eqns (2) and (1), using a prior of 0.5 and ∀i, αi = 1
24: Return true with posterior probability, false otherwise
25: end procedure

sider the case where C is composed of one or more states that
share true parameters θC , but these are different from A’s true
parameters θA. Observe that when making this decision, the
probability of choosing not to cluster is always non-zero and
goes to one as more data is collected from A and C due to the
consistency of the Bayesian hypothesis test. Since this prob-
ability is nonzero and approaches one for every A and C, we
must sample a valid clustering (that is, one where no states
with truly different parameters are clustered) an infinite num-
ber of times. As in PSRL, one we have a clustering we sample
a policy according to the probability it is truly optimal given
that clustering. Since, given a valid clustering, the probability
of π∗ being optimal is always non-zero and should converge
to some non-zero value (1 if it is unique, 1/q if there are q
optimal policies), then across an infinite number of rounds,
π∗ will be sampled an infinite number of times. So any (s,a)
occurring in π∗ will be sampled an infinite number of times.

Next we show that the distribution over outcomes at any
(s,a) pair in the sampled MDP will either converge to the true
distribution or be sampled a finite number of times. The only
way that the outcome distribution of (s,a) does not converge
to its true value in the limit of infinite samples is if it is clus-
tered with at least one pair (s’,a) with different parameters.
However, if (s’,a) is also sampled an infinite number of times,
the Bayesian hypothesis test will uncluster the two states with
probability approaching 1. And if (s’,a) is sampled only a fi-
nite number of times, the samples will be overwhelmed by the
samples from (s,a) and thus still converge to the true values.

At each episode we select one of a finite number of pos-

sible deterministic policies to deploy. So for a contradiction,
assume that in the limit of infinite data, with probability ε > 0
we choose a policy π̂ with expected reward worse than π∗. In
this case, we know that since π̂ is sampled an infinite num-
ber of times, the outcome distributions for the (s,a) pairs that
could be visited under π̂ will converge to the true distribu-
tions. Therefore, the value of π̂ in the sampled MDP will
converge to its true value. However, as we showed above, any
(s,a) pairs that appear in π∗ will also be sampled an infinite
number of times, so the value of π∗ will converge to its true
value in the sampled MDP. Since the value of π∗ is by defi-
nition greater than π̂, and the planning step picks the optimal
policy in the sampled MDP, we will converge to putting zero
probability on π̂, a contradiction.

5 Simulation Results
Here we test performance on several MDP environments, av-
eraging results over 100 runs unless otherwise indicated.

Baselines First, to evaluate the usefulness of clustering,
we compare against a straightforward tabular approach which
does not generalize between states: PSRL with independent
parameter priors. Second, we compare TCRL to a powerful
MCMC clustering method similar to that used in BOSS [As-
muth et al., 2009]. Specifically, we take the Chinese restau-
rant process (CRP) prior used as the BOSS cluster prior [As-
muth et al., 2009], and improve it by clustering states sepa-
rately for each action, so that this approach, like TCRL, per-
forms clustering of state-action pairs. Given this prior and
an action, a typical Gibbs sampling approach is used follow-
ing Asmuth et al. 2009, where we repeatedly iterate through
states, sampling from the conditional distribution over clus-
ters for the current state given that the clustering of the other
states is fixed. As with the TCRL approaches, after we sam-
ple a clustering we sample the parameters from each state to
get an MDP, and then solve the MDP to obtain the policy to
use for the next episode.

This baseline MCMC clustering method has several pa-
rameters; unfortunately, it is not always clear how to set them.
First α, the CRP concentration parameter must be set. We
choose the value of 0.5 recommended3 by Asmuth et al. 2009.
Second, since MCMC has no clear termination criterion, we
must choose how long to run it. Since fast runtime is of-
ten very important, we control for time by, at each iteration,
first running TCRL-Relaxed, and then running MCMC for
the amount of time TCRL-Relaxed took. Note that control-
ling for time is always a somewhat inexact science (we are
not claiming to have fully optimized either MCMC or TCRL
methods). For environments similar to those studied by As-
muth et al. 2009, we also compare running MCMC for the
fixed number of iterations (i.e. sweeps across all variables)
recommended4 by Asmuth et al. 2009. Finally, one must set
the initialization for MCMC. We compare two logical al-
ternatives: Either all states are initialized in a single clus-

30.5 was recommended for Chain (similar to Riverswim). We
found 0.5 to work better in MarbleMaze than the recommended
value of 10.0, and to avoid tuning α, we fix α = 0.5.

4We used 500 iterations in Riverswim (recommended for Chain,
a similar environment), and 100 as recommended for Marble Maze.

Method RiverSwim MarbleMaze
MCMC-Separate-Long 290.38 ms 1253.47 ms
TCRL-Relaxed 0.47 ms 4.72 ms
TCRL-Theoretic 0.23 ms 1.28 ms

Table 1: Average time to sample a single clustering on River-
Swim and MarbleMaze

ter (MCMC-Together), or all states are initialized in separate
clusters (MCMC-Separate). We label the fixed iterations vari-
ant MCMC-Separate-Long.

Riverswim RiverSwim [Strehl and Littman, 2008] is a 6-
state chain MDP previously used to showcase PSRL [Osband
et al., 2013]. For a diagram and complete description of the
environment, see [Osband et al., 2013]. We used a horizon of
20 and defined 5 relative outcomes for moving left and right
or staying with some reward. The results n this environment
(Figure 3) show that MCMC-Together performs poorly, be-
ing unable to uncluster sufficiently given limited time. Inter-
estingly, despite being given more runtime, MCMC-Separate-
Long performs worse than MCMC-Separate, perhaps because
the short runtime means MCMC-Separate is more likely to
avoid over-clustering. TCRL-Theoretic matches the perfor-
mance of the best MCMC approach, while TCRL-Relaxed
performs uniformly better than any MCMC approach. In Ta-
ble 1, we found the TCRL approaches to be over 600x faster
in this environment than a typical MCMC approach.

MarbleMaze MarbleMaze [Asmuth et al., 2009; Russell
et al., 1994] is a 36-state gridworld MDP previously used to
showcase the benefit of MCMC clustering in BOSS [Asmuth
et al., 2009]. For a diagram and complete description of the
environment, see [Asmuth et al., 2009]. We used a horizon
of 30 and a set of 5 outcomes denoting whether the agent
moved in each cardinal direction or hit a wall (in keeping
with past work [Asmuth et al., 2009], the coordinates of the
goal and pits are assumed to be known). In Figure 4 we see
that TCRL-Relaxed outperforms PSRL and the time-limited
MCMC variants by a large margin, while MCMC-Separate-
Long appears to slightly outperform it. However, in Table 1
we see in our experiment that variant took over 200x times
longer than TCRL-Relaxed. By the end of 1000 episodes,
TCRL-Theoretic also outperforms both time-limited MCMC
variants. Interestingly, we see that MCMC-Together starts off
much better than MCMC-Separate (and PSRL), but over time
begins to flatten off, and by 500 episodes MCMC-Separate
and PSRL are poised to overtake it. This is likely because
aggressive clustering boosts early performance, but in order
to reach optimal performance more and more distinctions are
needed, which MCMC-Together is unable to make given lim-
ited time. On the other hand, MCMC-Separate does not ap-
pear to improve much over PSRL, likely because it has insuf-
ficient time to identify useful clusterings.

SixArms Six Arms [Strehl and Littman, 2008] is a 7-state
MDP arranged in a spoke pattern, where each of the six outer
states has very different dynamics/rewards, which presents a
challenge for an approach based on clustering. For a diagram
and environment description, see [Strehl and Littman, 2008].
We used a horizon of 10 and 14 relative observations: mov-

0 10 20 30 40 50
Episodes

0

20

40

60

80

100
C

u
m

u
la

ti
v
e
 R

e
w

a
rd

MCMC-Separate-Long
MCMC-Together
MCMC-Separate
TCRL-Relaxed
TCRL-Theoretic
PSRL
Optimal

Figure 3: RiverSwim Results.

0 100 200 300 400 500
Episodes

−300

−200

−100

0

100

200

300

C
u

m
u

la
ti

v
e
 R

e
w

a
rd

MCMC-Separate-Long
MCMC-Together
MCMC-Separate
TCRL-Relaxed
TCRL-Theoretic
PSRL
Optimal

Figure 4: Marble Maze Results.

0 500 1000 1500 2000
Episodes

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

C
u

m
u

la
ti

v
e
 R

e
w

a
rd

MCMC-Together
MCMC-Separate
TCRL-Relaxed
TCRL-Theoretic
PSRL
Optimal

Figure 5: SixArms Results.

ing to each outer state, staying with different rewards, and
moving to the inner state. As expected, in Figure 5 we see
that TCRL-Theoretic and the MCMC approaches struggle to
improve over PSRL. However, TCRL-Relaxed shows a ma-
jor improvement over PSRL and both time-limited MCMC
variants. The fact that a clustering approach is able to im-
prove over PSRL in the setting illustrates the potential benefit
of state-action clustering: even though no states are similar
in this domain, many (s,a) pairs are. We also observed that
TCRL-Relaxed frequently clusters (s,a) pairs that have dif-
ferent dynamics if they are in low-value regions of the state
space where we have less data and distinguishing dynamics is
less important, allowing it to focus on improving performance
in the higher-value areas.

200-state environment Next we examined a larger 200-
state gridworld featuring one-dimensional walls [Johns and
Mahadevan, 2007], with an added start state in the bottom-
right corner. For a diagram see [Johns and Mahadevan, 2007].
The setup is similar to MarbleMaze, except that we chose the
reward to be 100 for reaching the goal and -1 for each step
taken, and since the problem was harder we used a longer
horizon of 50 and averaged over 20 (instead of 100) runs.
In Figure 6, the approaches which can aggressively clus-
ter (TCRL-Relaxed, MCMC-Together, and TCRL-Theoretic)
greatly outperform those that do little or no clustering (PSRL
and MCMC-Separate), demonstrating the importance of gen-
eralization in larger environments. Here MCMC-Together
performs similarly to TCRL-Relaxed, probably because most
states share identical dynamics in this mostly empty grid-
world and thus a highly nuanced clustering is not required.

6 Discussion
Overall, TCRL-Relaxed leverages the structure of the state
space along with its pairwise Bayesian clustering to outper-
form PSRL and either choice of time-limited MCMC ini-
tialization, with the exception of the 200-state grid where
it matched the best MCMC variant. TCRL-Theoretic, al-
though worse in performance than TCRL-Relaxed, always
improves over PSRL, typically by a substantial amount, and
has stronger guarantees. In contrast to TCRL which requires
no parameter tuning, MCMC is extremely sensitive to ini-
tialization when time-limited. In the 200-state grid, initializ-
ing together does well and initializing separately does very
poorly, but the opposite is true in RiverSwim. Using a large

0 100 200 300 400 500
Episodes

−10000

0

10000

20000

30000

C
u

m
u

la
ti

v
e
 R

e
w

a
rd

MCMC-Separate
MCMC-Together
TCRL-Relaxed
TCRL-Theoretic
PSRL
Optimal

Figure 6: Results in the 200-state environment.

number of MCMC iterations (as specified by [Asmuth et al.,
2009]) can improve performance, but in our experiments do-
ing this takes 200x-600x longer than TCRL-Relaxed. Further,
our MarbleMaze results show variants of MCMC can level off
before reaching optimal performance, in contrast to TCRL.
Finally, we find it encouraging that in SixArms, where we
expected clustering to have little benefit, TCRL-Relaxed is
able to improve.

7 Conclusion
In this work we developed TCRL-Theoretic and TCRL-
Relaxed, two Bayesian approaches which allow us to gen-
eralize across states via clustering the dynamics while care-
fully controlling exploration. Unlike typical MCMC ap-
proaches, our techniques have no parameters to tune, and
exploit the structure of the state space to remain computa-
tionally efficient. Further, TCRL-Relaxed is guaranteed to
achieve optimal performance, while TCRL-Theoretic has
stronger guarantees of achieving near-optimal Bayesian re-
gret. We showed in simulation that our approaches improve
over PSRL, with TCRL-Relaxed typically also outperforming
both time-limited MCMC approaches by a substantial mar-
gin. One limitation we hope to address in future work is that
TCRL struggles to scale to very large state spaces, in part due
to the complexity of the required offline planning step. Ap-
proximate or online planning may be helpful here. Also, it
would be interesting to investigate larger or continuous out-
come spaces.

8 Appendix

Algorithm 3 Subroutine for TCRL-Relaxed
procedure BUILDDAG(I)

fringe = [I], seen = [], ancestors = {}, clusters = {}
while fringe is not empty do

s = fringe.pop()
if s ∈ seen then continue
seen.add(s);
for child ∈ s.children() do . s.children() returns all children reachable after taking some action and observation.

if child ∈ seen then continue
ancChild = ancestors[s].add(s)
if child ∈ fringe then

ancestors[child].add(ancChild)
else

fringe.add(child)
ancestors[child] = ancChild

end procedure

Algorithm 4 Subroutine for TCRL-Theoretic
procedure BUILDTREE(I)

tree.setRoot(I), fringe = [I], seen = [], backptrs = []
while fringe is not empty do

s = fringe.removeFirst()
if seen.contains(s) then continue else seen.add(s)
children = GETATLEASTTWOCHILDREN(s, seen, fringe)
tree.setChildren(s, children), fringe.add(children)

while some state not in tree do
for state in tree do

if state.children() not all in tree then
tree.UnionChildren(state, state.children())

return tree
end procedure
procedure GETTWOCHILDREN(parent, seenOuter, fringeOuter)

Summary: Traverses the graph to try to get exactly two new children, may go over to handle likely orphans (immediate
children without a link back to parent)

children = parent.children(), ret = {}, fringe = {children}, seen = {}, workingOnSubChildren = false
while fringe.size() > 0 and ret.size() < 2 do

newFringe = {}
for s in fringe do

if seen.contains(node) or (!workingOnSubChildren
and re.size() ≥ 2 and
node.children().contains(parent)) then
continue

if !seenOuter.contains(s) and
!fringeOuter.contains(s) then
ret.add(s)
if ret.size() ≥ minDegree and workingonSubChildren then

break
seen.Add(s)
for subChild in s.getChildren() do

newFringe.Add(subChild)
workingOnSubChildren = true, fringe = newFringe

end procedure

Acknowledgements
This work was supported by the NSF BIGDATA grant No. DGE-
1546510, the Office of Naval Research (ONR) Young Investiga-
tor Award N00014-16-1-2241, ONR grant N00014-12-C-0158, the
Bill and Melinda Gates Foundation grant OPP1031488, the Hewlett
Foundation grant 2012-8161, Adobe, Google, and Microsoft.

References
[Abbasi-Yadkori and Szepesvári, 2011] Yasin Abbasi-Yadkori and

Csaba Szepesvári. Regret bounds for the adaptive control of lin-
ear quadratic systems. In COLT, pages 1–26, 2011.

[Agrawal and Goyal, 2013] Shipra Agrawal and Navin Goyal. Fur-
ther optimal regret bounds for Thompson sampling. In AISTATS,
pages 99–107, 2013.

[Anand et al., 2015] Ankit Anand, Aditya Grover, Mausam
Mausam, and Parag Singla. ASAP-UCT: abstraction of state-
action pairs in UCT. In IJCAI, pages 1509–1515. AAAI Press,
2015.

[Asmuth et al., 2009] John Asmuth, Lihong Li, Michael L Littman,
Ali Nouri, and David Wingate. A Bayesian sampling approach
to exploration in reinforcement learning. In UAI, pages 19–26.
AUAI Press, 2009.

[Auer and Ortner, 2007] P Auer and R Ortner. Logarithmic online
regret bounds for undiscounted reinforcement learning. NIPS,
19:49, 2007.

[Brunskill et al., 2009] Emma Brunskill, Bethany R Leffler, Lihong
Li, Michael L Littman, and Nicholas Roy. Provably efficient
learning with typed parametric models. JMLR, 10:1955–1988,
2009.

[Chapelle and Li, 2011] Olivier Chapelle and Lihong Li. An em-
pirical evaluation of Thompson sampling. In NIPS, pages 2249–
2257, 2011.

[Chapman and Kaelbling, 1991] David Chapman and Leslie Pack
Kaelbling. Input generalization in delayed reinforcement learn-
ing: An algorithm and performance comparisons. In IJCAI, vol-
ume 91, pages 726–731, 1991.

[Diuk et al., 2009] Carlos Diuk, Lihong Li, and Bethany R Lef-
fler. The adaptive k-meteorologists problem and its application
to structure learning and feature selection in reinforcement learn-
ing. In ICML, pages 249–256. ACM, 2009.

[Doshi-Velez, 2009] Finale Doshi-Velez. The infinite partially ob-
servable Markov decision process. In NIPS, pages 477–485,
2009.

[Guez et al., 2013] Arthur Guez, David Silver, and Peter Dayan.
Scalable and efficient bayes-adaptive reinforcement learning
based on Monte-Carlo tree search. JAIR, pages 841–883, 2013.

[Johns and Mahadevan, 2007] Jeff Johns and Sridhar Mahadevan.
Constructing basis functions from directed graphs for value func-
tion approximation. In ICML, pages 385–392. ACM, 2007.

[Leffler et al., 2007] Bethany R Leffler, Michael L Littman, and
Timothy Edmunds. Efficient reinforcement learning with relo-
catable action models. In AAAI, volume 7, pages 572–577, 2007.

[Lin and Wright, 2010] Stephen Lin and Robert Wright. Evolution-
ary tile coding: An automated state abstraction algorithm for re-
inforcement learning. In SARA, 2010.

[McCallum, 1996] Andrew Kachites McCallum. Learning to use
selective attention and short-term memory in sequential tasks. In
SAB, volume 4, page 315. MIT Press, 1996.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostro-
vski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[Ortner et al., 2014] Ronald Ortner, Odalric-Ambrym Maillard,
and Daniil Ryabko. Selecting near-optimal approximate state
representations in reinforcement learning. In Algorithmic Learn-
ing Theory, pages 140–154. Springer, 2014.

[Ortner, 2013] Ronald Ortner. Adaptive aggregation for reinforce-
ment learning in average reward Markov decision processes. An-
nals of Operations Research, 208(1):321–336, 2013.

[Osband and Van Roy, 2014] Ian Osband and Benjamin Van Roy.
Near-optimal reinforcement learning in factored MDPs. In
Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q.
Weinberger, editors, NIPS, pages 604–612. Curran Associates,
Inc., 2014.

[Osband et al., 2013] Ian Osband, Dan Russo, and Benjamin
Van Roy. (more) efficient reinforcement learning via posterior
sampling. In NIPS, pages 3003–3011, 2013.

[Russell et al., 1994] Stuart Russell, Peter Norvig, et al. Artifi-
cial Intelligence A Modern Approach. Prentice Hall, Englewood
Cliffs, NJ, 1994.

[Scott, 2010] Steven L Scott. A modern Bayesian look at the multi-
armed bandit. Applied Stochastic Models in Business and Indus-
try, 26(6):639–658, 2010.

[Singh et al., 1995] Satinder P Singh, Tommi Jaakkola, and
Michael I Jordan. Reinforcement learning with soft state aggre-
gation. NIPS, pages 361–368, 1995.

[Strehl and Littman, 2008] Alexander L Strehl and Michael L
Littman. An analysis of model-based interval estimation for
Markov decision processes. Journal of Computer and System
Sciences, 74(8):1309–1331, 2008.

[Strens, 2000] Malcolm Strens. A Bayesian framework for rein-
forcement learning. In ICML, pages 943–950, 2000.

[Taylor et al., 2009] Jonathan Taylor, Doina Precup, and Prakash
Panagaden. Bounding performance loss in approximate MDP
homomorphisms. In NIPS, pages 1649–1656, 2009.

[Thompson, 1933] William R Thompson. On the likelihood that
one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, pages 285–294, 1933.

[Timmer and Riedmiller, 2006] Stephan Timmer and M Riedmiller.
Abstract state spaces with history. In NAFIPS, pages 661–666.
IEEE, 2006.

[Timmer and Riedmiller, 2007] Stephan Timmer and Martin Ried-
miller. Safe Q-learning on complete history spaces. In Machine
Learning: ECML 2007, pages 394–405. Springer, 2007.

[Vien et al., 2013] Ngo Anh Vien, Wolfgang Ertel, Viet-Hung
Dang, and TaeChoong Chung. Monte-Carlo tree search
for Bayesian reinforcement learning. Applied intelligence,
39(2):345–353, 2013.

[Wang et al., 2005] Tao Wang, Daniel Lizotte, Michael Bowling,
and Dale Schuurmans. Bayesian sparse sampling for on-line re-
ward optimization. In ICML, pages 956–963. ACM, 2005.

