
Reconstructing Building Interiors from Images

Yasutaka Furukawa, Brian Curless, Steven M. Seitz
University of Washington, Seattle, USA

{furukawa,curless,seitz}@cs.washington.edu

Richard Szeliski
Microsoft Research, Redmond, USA

szeliski@microsoft.com

Abstract

This paper proposes a fully automated 3D reconstruc-
tion and visualization system for architectural scenes (in-
teriors and exteriors). The reconstruction of indoor envi-
ronments from photographs is particularly challenging due
to texture-poor planar surfaces such as uniformly-painted
walls. Our system first uses structure-from-motion, multi-
view stereo, and a stereo algorithm specifically designed for
Manhattan-world scenes (scenes consisting predominantly
of piece-wise planar surfaces with dominant directions) to
calibrate the cameras and to recover initial 3D geometry in
the form of oriented points and depth maps. Next, the initial
geometry is fused into a 3D model with a novel depth-map
integration algorithm that, again, makes use of Manhattan-
world assumptions and produces simplified 3D models. Fi-
nally, the system enables the exploration of reconstructed
environments with an interactive, image-based 3D viewer.
We demonstrate results on several challenging datasets, in-
cluding a 3D reconstruction and image-based walk-through
of an entire floor of a house, the first result of this kind from
an automated computer vision system.

1. Introduction
3D reconstruction and visualization of architectural

scenes is an increasingly important research problem, with
large scale efforts underway to recover models of cities at a
global scale (e.g., Google Earth, Virtual Earth). While user-
assisted approaches have long proven effective for facade
modeling [7, 16, 24, 19], an exciting new development is
the emergence of fully-automated approaches for the recon-
struction of urban outdoor environments both from ground-
level and aerial images [5, 17, 26].

Unfortunately, if you walk inside your home and take
photographs, generating a compelling 3D reconstruction
and visualization becomes much more difficult. In con-
trast to building exteriors, the reconstruction of interiors is
complicated by a number of factors. First, interiors are of-
ten dominated by painted walls and other texture-poor sur-
faces. Second, visibility reasoning is more complicated for
interiors, as a floor plan may contain several interconnected

Figure 1: Floor plan and photograph of a house interior.

rooms, with only a small subset visible in each photo. Third,
capturing an entire house interior poses a significant scala-
bility challenge, particularly given the prevalence of thin
structures such as doors, walls, and tables that demand high
resolution relative to the scale of the scene. These factors
pose significant problems for multi-view stereo methods
(MVS) that perform relatively poorly for interior scenes.

Our goal is a fully automatic system capable of recon-
structing and visualizing an entire house interior. The visu-
alization should be compelling and photorealistic. Taking
inspiration from image-based rendering approaches [7, 11],
we seek to reconstruct simple models, reminiscent of the
floor plan in Fig. 1, which can then be rendered with the
input images to hallucinate visual detail and parallax not
actually present in the reconstruction. Our approach builds
on a number of existing techniques to achieve this goal. In-
deed, our primary contribution is the design of a system that
significantly advances the state of the art for automatically
reconstructing and visualizing interiors.

We start with the observation that, as illustrated in Fig. 1,
architectural scenes often have strong planar arrangements,
and their floor plans, though sometimes irregular, are usu-
ally highly structured, typically with walls (and floors and
ceilings) aligned with one of three orthogonal axes. Ac-
cordingly, we invoke the Manhattan-world assumption [6],
which states that all surfaces are aligned with three dom-
inant directions, typically corresponding to the X, Y, and
Z axes. Clearly, restricting some surfaces to these orien-
tations will help recover large-scale structures such as the
walls aligned with the floor plan. We take this to an ex-
treme by requiring that all reconstructed surfaces have this
restriction; even “lumpy” objects will be reconstructed as a
union of box-like structures. These structures then serve as

1

geometric proxies for image-based rendering (IBR).
Given a set of images of a scene, we first use structure-

from-motion [20] and multi-view stereo (MVS) [9] soft-
ware to calibrate the cameras and obtain an initial 3D recon-
struction in the form of oriented 3D points. Next, a stereo
algorithm designed specifically for Manhattan-world scenes
is used to generate axis-aligned depth maps for the input im-
ages [8]. Then, the depth maps and MVS points are merged
into a final 3D model using a novel depth-map integration
algorithm that: (1) poses the reconstruction problem as a
volumetric MRF on a binary voxel grid, (2) solves it us-
ing graph-cuts, and (3) extracts a simplified, axis-aligned
mesh model. Finally, the system provides virtual explo-
ration of reconstructed environments with an interactive,
image-based 3D viewer. To our knowledge, our system is
the first fully automated computer vision system to recon-
struct and enable the walkthrough of an entire floor of a
house.

1.1. Related Work
Automated 3D reconstruction algorithms can be roughly

classified as either model-based approaches that reconstruct
scenes composed of simple geometric primitives [5, 7, 16,
24], or dense approaches where the objective is to capture
fine details without strong priors.

Multi-view stereo (MVS) is one of the most successful
dense approaches and produces models whose accuracy ri-
vals laser range scanners [18]. However, MVS requires
texture and thus architectural scenes pose a problem due
to the prevalence of texture-poor, painted walls. Further-
more, MVS focuses on producing high resolution 3D mod-
els, which we argue is overkill for architecture, which con-
sist largely of flat walls. While it is possible to simplify
MVS models of architecture as a post-process, we show
that this approach yields disappointing results. Model-
based approaches, on the other hand, incorporate scene-
specific constraints to improve the robustness of reconstruc-
tion. Notable examples include Cornelis et al. [5], who re-
constructed entire city streets from car-mounted video by
restricting the geometry to vertical ruled surfaces.1 Aerial
images are used for reconstructing building models in [26],
where the system uses a height field, a rough building mask,
and 3D lines to segment out buildings from images and to
reconstruct roof shapes. Their system produces very im-
pressive results for outdoor environments, but it relies heav-
ily on obtaining dense, accurate stereo (more problematic
for interiors, as we demonstrate).

Our depth map integration approach is similar to sev-
eral existing MVS approaches [13, 25], where they first en-
code depth map information into a voxel grid covering the

1Pollefeys et al. also reconstruct street-side views while exploiting cer-
tain structural information, but their system is a dense approach producing
high resolution models.

Figure 2: 3D reconstruction and visualization system for
architectural scenes. See text for details.

3D space of interest, perform a volumetric reconstruction
on voxels, and use marching cubes [15] to extract a mesh
model. However, these techniques produce extremely de-
tailed and complex 3D models; operating on the scale of a
full house interior poses a major challenge. We instead fo-
cus on extracting very simple 3D models that exploit known
properties of architectural scenes. Our 3D viewer uses a
reconstructed mesh model as a geometric proxy for view-
dependent texture mapping as used in [7, 21] and Façade.
Other IBR methods that leverage a geometric proxy, e.g.,
unstructured lumigraphs [4], could be used instead.

2. System Pipeline
This section describes the overall pipeline of our pro-

posed 3D reconstruction and visualization system illus-
trated in Fig. 2. Our system consists of four steps.

Camera Calibration and Initial Reconstruction
Given a set of images of a scene, the first step is to com-
pute camera viewpoints and parameters; we use the Bundler
Structure from Motion (SfM) package for this purpose [20].
Next, multi-view stereo (MVS) software PMVS [9], which
is also publicly available, is used to reconstruct dense 3D
oriented points, where each oriented point is associated with
its 3D location, surface normal, and a set of visible images.

Manhattan-world Stereo
Due to lack of texture and other challenges, MVS produces
incomplete models for most architectural scenes. There-
fore, some form of interpolation is needed to compute a full
model from the oriented points reconstructed in the previ-
ous step. For this purpose, our system uses a stereo algo-
rithm proposed by Furukawa et al. [8], which exploits the
Manhattan-world assumption: surfaces are piece-wise pla-
nar and aligned with three dominant directions. The out-
put of this algorithm is a complete depth map for each in-
put image, and the algorithm operates as follows. First, it
identifies three dominant orientations in the scene from the
surface normal estimates associated with MVS points. Sec-
ond, it generates a set of candidate planes along each dom-
inant axis on which most of the geometry lies by extracting
peaks from the density of MVS points projected onto the

axis. Lastly, it recovers a depth map for an input image by
assigning one of the candidate planes to each pixel, which
is posed as a Markov random field (MRF) and solved with
graph cuts [3]. Refer to [8] for more details.2

Axis-aligned Depth Map Integration
Our final reconstruction step is to merge axis-aligned depth
maps into a 3D mesh model. Details are given in Section 3.

3D Viewer
Given a 3D model of a scene, the system allows users to
explore the reconstructed environment using an interactive
image-based 3D viewer. As mentioned in the introduc-
tion, a reconstructed model is used as a geometric proxy
for view-dependent texture mapping as in [7, 21], where
two images are used for alpha-blending in every frame, with
the blending weights being inversely proportional to the dis-
tances between the current viewpoint and the optical centers
of the cameras used for texture-mapping. The viewpoint
can be controlled in the following two navigation modes.
In the first mode, a user simply navigates through the in-
put images in a pre-specified order (e.g., the order in which
the pictures were taken). In the second mode, a user has
a restricted free-form 6-DOF navigation: A viewpoint can
move freely in 3D space, while the viewer keeps track of
distances to all the cameras. Whenever the closest camera
changes, the viewpoint automatically moves to that camera
with rotational motion to align viewing positions and direc-
tions, after which a user has free control over the viewpoint
again. In this mode, since we have a full 3D model of an en-
vironment, the viewer performs collision detection to avoid,
e.g., passing through walls.

3. Axis-aligned Depth Map Integration
Recent MVS algorithms have shown that first recon-

structing depth maps and then merging them into a surface
can yield competitive reconstructions [18]. We follow this
approach, starting from Manhattan-world depth maps [8].
We formulate an objective over a cost volume with binary
labels and optimize with graph-cuts. In this section, we
describe our formulation, surface extraction algorithm, and
several enhancements suitable for architectural scenes.

3.1. Problem Setup and Notation
The input to the volumetric reconstruction step is a

set of depths maps {D1, D2, · · · } containing axis-aligned
surfaces reconstructed by a Manhattan-world stereo algo-
rithm [8], and the associated three dominant axes of the
scene.3 We first compute the smallest axis-aligned bound-
ing box that contains all the depth maps and optical centers

2For the gallery dataset, which is the most complicated, we also en-
force depthmaps to be inside the smallest axis-aligned bounding box that
contains MVS points.

3Extracted dominant axes may not be perfectly orthogonal to each
other. In that case, our voxel grid would be skewed, but the rest of the

depth map
Di

margin

interior
space

optical center

exterior
space

v

i

pv
p

(c)(a) (b)

Ω(p)
T (v)=1

S (v)=1i

i

v

v

v-

d (v)

Figure 3: (a) Given a voxel v, pv denotes the pixel on depth
map Di that is closest to the image projection of v, while v̄
is the voxel immediately behind pv . (b) Ω(pv) denotes a set
of voxels that is in front of p. (c) Each depth map votes for
interior and exterior assignments.

of the input cameras. The resolution of the voxel grid is
determined by a user-controlled parameterNr that specifies
the number of voxels along the longest dominant direction.

Given a depth mapDi and a voxel v, pv is used to denote
a pixel on Di (and the corresponding 3D point on Di inter-
changeably) that is closest to the image projection of the
voxel center, and v̄ denotes the voxel that is immediately
behind pv on the opposite side from the camera (Fig. 3a–
b). Ω(pv) denotes the set of voxels intersected by the ray
from pv to the optical center of Di. Finally, di(v) is used to
represent the depth value of v with respect to Di.

3.2. Volumetric Reconstruction
Following recent work in MVS surface reconstruc-

tion [13, 23], we set each voxel to have a binary label, either
interior or exterior (int or ext). 4 We use graph-cuts [3] to
minimize an objective of the form:

F =
∑
v∈V

F1(lv) + λ1

∑
v∈V,u∈N (v)

F2(lv, lu), (1)

where lv is the label assigned to voxel v, N (v) denotes
neighboring voxels, and λ1 controls the relative effect of
the unary and binary functions, F1 and F2, respectively.

In previous formulations, F2(lv, lu) has encoded the ob-
servations of the surface location. Evidence (from photo-
consistency or extracted depths) that a surface should ap-
pear between two voxels can be used to relax the cost of
transitioning from interior to exterior. This term implicitly
seeks a weighted minimal surface, a kind of regularization
that favors constructing tight surfaces, particularly where
no data otherwise drives the surface. By contrast, F1 has
either been an inflating term [23]—a small constant penal-
izing empty voxels, to avoid the degenerate solution of no
surface at all—or has been informed by visibility informa-
tion derived from depth maps [13]. When implementing the

algorithm is independent of the orthogonality of the axes. Here, we as-
sume that the axes form orthogonal bases for simplicity.

4Interior and exterior voxels are also referred to as full and empty, re-
spectively.

graph, a 26-neighborhood around each voxel is preferred to
help recover oriented surfaces, although 6-neighborhoods
(neighbors along coordinate axes) are often used to reduce
memory footprint and accelerate computation [23].

Our formulation departs from these approaches in the
following ways. First, to favor simple surfaces, we use the
regularizing effect of minimal surface area as our smooth-
ness term by setting F2(lv, lu) = δ(lv = lu). Note that this
term does not depend at all on the observations. Instead the
observations—depth maps in our case—are used to drive
the unary term F1, providing evidence for the emptiness or
fullness of voxels based on visibility.5 In addition, we con-
sciously employ a 6-neighborhood around voxels and add a
shrinkage term (see below) to the energy that penalizes full
voxels. This simple combination leads to small numbers of
clean, sharp corners in areas where no observations drive
the surface, which is a desirable property for reconstruct-
ing architectural interiors.6 The minimum area and volume
terms might seem to drive toward an empty volume solu-
tion. However, our Manhattan-world depth maps are quite
dense, providing ample data to avoid such a collapse.

Next we describe our definition of the unary term F1(lv).
Similar to [13], we base this term on the visibility infor-
mation implied by the depth maps. We employ an occu-
pancy voting scheme. If the depth maps vote that a voxel
should be empty (due to visibility), we assign a high cost to
F1(lv = int). If a voxel is just behind reconstructed depths
in many views, it is likely occupied, and a high cost should
be assigned to F1(lv = ext). We can accumulate votes
for each voxel by summing over the depth maps as follows:
I(v) =

∑Nc

i=1 I
i(v), E(v) =

∑Nc

i=1E
i(v).

Ii(v) and Ei(v) are the amount of evidence for being inte-
rior and exterior, respectively, based on a single depth map
Di, and Nc is the number of input cameras. We set Ii(v) to
be 1 where v should be interior, that is, immediately behind
Di, and Ei(v) to be 1 where v should be exterior, that is, in
front of Di (see Fig. 3c):

Ii(v) = 1 if 0 < di(v)− di(pv) ≤ µ, (2)
Ei(v) = 1 if 0 < di(v) and di(v)− di(pv) ≤ −γ.

Note that Ii(v) and Ei(v) are 0 in all the other cases, and
γ is a margin to allow errors in depth maps, which is set to

5Hernández et al. [13] use both a data-dependent binary term, and
visibility-driven (thus also data-dependent) unary term. We encode the
entire data contribution in the latter.

6One could certainly imagine more direct schemes for encouraging
simple, axis-aligned reconstructions, e.g., directly computing a final 3D
model from MVS points without the Manhattan-world stereo step. In-
deed, we experimented with smoothness penalties based on higher-order
cliques that prefer axis-aligned piece-wise planar surfaces. However, the
energy terms became non-submodular. We tested several approximation
algorithms such as quadratic pseudo-boolean optimization (QPBO) [12]
and a submodular-supermodular procedure, but the optimizations settled
in undesirable local minima. In practice, the simple smoothness penalty
F2 described above produces satisfactory results.

twice the voxel resolution (γ = 2µ) in our experiments.
We could now set F1(lv = int) = E(v) and F1(lv =

ext) = I(v). In practice, however, we have found that
depth maps generated by Manhattan-world stereo can occa-
sionally go quite astray from the true surface. Implicit in our
voting scheme (and made explicit in [13]) is the assumption
that the certainty (and thus weight) of visibility information
provided by a pixel in a depth map depends only on the re-
constructed depth at that pixel. However, the depths at some
pixels are inconsistent with other depth maps, and should be
down-weighted. In particular, we set the label costs to:

F1(lv = int) = ΣNc
i=1ω

i(pv)ψi(v)Ei(v), (3)

F1(lv = ext) = ΣNc
i=1ω

i(pv)Ii(v). (4)

where ωi(pv) measures the confidence of the depth at
pixel pv based on consistency with other depth maps, and
ψi(v) is a correction term that balances volumetric costs
against surface costs (more on this below). We define
ωi(pv) = exp

[
1
8I(v̄)− λ2

(
E(v̄) +

∑
v′∈Ω(pv) I(v′)

)]
.

The first term I(v̄) in the exponent is the number of depth
maps that pass through the same location pv , and hence,
agree with its depth. The next terms measure conflicts (and
are thus subtracted from the number of agreements). The
first conflict term is the number of depth maps whose exte-
rior space, which should be empty, contains pv . The second
conflict term is the number of times the space from pv to
its depth map’s center of projection, which again should be
empty, contains depths observed by other cameras. Intu-
itively, the weight ωi(pv) becomes smaller when the mea-
sure of agreement I(v̄) is small or that of conflict E(v̄) and
I(v′) is large. Values chosen for λ2 are given in Table. 1.

Finally, ψi(v) reduces the effects of exterior information
Ei(v) exponentially based on the distance from the depth
map to v: ψi(v) = min

(
1, exp

[
−d

i(pv)−di(v)−γ
8µ

])
.

The motivation for this scaling term is that F1(lv = int)
and F1(lv = ext) as defined in Equation 4, would have dif-
ferent units otherwise: The interior evidence lies immedi-
ately behind depth maps, and hence, covers a 2D manifold,
while exterior evidence covers a 3D space in front of the
depth map. The unit difference is particularly problematic
when input depth maps contain large errors.

Minimum-volume solution: We have observed that the
global minimum of the energy function (1) is often not
unique, because the smoothness term F2 alone is ambigu-
ous where there is no data information. Figure 4 illustrates
an example (in 2D) of a depth map and its corresponding
minimum-volume and maximum-volume solutions. As we
use a 6-neighborhood in 3D, these solutions have the same
amount of energy; i.e., the area is measured in voxel faces,
and a monotonic, jagged path has just as many boundary
faces as two axis-aligned planes that cleanly form a corner.
Indeed, there is a family of surfaces between these two that

interior exterior margin

Depth map evidence Min volume solution Max volume solution

surface boundary
(smoothness penalty)

depth map

surface boundary
(smoothness penalty)

Figure 4: The global minimum of our energy function (1)
is usually not unique. We choose the minimum-volume sur-
face as the solution, which tends to be less jagged. Yel-
low lines in the right two figures represent the amount of
smoothness penalties; the total penalties are equal in these
two cases.

have the same energy. In general, the minimum-volume sur-
face is smoother, because it can cut, without penalty along
straight paths into regions that are not observed. By con-
trast, the maximum volume surface tends to be jagged, as
it must conform to the boundary (between blue and white
in the figure) constrained by visibility. Surfaces between
the minimum and maximum will also be more jagged than
the minimum solution. In practice, we add a small penalty
(10−6) to F1(lv = int), and find the solution with the
minimum volume. It is straightforward to show that these
same arguments do not hold for 26-neighborhoods, where
the minimum volume solution will not in general result in
two planes meeting at a corner in cases such as the one de-
scribed here.

3.3. Mesh Extraction with Sub-voxel Refinement
After using graph cuts [3] to find the optimal label as-

signment, we triangulate the boundary between interior and
exterior voxels to extract a mesh model, where the bound-
ary is defined as a set of voxel faces whose incident vox-
els have different labels. We also refine vertex positions up
to sub-voxel accuracy while keeping the axis-aligned struc-
ture. More concretely, for each (axis-aligned) slice of the
voxel grid, we identify a set of voxel faces that belong to the
surface boundary. For every connected component C, we
then create a constrained delaunay triangulation [2], where
the boundaries of the component (including any holes) are
constrained to be part of the triangulation (see Fig. 5). After
repeating this for all slices, the result is a sparsely triangu-
lated mesh with faces and edges aligned with the voxel grid.
Next, we compute a sub-voxel offset along the normal di-
rection to each component C by: (1) collecting MVS points
that are within 1.5µ of C and have a compatible normal
(i.e., within 45 degrees of C’s normal), and (2) computing
the (signed) distance to the centroid of the collected MVS
points. The vertices of C are then shifted by this distance
in C’s normal direction. We repeat this process for every

Constrained delaunay triangulation
connected components

grid slice

Figure 5: Delaunay triangulation is used for each con-
nected component on each grid slice to triangulate the re-
constructed volume.

connected component, visiting each exactly once.

3.4. Enhancements
We now describe several optimizations and implementa-

tion details suited to architectural reconstruction.
Grid pruning: When reconstructing large-scale scenes,

we adapt the voxel resolution spatially according to the in-
put depth maps. This adaptation accelerates the reconstruc-
tion, reduce memory footprint, and provide a level-of-detail
control. Octree partitioning of space is one possible adap-
tation strategy [13]. However, this approach does not take
advantage of the fact that floor plans often have large, un-
evenly spaced planes, some of which align with multiple
disconnected walls. Instead, we take a simple pruning ap-
proach, removing voxel slices that are not supported by the
depth maps. In particular, given a pixel in a depth map, we
define it to be a grid pixel if it corresponds to a corner or an
edge of the depth map, i.e., if its candidate plane assigned
by the Manhattan-world stereo algorithm is different from
that of a neighboring pixel. Intuitively, grid pixels occur
most often at scene corners and edges, and hence, we want
grid slices to pass through them. So, for each grid slice, we
count the number of grid pixels (their 3D locations) that are
within µ/2 distance of the slice and prune the slice away if
the count is less than threshold λ3. We modify the prob-
lem formulation to account for the larger voxel cells, which
implicitly contain the original fine resolution cells, using
a procedure known as contraction [12]. See Tables 1 and 2
for the values of λ3 and the amount of speed-up achieved by
this procedure. Fig. 6 shows how changing the value of λ3

can be used to control model complexity; raising the thresh-
old removes small scale structure to create simpler models.

Ground plane determination: Ground planes may not
be clearly visible in the input images (e.g., when photos are
taken by pointing the camera horizontally), and hence, are
not reconstructed well in the depth maps. In these cases,
Manhattan-world stereo may extrapolate surfaces below the
ground plane, thus increasing the bounding box of the vol-
ume and reconstructing surfaces below ground. We tighten
the bounding volume to match the ground plane as follows.
Among the six (directed) dominant directions, the upwards
vertical axis is determined by the one that is compatible (an-
gle difference is less than 45 degrees) with the most num-

kitchen hall galleryhouse
22 97 492148

3M 3M 2M2M
128 150 512256

1364 3344 83028196
0.15 0.036 0.00520.071

1 1 11
1/16 1/16 1/161/16
100 100 1500010000

13 76 71692
38 158 130147

39.6 281.3 5677.4843.6
0.4 0.4 22.43.6

images (Nc)
image res [pixel]

voxels (Nr)
faces

voxel num ratio
λ1

λ2

λ3

run time (SfM)
run time (MVS)
run time (MWS)
run time (DI)

Table 1: Characteristics of datasets. See text for details.

ber of camera up-vectors. Then, for each horizontal volume
slice (of the original volume), we count the number of asso-
ciated grid pixels and compute the average of the non-zero
counts. The ground plane is determined to be the bottom-
most slice with a count greater than this average, and the
bounding volume is then restricted to go no lower than this
ground plane. (For interiors, a ceiling plane could be needed
as well, though this proved unnecessary in our examples.)

Boundary filling: After the volumetric label optimiza-
tion but before the surface extraction step, we mark all the
voxels at the boundary of the voxel grid to be interior. Since
the voxel grid contains the optical centers of the input cam-
eras, this boundary filling creates a surface, to which an im-
age texture can be mapped and rendered in the 3D viewer.
This is particularly useful for the visualization of areas that
are not reconstructed, such as distant scenery. (See our
project website [1] for examples.)

4. Results and Conclusion
We used the Bundler [20] SfM package for camera cali-

bration, and the PMVS [9] MVS package for initial geom-
etry reconstruction; both packages are publicly available.
The rest of our system is implemented in C++, run on a dual
quad-core 2.66GHz PC. Four datasets are used in our exper-
iments whose sample images are shown in Figures 1 and 6,
and summarized in Table 1. From the top, Table 1 lists the
number of input images, (approximate) image resolution in
pixels, the number of voxels along the longest dimension,
and the number of faces in the final mesh model. The next
row is the ratio of the total number of voxels in the sim-
plified grid to that in the original uniform grid. Notice that
the ratio is as small as 0.5 to 7 percent for hall, house, and
gallery. λ1, λ2, and λ3 are the parameters in the depth map
integration step. A large value is set to λ3 for house and
gallery, so that the final 3D models would be simple.

The last four rows of the table provide the running time
of SfM, MVS, Manhattan-world stereo (MWS), and the
depth map integration (DI) steps in minutes. Note that the

MWS step is currently the bottleneck of the system, where
it computes depth maps for all the input images. To acceler-
ate this step, each depth map could be computed in parallel
(a few minutes per depth map).

Figure 6a shows intermediate reconstructions, in partic-
ular, MVS points and axis-aligned depth maps for the house
dataset. The final 3D models are shown in Figure 6bd for
house and gallery (see the project website [1] for more re-
sults and better visualization on all the datasets). Note that
MVS points are sparse in many places, and depth maps are
fairly noisy. Nonetheless, our algorithm has successfully
reconstructed extremely simple models while discovering
large-scale structure such as ground planes or vertical walls
each of which is represented by a single or a few planar
surfaces. In Figure 6ce, we generate floor plan images of
the house and the gallery datasets (red) by projecting ver-
tical surfaces of the model to the horizontal plane, where a
pixel intensity represents the amount of projected surface.
We manually align them with actual floor plans to evaluate
the accuracy. They are fairly consistent, though there is a
small amount of global warping, probably due to calibration
(SfM) errors. It is also worth pointing out that walls recon-
structed in the middle of house and gallery are extremely
thin, difficult for general MVS algorithms to recover. Our
system is capable of reconstructing small objects in a scene
such as a juice bottle and a coffee maker in kitchen, and so-
fas, tables, and cabinets in house (again see the project web-
site [1] for more visualization of our results). Also note that
many objects in the scenes are not necessarily axis-aligned,
but reasonably approximated by the system, which yields
compelling IBR experiences.

Figure 6f shows our system’s capability to control the
complexity of a model using parameter λ3. Two numbers
below each figure are the value of λ3 (left) and the number
of faces in a model (right). Note that this complexity con-
trol is different from, for example, using a low-resolution
voxel grid to obtain a simple model. Our approach may
lose small-scale details due to pruning, but still captures
large scale structure accurately up to sub-voxel precision.
Next, Figure 6g compares the proposed approach with a
state-of-the-art multi-view stereo algorithm in which Pois-
son surface reconstruction [14] is applied to the oriented
points generated by PMVS [9]. Note that PMVS+Poisson
reconstructions capture more detail in certain places, but
they also contain many errors and are too dense for an in-
teractive visualization. To facilitate comparison, we used a
popular mesh simplification algorithm QSlim [10] to make
the number of faces equal to that of our model. However,
this simplification procedure just worsened the MVS mod-
els: Our system achieves simplification by making use of
global structural information of architectural scenes, while
QSlim simply relies on local geometric information. Figure
6h shows the effects of the sub-voxel refinement step. Blue

Figure 6: Sample input images are shown for each dataset. (a) Oriented, textured points from PMVS [9] and Manhattan-
world depth maps [8] (one color per depth map) for house. (b,d) The final 3D models of house and gallery. (c,e) Generated
floor plan images (red) for house and gallery, and the ground truth (black). (f) Model complexity control with parameter
λ3. (g) Qualitative comparisons with a state-of-the-art MVS approach on hall with the number of faces in parentheses. (h)
Effects of the sub-voxel refinement procedure. (i) Effects of the minimum volume constraint.

lines in the figure show the wire-frame rendering of the 3D
models, with two input images blended together using our
IBR viewer. It is easy to see that lines are off from the corre-
sponding image features without the sub-voxel refinement,

causing significant blending artifacts, for example, near the
wall highlighted with orange ovals. For reference, the left-
most figure uses a plane instead of a mesh model to ren-
der a scene, which is similar to the Photo Tourism system

Nr: # voxels on longest side
64 128 256 512

0.25 1.1 28.7 8764
150k 1183k 9400k 74801k

Without grid
pruning

run time (DI) [m]
voxels

Nr: # voxels on longest side
64 128 256 512

0.25 0.41 1.6 7.8
30k 170k 606k 1097k

With grid
pruning

run time (DI) [m]
voxels

Table 2: Effects of the grid pruning on running time.

[21, 22]. As expected, without reasonable geometry, blend-
ing artifacts are quite noticeable. Lastly, Figure 6i illustrates
the effects of the minimum-volume constraint for the hall
dataset, which avoids jagged surfaces in regions not recon-
structed in depth maps.

Table 2 illustrates the speed-up achieved by the grid
pruning as voxel resolution increases. Note that the algo-
rithm does not scale well without grid pruning; the runtime
is more than 14 hours without pruning when Nr = 512,
compared to 8 minutes with pruning. In addition, the num-
ber of voxels in the simplified grid (shown in the bottom
half of the table) does not increase cubically; growth actu-
ally slows as Nr increases, which suggests that the simpli-
fied grid captures effective resolution of a scene.

The last step of our system, an interactive IBR system, is
demonstrated on the project website [1].

Conclusion We have presented a fully automated sys-
tem for architectural scene reconstruction and visualization,
which is particularly well-suited to challenging textureless
scenes such as building interiors. To the best of our knowl-
edge, our system is the first to fully automatically recon-
struct and enable the walkthrough of an entire floor of a
house. Our future work includes relaxing our axis-aligned
surface constraints to handle non-axis aligned structures
properly, and to handle even larger-scale scenes such as
whole building interiors consisting of multiple floors. Im-
proving our 3D viewer by employing more sophisticated
rendering techniques such as Poisson blending is also our
future work.

Acknowledgments: This work was supported in part by
National Science Foundation grant IIS-0811878, SPAWAR,
the Office of Naval Research, the University of Washington
Animation Research Labs, and Microsoft. We thank Chris-
tian Laforte and Feeling Software for the kitchen dataset.
We also thank Eric Carson and Henry Art Gallery for the
help with the gallery dataset.

References
[1] Project website. http://grail.cs.washington.edu/projects/interior.
[2] CGAL, Computational Geometry Algorithms Library.
[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. PAMI, 23(11), 2001.

[4] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Co-
hen. Unstructured lumigraph rendering. In SIGGRAPH,
2001.

[5] N. Cornelis, B. Leibe, K. Cornelis, and L. V. Gool. 3d urban
scene modeling integrating recognition and reconstruction.
IJCV, 78(2-3):121–141, July 2008.

[6] J. M. Coughlan and A. L. Yuille. Manhattan world: Com-
pass direction from a single image by bayesian inference. In
ICCV, pages 941–947, 1999.

[7] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image-based approach. In SIGGRAPH, 1996.

[8] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski.
Manhattan-world stereo. In CVPR, 2009.

[9] Y. Furukawa and J. Ponce. PMVS.
http://www.cs.washington.edu/homes/furukawa/research/pmvs.

[10] M. Garland. Qslim: Quadric-based simplification algorithm.
http://mgarland.org/software/qslim.html.

[11] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The Lumigraph. In Computer Graphics Proceedings, 1996.

[12] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality,
complementation and persistency in quadratic 0-1 optimiza-
tion. Mathematical Programming, 28(2):121–155, 1984.

[13] C. Hernández Esteban, G. Vogiatzis, and R. Cipolla. Proba-
bilistic visibility for multi-view stereo. In CVPR, 2007.

[14] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. In Symp. Geom. Proc., 2006.

[15] W. Lorensen and H. Cline. Marching cubes: A high res-
olution 3D surface construction algorithm. In SIGGRAPH,
pages 163–169, 1987.

[16] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool.
Procedural modeling of buildings. In SIGGRAPH, 2006.

[17] M. Pollefeys et al. Detailed real-time urban 3d reconstruction
from video. IJCV, 78(2-3):143–167, July 2008.

[18] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski. A comparison and evaluation of multi-view
stereo reconstruction algorithms. CVPR, 1:519–528, 2006.

[19] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and
M. Pollefeys. Interactive 3D architectural modeling from un-
ordered photo collections. In SIGGRAPH Asia, 2008.

[20] N. Snavely. Bundler: SfM for unordered image collections.
http://phototour.cs.washington.edu/bundler/.

[21] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. Finding
paths through the world’s photos. In SIGGRAPH, 2008.

[22] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: ex-
ploring photo collections in 3d. In SIGGRAPH, 2006.

[23] G. Vogiatzis, P. H. Torr, and R. Cipolla. Multi-view stereo
via volumetric graph-cuts. In CVPR, pages 391–398, 2005.

[24] J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, and L. Quan.
Image-based façade modeling. In SIGGRAPH Asia, 2008.

[25] C. Zach, T. Pock, and H. Bischof. A globally optimal al-
gorithm for robust tv-l1 range image integration. In ICCV,
2007.

[26] L. Zebedin, J. Bauer, K. Karner, and H. Bischof. Fusion
of feature- and area-based information for urban buildings
modeling from aerial imagery. In ECCV, 2008.

