
Creating Animation for Presentations

Douglas Zongker

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Washington

2003

Program Authorized to Offer Degree: Computer Science & Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Douglas Zongker

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

David H. Salesin

Reading Committee:

Maneesh Agrawala

Brian Curless

David H. Salesin

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral degree at

the University of Washington, I agree that the Library shall make its copies freely available for

inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly

purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying

or reproduction of this dissertation may be referred to Bell and Howell Information and Learning,

300 North Zeeb Road, Ann Arbor, MI 48106-1346, to whom the author has granted “the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the

manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Creating Animation for Presentations

by Douglas Zongker

Chair of Supervisory Committee:

Professor David H. Salesin
Computer Science & Engineering

In recent years the use of computer-generated slides to accompany live presentation has become

increasingly common. There is a potential for using computer graphics to increase the effective-

ness of this type of presentation. The hardware for generating and projecting complex scenes and

animation is in place, yet few efforts have been made in creating software to fully utilize these

capabilities.

This dissertation presents a system, called SLITHY, for giving live presentations accompanied

by rich animated slides. This system has been developed and refined through several iterations

of creating animated talks, then trying to simplify the authoring process by improving the system

itself. We show some examples of presentations we’ve created with the system, as well as some

from outside users who have used our system to present their own work.

As we repeated the design cycle, we were also learning what types of animation were best

suited for use in presentation. In this work we summarize our accumulated experience as a set of

presentation animation principles. It is certainly possible to use animation poorly, but we believe

that having a set of broadly applicable guidelines can assist presentation authors in applying these

new tools in ways that enhance rather than detract from their subject matter.

TABLE OF CONTENTS

List of Figures iv

List of Tables viii

Chapter 1: Introduction 1

Chapter 2: Evolution of an animated presentation system 4

2.1 PowerPoint . 4

2.2 The hinting talk . 6

2.3 A general system . 12

2.4 SLITHY-1 in production . 22

2.5 Authoring principles . 36

Chapter 3: The SLITHY Animation System 40

3.1 Parameterized diagrams . 42

3.2 Animation scripts . 52

3.3 Interactive objects . 66

3.4 Interactive tools for authoring . 69

Chapter 4: Animation Principles 73

i

Chapter 5: Examples 87

5.1 Real-world presentations . 92

5.2 Using interactivity . 102

Chapter 6: Related work 107

6.1 Effectiveness of animation . 107

6.2 Creating animation . 114

6.3 Presentation software . 126

Chapter 7: Conclusions and Future Work 130

Appendix A: Slithy reference guide 134

A.1 Preliminaries . 134

A.2 Rectangles . 136

A.3 External resources . 139

A.4 Colors . 141

A.5 Parameterized diagrams . 141

A.6 Animation objects . 157

A.7 Interactive objects . 178

A.8 Presentation scripts . 182

Appendix B: A complete example 185

B.1 Preliminaries . 185

B.2 The parameterized diagram . 188

ii

B.3 The interactive controller . 194

B.4 A simple animation . 198

Bibliography 202

iii

LIST OF FIGURES

2.1 The animation interface of PowerPoint 2000 . 5

2.2 Illustration of the animation curves underlying an animation object 21

2.3 The SLITHY-1 GUI layout tool . 27

2.4 Two instances of a simple pulley diagram . 37

3.1 Illustrating canvases, cameras, and viewports . 41

3.2 Illustrating how the camera rectangle affects a diagram’s appearance 44

3.3 Adding hour markers to the clock face . 47

3.4 Diagram of the clock hand shape . 48

3.5 Clock diagram with hands added . 50

3.6 Rendering characters as texture-mapped rectangles 51

3.7 A complete SLITHY parameterized diagram example 53

3.8 A trivial zero-length animation . 57

3.9 Frames from a simple clock animation . 58

3.10 The linear overwrites part of a parameter timeline 59

3.11 Animating an element’s position . 62

3.12 A complete SLITHY animation script . 63

3.13 Using the prototype GUI slideshow tool . 71

iv

3.14 Using the prototype GUI animated line chart tool 72

4.1 Moving a square with economical motion . 74

4.2 Using transitions to indicate the talk’s organization 76

4.3 Using camera motion to suggest a large virtual screen 78

4.4 Using animation to expand and compress detail 80

4.5 Comparing animated zooming to the use of multiple scales without animation . . . 81

4.6 Building up a complex diagram with a series of overlays 82

4.7 Overlapping motion vs. doing one thing at a time 84

4.8 Distinguishing between dynamic and transition animations 86

5.1 A SLITHY sequence that illustrates a proof of the Pythagorean Theorem based on

shears and rotations. 88

5.2 The diagram used to create the Pythagorean Theorem animation of Figure 5.1 . . . 89

5.3 A SLITHY sequence that uses an animated graph to illustrate a set of financial data. 90

5.4 The parameterized diagrams underlying the animation of Figure 5.3 91

5.5 Three examples of animation being used to show actual movement in a physical or

virtual space. 93

5.6 Frames from an animation that uses a 3D parameterized diagram implemented in C

and OpenGL. 95

5.7 A SLITHY sequence that uses animation to connect together a series of system dia-

grams . 96

v

5.8 An animated sequence illustrating the steps of image compositing 98

5.9 An animated sequence illustrating Bayesian image matting 100

5.10 Animated construction of a block diagram with inset detail images 101

5.11 Using animated zooming to place slides “inside” a diagram 103

5.12 An interactive object that allows live manipulation of a diagram 104

5.13 A complex interactive object that lets the user draw Bézier curves 105

5.14 Interactive objects being used to make annotations on top of a running animation . 106

6.1 The animation interface of PowerPoint XP . 127

7.1 Restricting a diagram to a subset of its parameter space 132

A.1 Screenshots of the SLITHY object tester . 135

A.2 The five parameters defining a rectangle . 136

A.3 Methods for generating new rectangles from Rect objects 138

A.4 Illustrations of various coordinate system transforms 144

A.5 Primitive drawing shapes available in SLITHY . 147

A.6 Controlling horizontal posititon with the justify parameter 149

A.7 The two-character form of the anchor parameter to text() 150

A.8 Comparing open and closed paths . 152

A.9 Illustration of path construction methods . 154

A.10 Decorating paths with arrowheads . 155

A.11 Using Rect object methods to subdivide the area of the slide 168

vi

A.12 Animation commands applying edits to a parameter timeline 172

A.13 Using parallel() and serial() to overlap animation functions 174

A.14 Transition styles available in SLITHY . 177

A.15 Undulation styles available in SLITHY . 177

B.1 Parts of the de Casteljau curve demonstration diagram 189

B.2 Steps of the de Casteljau algorithm . 191

B.3 Testing the objects created for the interactive Bézier applet 201

vii

LIST OF TABLES

A.1 Parameter types available within parameterized diagrams 142

A.2 Keystroke commands used to control Video elements 167

A.3 Keystroke commands used to control SLITHY during presentations 184

viii

ACKNOWLEDGMENTS

I’ve worked on a number of projects during my time at the University of Washington. Dis-

satisfaction with the tools we had to present these other assorted pieces of work was what led to

the creation of SLITHY. I feel privileged to have worked with so many fantastic collaborators on

these other projects, including Michael Wong (floral ornament); Yung-Yu Chuang, Brian Curless,

Rick Szeliski, Joel Hindorff, and Dawn Werner (environment matting); Geraldine Wade (font hint-

ing); and George Hart (blending polyhedra). In addition, I must thank some early collaborators on

SLITHY itself: John Hughes, Tomer Moscovich, and Andy van Dam. Maneesh Agrawala, Michael

Cohen, and Marc Levoy provided valuable insights on turning our prototype system into a bona fide

research project.

Of course, the person I’ve worked with most closely at UW has been my incredible advisor,

David Salesin. He has been a great teacher not only in the technical aspects of computer graphics,

but also in the broader skills of doing research, especially writing and presenting.

The computer graphics lab at UW has been a great group to be a part of. I’m especially grateful

to Brett Allen, Steve Capell, Yung-Yu Chuang, and Karen Liu for risking embarrassment in front

of hundreds of SIGGRAPH attendees by using an untested research presentation system for real

conference talks. Their experiences and feedback have been invaluable in improving the system

(not to mention producing several of the figures in Chapters 4 and 5).

Though I never managed to coauthor a paper with either of them, my friends and fellow students

ix

Craig Kaplan and A.J. Bernheim contributed to both this work and my graduate career in ways I

can’t begin to enumerate.

It’s hard to imagine a more fun, exciting, and inspiring place in which to get a PhD than the UW

CSE department. I owe a great debt to all the faculty, staff, and students who’ve made this happen

over the years. Any list of names I give would probably be incomplete, so I won’t try. Thanks to

you all.

Lastly I want to thank my family – my parents Earl and Chris and my sister Deirdre – for the

love, encouragement, and support that they’ve given me for the past 27 years. I’d never have done

any of it without them.

x

1

Chapter 1

INTRODUCTION

As researchers and educators, we give a lot of presentations, and we are part of the audience for

even more. Our own lives would be improved if we could give – and receive – better talks. There are

many ways in which one can imagine giving any particular talk, but being in the field of computer

graphics, we naturally think of improving the visuals that almost invariably accompany a modern

presentation.

Despite the fact that communication tools, including word processing, email, the Web, etc.,

have been some of the most successful and widely adopted applications for computers, little work

has been done on making effective use of graphics technology for live presentation. Today’s pre-

sentation software – of which Microsoft’s PowerPoint, in representing the vast majority of the

presentation-software market, is the most prominent example by far – is still rooted firmly in the

past. Presentations today are being delivered directly from the computer, thanks to the increasingly

ubiquitous data projector, but the software is still geared toward producing 35mm slides and over-

head transparencies. Even the term “slides” reflects this way of thinking: one page after another of

static information. Slowly, animation features are being added to the software, but even these are

mostly limited to simple effects used to draw attention to an otherwise lifeless slide.

The hardware in use today is powerful enough to produce complex animated graphics to explain

and enlighten, rather than just compete with the speaker for the audience’s attention. In this work

we describe SLITHY, a system for producing presentations with real, content-rich animations. Our

approach to this problem has been iterative: we began by trying to make talks that incorporated

animation and interactivity using existing software tools. These attempts led to a wish list of effects

2

we wanted to achieve and ways we wished the authoring worked. We began implementing and

using our own system, alternately creating talks and improving the system itself. We will recount

the history of this effort to motivate some of the design decisions made in SLITHY’s development.

As we made more and more of these animated talks, we were also learning how best to apply

the power of animation in presenting material. We tried to understand why some uses of animation

seemed to make information clearer, while others appeared to be simply gratuitous and distracting.

For example (and to our own surprise), we found that many of the principles of classical character

animation [32] do not work so well for presentations. In this work we will summarize our obser-

vations as a set of principles for presentation animation. We believe these principles are broadly

applicable across a wide range of presentation subjects, and can provide valuable guidance in using

animation effectively.

While our own experiences with giving animated presentations have been very positive, it would

be nice to be able to show that presentations with animation are better than equivalent static pre-

sentations in some objective way. This is a difficult question: to answer it would require precise

definitions of what is meant by “better” and “equivalent.” There is a great deal of research in the

educational psychology field on this subject, where better is determined by testing the learners’ re-

call and/or problem-solving abilities on the subject matter. Even if this narrow definition of better is

accepted, the conclusions of these studies – while tending to fall in favor of animation – are still in

dispute due to disagreements by researchers over what really constitutes an equivalent presentation.

By some estimates, at least thirty million PowerPoint presentations are made every day [46].

Presentation technology is having an impact on the way millions of people communicate. This

is not a small problem, and we do not claim to have an ideal solution. Our work in this area

has led us to three conclusions: first, that animation can often make for clearer, more engaging

presentations. Second, that presentation animation is sufficiently different from character animation

that their effectiveness is governed by a different set of principles. Lastly, we believe that a scripting

interface is well-suited for the demands of presentation animation. Although we recognize that this

style of authoring is not for everyone, we feel that the problem of creating better presentations is

3

important enough and hard enough that even a solution that serves only the needs of a more limited

community is a worthwhile step. While none of these statements can really be quantitatively proved

or disproved, it is the intent of this thesis to argue in support of all three.

Overview

The next chapter will recount some of the history of SLITHY, from our first pre-SLITHY animated

presentations to the present system, in order to explain and justify some of the design decisions

we made. Chapter 3 is a tutorial-style introduction to the system as it stands today. We show how

SLITHY can be used to construct parameterized diagrams, animations, and interactive objects. In

Chapter 4 we describe and demonstrate our set of principles for making good use of animation in

a presentation. Chapter 5 contains samples of more complete examples of animated presentations,

including some put together by other users for presenting their own work. Related work is addressed

in Chapter 6: we look at psychological research on the effectiveness of animated instruction, as well

as comparing SLITHY to existing software systems for animation and presentation. In the final

chapter we present conclusions and offer some possibilities for future work.

4

Chapter 2

EVOLUTION OF AN ANIMATED PRESENTATION SYSTEM

The design of SLITHY 1 was motivated by our own experiences authoring and giving presenta-

tions. In this chapter we recount these experiences and use them to justify the various design choices

made in building SLITHY.

2.1 PowerPoint

The canonical software package for creating presentations is PowerPoint [37], now part of the Of-

fice suite from Microsoft. This product predates the use of electronic projectors; it began not as

a live presentation tool but as a kind of specialized word processor. It was originally designed for

creating static documents to be output to overhead transparencies or 35mm slides. As projector tech-

nology advanced, it became more common to use its “slide show” features to run the presentation

directly from the computer. Today this method is the most common mode of showing PowerPoint

presentations in business and academia.

PowerPoint’s animation features started as a way to make the transitions between slides more

eye-catching. There was a fixed palette of effects from which authors could select transitions. Ef-

fects could also be applied to individual elements (text, images, drawn shapes) on a slide. Each effect

could be set to start either a fixed time after the previous effect, or on a mouse click or keypress.

Each effect caused an element to enter or exit the slide in some animated way.

Many PowerPoint users developed a collection of tricks for using these simple entry/exit effects

to simulate motion. To “move” an element from one place on the slide to another, for instance, it

was common to slide on a rectangle matching the background to cover up the element, then add a

1Pronounced “sly–thee.” The word is a compound of “slimy” and “lithe,” taken from the poem Jabberwocky. The
author, Lewis Carroll, interprets the word as “smooth and active.” [10]

5

(a) (b)

Figure 2.1 Screenshots showing PowerPoint 2000’s animation interface. The “Effects” tab
(part (a)) is used to select which animated effect is used for a graphical object. The “Order &
Timing” tab (part (b)) sets the order in which objects make their animated entrances.

copy of the element to the slide, sliding it from offscreen to the new position. It didn’t really look

like the element was moving between locations on the slide, but it at least gave the impression of

movement.2 The only other way of incorporating animation into a PowerPoint presentation was to

create it in some other program, save it as an MPEG or AVI movie, and drop it into the presentation.

We had created a number of presentations using one or both of these types of animation, including

presentations for papers at SIGGRAPH 99 and SIGGRAPH 2000 [65, 14].

Neither method of incorporating animation was entirely satisfactory. PowerPoint’s animated

effects were too limited—most of the available effects were too flashy to be useful, and if the desired

animation couldn’t be constructed out of the small set of useful effects there was nothing the user

could do. Animations could not modify any of the shapes or text on the screen, only make the whole

element appear or disappear. In addition, the user interface consisted of a single cramped dialog box

(see Figure 2.1) that made it difficult to manage complex slides with many animated elements.3

To create video files for use within PowerPoint, we would typically write small, single-use

OpenGL-based programs to draw and save each frame. These programs were written in a mixture

of C and Tcl—C to do the actual OpenGL drawing, Tcl to provide a simple user interface that let us

interactively manipulate a few parameters (most commonly the position of the camera, so that the

2The latest version of PowerPoint [38], which was released when we were well in to developing SLITHY, has added
the ability to move elements on the slide. Figure 6.1 illustrates this new “motion paths” feature.

3Newer versions of PowerPoint, which we discuss in the chapter on related work, have improved somewhat both the
variety and usability of animation, but this was the state of the system in 2000 when our work began.

6

animation could be centered in the frame visually). These programs would render a series of still

images, saving each frame to disk. We would then use a video encoding package to assemble the

frames into a video clip.

While this approach gave us the power to display arbitrary animations in our presentations, it

was very cumbersome—editing the animation required changing the program, dumping out a new

set of frames, assembling them into a compressed video, and replacing the video in the presentation

document. Obtaining good quality video was also a challenge. Since video codecs were designed

with live action, using them to compress line-drawing-style animated illustrations tended to show

artifacts or require enormous file sizes. Full-screen high-resolution video wasn’t feasible with the

technology of the time, so the animated section of the slide tended to be constrained to a small

section of the screen. A typical use of video was to show an animated transition from a diagram on

one slide to a different diagram on the next, but aligning the video with PowerPoint-drawn elements

was difficult and the effect was never very seamless. Overall, the time- and resource-intensive nature

of video restricted us to using this type of animation sparingly.

PowerPoint’s built-in animation was integrated with the rest of the presentation, but it was lim-

ited in its capabilities. Video gave us much more power in what we could show, but separated

authoring the animation from authoring the rest of the presentation and made integration difficult.

Eventually we would seek a solution that incorporated the best aspects of both.

2.2 The hinting talk

Initially, we were not pursuing the idea of improving presentation tools as a research project. We

were simply trying to give good presentations. The lack of animation features was sometimes ir-

ritating, but we made do with what we had. The first truly animated talk we produced was really

something of an accident.

A paper of ours on hinting for digital typography had been accepted to SIGGRAPH 2000.4 The

4Hinting is a procedure whereby outline fonts are augmented with extra information that improves rasterization at
small sizes. For more information, see Zongker et al. [64].

7

SIGGRAPH conference proceedings allowed authors to include four minutes of video in addition to

the printed paper, and since our paper was about typography, we didn’t need the video to illustrate

our results. We decided to use our allotted four minutes to make a short tutorial-style introduction

to the problem of hinting, in order to motivate our work.

To produce this video we used the same approach we had used in creating videos for use in

PowerPoint—a small program, written in C and Tcl, that drew frames using OpenGL and saved

them to disk. While we were working on this video, we had to give a short presentation about

current work to some visitors to the department. We didn’t yet have any slides prepared for the

hinting work, but we did have this short introductory video. It wasn’t complete – it was missing

a voiceover, for one thing – but we decided to use it anyway. We dumped the animation onto

videotape, plugged a camcorder into the projector, and gave the presentation, using the pause button

on the camcorder to start and stop the video as we talked over it.

This ad hoc presentation worked extremely well. Even though our topic was not inherently

dynamic – typography is, after all, largely concerned with things printed on paper – we found

that animation was a more natural way to express concepts than static images would have been.

Immediately after this short talk, we began thinking about how to do our entire SIGGRAPH talk in

the same style.

The first option we considered was videotape, but videotape has a number of shortcomings. The

picture quality is fairly low, especially for things like line drawings, and the picture is degraded

further when the tape is paused. Second, using the pause control to move forward is awkward—the

presenter has to press buttons to both start and stop each piece of animation, making it difficult to

focus on speaking. The pause control is also not very accurate; it is hard to stop the tape at precisely

the right point. Lastly, the authoring process is complicated by the fact that the medium is linear, so

making any change requires re-recording the entire tape (at least, from that point onward). While

these problems had not prevented us from giving a short, informal talk using videotape, we felt that

for a full, formal presentation in front of a large audience, videotape would be too cumbersome.

The alternative was to use software to render the talk live. Because the diagrams we were using

8

were simple, the program we had to generate frames was almost fast enough to run in real time. Our

experience giving the talk from videotape convinced us that these simple graphics were enough, and

were perhaps even more clear than a more fancily rendered representation would have been.

We optimized the program for speed, and added the necessary features to use it as a live presen-

tation tool (full-screen display, keyboard navigation, etc.) We also extended it to produce not just

the four minutes of video originally planned, but an entire twenty-minute presentation. The result, a

program called hinttalk, was successfully used to deliver a talk at the SIGGRAPH conference.

Of course, creating several minutes of animation took a great deal of effort. Very little of the

resulting code is reusable, most of it deals specifically with drawing figures related to hinting. The

system’s overall architecture, though, is worth discussing as it shaped the structure of SLITHY.

The hinting talk is divided into 17 sections. For each section there is a single C function that

does all the drawing for that section. Here’s a piece of the first section’s drawing function:

int Redraw1Cmd(. . .)
�

double xpos, ypos, scale, pix, alpha_mult;

. . .

xpos = double_option(interp, "xpos");
ypos = double_option(interp, "ypos");
scale = double_option(interp, "scale");

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

draw_background(interp);

glTranslatef(window_width/2.0-xpos*scale,
window_height/2.0-ypos*scale,
0.0);

glScalef(scale, scale, 1.0);

glPushMatrix();
glScalef(0.18, 0.18, 1.0);
glTranslatef(100, 150, 0);

alpha_mult = double_option(interp, "fill0");
if (alpha_mult > 0.0)
�

9

color_option(interp, "interior0");
draw_outline(Book_a, M_SOLID);

�

. . .

pix = double_option(interp, "pixels0");
if (pix > 0.0)
�

glPushMatrix();
glScalef(2048.0/90.0, 2048.0/90.0, 1.0);
glColor3d(0.0, 0.0, 0.0);
draw_pixlist(Book_a_big, pix, S_BOX);
glPopMatrix();

�

. . .

(Note that some setup code present in every function has been elided with “...”.)

There are a few things to note about this function. First, the drawing is controlled by a number

of “options.” (Note the calls to double_option() and color_option() to access the value

of these options.) The values of these options are set in the Tcl code that invokes this drawing

function. By exposing as many controls as possible to the Tcl code via this option mechanism,

we made it possible to change the appearance of the figure without recompiling the C function.

Frequently these options are used to specify graphical parameters like color and opacity of drawn

elements and position of the virtual camera, but other options are more abstractly related to how the

scene is drawn (such as the pixels0 option above, which controls whether a section of code is

executed or not. Option values aren’t always used verbatim in drawing—sometimes they are inputs

to computations (as in the call to glTranslatef().)

Another thing to note is that not all of the low-level drawing commands are in this one function.

The code makes extensive use of user-defined helper functions (such as draw_pixlist()) for

portions of the drawing that are used repeatedly. These helper functions are shared between the

different section drawing functions.

Not all the data for drawing comes from the options or from the code itself. Objects like Book_

a – which contains a representation of the outline of one character from a font – are loaded from

10

files when the presentation begins. This means that the presentation can be edited in some ways

without changing the drawing function. To change the character drawn by this function, we need

only change the underlying data files referenced by the drawing function.

The flexibility that these capabilities provide proved very useful in authoring and editing the

presentation, though we didn’t fully recognize this at the time. Our first attempt at a general tool

for building animated presentations was missing some of these features, but eventually we sought

to incorporate them into SLITHY.

For the hinting talk, the C drawing functions were driven by animation scripts written in Tcl.

Here’s a small piece of the script used to drive the previous function:

proc script1 �� �
set g_options(pixels0) 0.0
set g_options(fill0) 0.0

set g_options(xpos) -856.560
set g_options(ypos) -433.025
set g_options(scale) 15.000

. . .

linear_transition 15 �partial0_one 0.0 1.0� �decasteljau 0.0 1.0�
after 500

draw first bezier segment
linear_transition 90 �umax0_one 0.0 1.0�
after 100

pause
singleframe

draw segment without decastaljau construction
linear_transition 20 �decasteljau 1.0 0.0�
set g_options(partial0) 1.0

. . .

Some details have been removed for clarity, but the essential parts are shown. The script starts

by setting initial values for all of the options. (Note that the drawing function actually has more

options than are referenced in the short excerpt given above.) The duration of animation commands

such as linear_transition are specified in terms of frames, assuming 30 frames per second

11

(remember that this application was originally created for offline rendering of animation frames to

be assembled into video). The first command linearly interpolates the parameters partial0_one

and decasteljau from 0.0 to 1.0 over 15 frames. Option values can be set instantaneously with

the set command. The after command is used to insert a pause (specified in milliseconds) and

the singleframe command makes the program pause, waiting for the user to press the spacebar

before continuing.

This script is actually being executed as the animation is playing. For instance, when the lin-

ear_transition function is called, the program goes off and draws the specified number of

frames on the screen before returning control to the script and proceeding to the next command.

We’ll call this property live execution. Live execution of the script complicated the development of

animation scripts for a number of reasons.

First, errors in the script could cause the program to exit halfway through running an animation.

Because Tcl is an interpreted language, even simple syntax errors were not discovered until the

interpreter tried to execute that line of code. Having to run all the way through an animation to find

each error of this kind was slow and often frustrating.

Second, even when an animation script was error-free, there was no way to back up while playing

an animation. To do so would require backing up the state of the partially executed animation

script—a difficult if not impossible proposition. The only recourse was to start a script over from

the beginning, which meant backing up to the start of the section.

Specifying overlapping actions was also awkward with this live execution model. The special

case where the actions both start and end simultaneously and use the same interpolation style was

straightforward, as illustrated by the first call to linear_transition above. It changes the

values of both partial0_one and decasteljau in parallel. If the second action was to start

midway through the first, however, the code became substantially trickier:

set plan [plan_linear_transition 20 �outline1 0.0 1.0�]
set plan [execute_plan $plan 5]
set plan [merge_plans $plan [plan_linear_transition 20 �grid1 0.0 1.0�]]
execute_plan $plan

12

Translated into English, this code works like this:

1. Create a “plan” for the first action (changing the outline1 option from 0.0 to 1.0 over 20

frames). Nothing is drawn, a plan is simply a list of option-value pairs for each upcoming

frame.

2. Execute the first 5 frames of the plan.

3. Create a plan for the second action (changing the grid1 parameter), and merge it with the

remainder of the first plan.

4. Execute the merged plan.

This “plan” mechanism was the first way we separated specifying an animation from running

it. With the live execution model, a single animation command does both. The ability to specify

animations before running them, however, often makes it easier to describe a complex set of over-

lapping actions. Animation events do not have to be specified in the order that they actually occur.

An author can describe a complex series of actions to affect one part of the picture, then “back up”

in time to explain a second set of actions that run in parallel with the first. With live execution each

frame must be completely specified (and displayed) before the next.

2.3 A general system

After seeing the warm reception our animated hinting talk received, we began to think about how to

make it easier to produce this kind of presentation. Our system, the main subject of this dissertation,

is called SLITHY. It has been developed through an iterative process: using it to build and give

presentations, then taking that experience and using it to improve the system itself. The hinting talk

described above may be thought of as the beginning of this iterative process. While the refinement

of SLITHY has been a slow and gradual process, in this chapter we will focus on three major “mile-

stones” of the system: SLITHY-0, when we first made a serious attempt to make a presentation with

13

a general system; SLITHY-1, the first version given to other users to try out; and SLITHY-2, the

system in its current state.

In creating SLITHY-0, we focused on addressing four signficant problems that we encountered

in developing the hinting video software into a live presentation:

The first problem was that frame-based timing was hard to work with. Having each animation

command’s duration be expressed in terms of an integral number of frames made it hard to make

small tweaks to the timing. Speeding up an animation by 10%, for instance, couldn’t be done

by simply applying a global modification to the whole animation; instead we had to go through the

animation script and change every frame count. In our new system, all durations would be expressed

with floating-point values. These values nominally represented seconds, but the animation could be

scaled continuously by simply changing the scaling factor between animation time and wall-clock

time.

The second problem was the use of the live execution model discussed previously, where the

user’s animation script is being executed as the animation plays. The hinting talk mixed some com-

mands which used live execution with others that used the “plan” mechanism. In SLITHY-0, we

got rid of the live execution model entirely. The entire animation script is effectively creating a

single plan that represents the whole animation. This planning model is a significant advantage.

Parallelism and overlapping actions can be expressed quite naturally. When planning is used ex-

clusively, rather than being mixed with live execution, much of the extra syntax required in the

previous example can be hidden from the user. The next sample script will illustrate this “light”

planning syntax.

Another advantage of a plan-based animation system is that the user’s script is executed com-

pletely before the presentation begins, so errors can be caught more quickly. Since the playback

system is simply evaluating a plan, rather than running arbitrary user code, it can effect meaningful

changes to the planned animation. It can speed up or slow down the playback, run it backwards,

skip around arbitrarily, or play the animation multiple times, without requiring the script author

to explicitly support any of these capabilities. The script is executed just once to build an inter-

14

nal representation of the animation, then this representation is handed to the runtime system to be

displayed.

Our third problem was that our graphics primitives were too primitive. The hinting talk was

based on OpenGL, which is a optimized for drawing a lot of triangles very fast but doesn’t have a

very rich imaging model—poor support for line drawing and curves, no support for text, etc. We

wanted a system where we could build diagrams that were as clean and professional-looking as

those produced for print in tools like Illustrator [1]. We looked at using alternate graphics libraries

such as Java2D or SVG (Scalable Vector Graphics), but rejected these because of poor performance.

Ultimately we went with a compromise and implemented our own set of higher-level primitives

atop OpenGL. The resulting library is not quite as complete as many of the third-party libraries we

considered, but is sufficiently high-performance to be used in animation on today’s machines.

The fourth problem had to do with our choice of implementation langugage. This was an impor-

tant consideration since we had chosen a scripting model for authoring, so creating a presentation in

the system meant writing code in some language. Neither C nor Tcl, which we’d used together for

the hinting talk, was entirely satisfactory for this purpose. Writing diagrams in C meant that with

each change the program had to be recompiled, which slowed down the development cycle. This

extra step was especially galling when the changes were minor, such as repeatedly adjusting the

coordinates of an element to position it on the screen. We also wanted the system to be as accessible

as possible to people without programming experience, and C does not meet that requirement.

At the same time, doing everything in Tcl was unappealing as well. The original designer of

Tcl admits [42] that the language was designed as a “glue” language, for easily hooking together

larger pieces of C code. It was not originally intended for writing large applications natively. While

recent releases of the language have attempted to improve Tcl’s shortcomings in that regard, the

need for consistency and backward compatibility have kept the language somewhat hobbled. Nearly

everything in the language – conditionals, loops, and even arithmetic – is done with a function call,

and the result is a system that is flexible and extensible but somewhat slow, and frustrating for many

users of traditional programming languages.

15

We briefly considered creating our own customized language for building animations, but ulti-

mately decided to use an existing programming language, Python [25], instead. Choosing a general-

purpose language over creating our own language has the advantage that a complete set of program-

ming constructs is available within the scripts for free. Script authors can use variables, create

complex data structures, perform computation, do I/O, etc., without our having to create a parser,

compiler, or interpreter sufficiently powerful to support all those features. Also, having the scripts

and the system itself implemented in the same language means that as we gain more experience

creating these presentations, constructs which we found ourselves using over and over can be easily

migrated into the base system itself for all to use.

Of course, there are disadvantages to using an existing general purpose language. The primary

one is that we are locked into the syntax of whatever language we choose. A major reason for

choosing Python was the relative lightness of its syntax—variables are dynamically typed so no

declarations are needed, and the language is relatively free from the myriad braces and semicolons

required by other alternatives. It is widely considered to be a good language for teaching introduc-

tory programming, and we wanted the system to be accessible to presentation authors who are not

already programmers but are willing to learn, at least a little.

However, Python syntax is not perfect for our purpose – in particular, it has strict rules about in-

dentation, while we would prefer a more “free-form” treatment of whitespace – but on the whole we

felt Python was the best choice. Syntax was not the only reason for choosing Python. Another major

factor in our decision was that it is free, widely available on both Unix and Windows platforms, and

is easily extended with C. This extension facility allowed us to write the high-performance OpenGL

drawing code in C and drive it from the users’ Python scripts. The Python language also contains

a variety of container types (lists, dictionaries, etc.) that simplify construction of complex data

structures.

Believing we had come up with solutions to all the problems we encountered while creating the

hinting presentation, we started to build our new, more general system. Sadly, though, one important

notion from the hinting talk was lost: the idea of building graphical models with high-level param-

16

eters and driving those parameters from an animation timeline. In hindsight, we now recognize this

parameterization as a valuable way of structuring the animation process for the author as well as for

the computer, but at the time, the division of drawing into “model” and “animation” seemed like an

artifact of the division between C and Tcl code. The use of “options” as intermediaries between the

two we saw as an attempt to minimize the amount of data crossing the boundary between the two

languages. When we moved to a single implementation language, the reasoning went, why not do

the drawing and the animation together? This proved to be a mistake, but an instructive one.

In designing this monolithic system SLITHY-0 we were also strongly influenced by PowerPoint.

PowerPoint let us populate a slide with elements like text, images, and simple drawing shapes, but

its animation features didn’t give us enough control over those elements. Our system would be

different. It would have the same types of primitives as PowerPoint: text boxes and static images,

as well as shapes like lines, rectangles, and ovals. The difference would be that every parameter of

every element, down to the coordinates of individual vertices, would be exposed to the animation

interface, allowing the user to script how its value should vary over time.

We chose scripting over a graphical interface for creating the animations. We had a number of

reasons for this choice. As computer scientists, we were accustomed to using tools like LATEX and

GNU Emacs that are fundamentally based on programming languages. Language-based tools tend

to have a steep learning curve, in exchange for far more power and flexibility than a typical GUI

provides. With scripts it is easier to express things that are done repeatedly as resuable macros. For

character animation, which has little exact repetition, this capability might not be so critical, but

we felt it would be important for our domain. We expected the animations used for presentations

to be simpler and more repetitive than would be found in a character-driven story. (Imagine how

many times a “fade in bullet point” animation might be used in a single presentation.) Finally, we

wanted to test our ideas quickly, and implementing a GUI on top of the animation system would

have slowed development considerably. We believed it would be relatively easy to come back and

layer a GUI on top of an existing script-based system, while doing the opposite – extending a GUI

with a scripting facility – would be more difficult.

17

Here is how a very simple script in this system might have looked:

def slide1():
create two objects, a line and a text box
tx = Text(text = ’Slide One’, color = yellow, size = 20,

x = 30.0, y = 80.0)
ln = Line(x1 = 10.0, y1 = 10.0, x2 = 40.0, y2 = 40.0,

color = blue, thickness = 2.0)

define an animation with these objects on-screen
start_animation([tx, ln])

linear(2.0, ln.color, red)

set(tx.text, ’New Text’)

parallel()
smooth(1.0, ln.x2, 80.0)
smooth(2.0, ln.y2, 60.0)
end()

fade_out(0.5, tx, ln)

return end_animation()

This script is somewhat hypothetical, since we found this approach had serious shortcomings

before the initial implementation was even complete, and the system underwent substantial changes.

Before discussing those faults, though, let’s look at the features of the system that worked well.

In contrast to the hinting talk, where the animation was produced onscreen as the function exe-

cuted, in this system each animation function created and returned an animation object, which was

then fed into the playback system to produce graphics on the screen. First, the script created some

elements (a text box and a line, in this example) that would appear in the animation, assigning de-

fault values to each of their parameters. Then it would use them to define an animation—everything

between the start_animation() and end_animation() calls defines a single animation

object. An animation object is similar to a “plan” from the hinting talk: it is a declarative represen-

tation of the entire animation that can be saved and played back later.

Note that because the entire script is constructing a single animation object and we are no longer

trying to mix the two scripting styles – live execution and plan construction – the mechanics of

18

constructing the objects can be largely hidden from the user. While the hinting talk required the

author to explicitly call procedures like merge_plans and execute_plan, in SLITHY-0 all

this was hidden away. The line “linear(2.0, ln.color, red)” is superficially very

similar to a call to linear_transition in the hinting talk. It gives the parameter5 to operate

on, the final value, and transition style and duration. The fact that it is just constructing an internal

representation of the animation rather than actually going out and drawing frames on the screen is

not apparent to the user.

What the script author does perceive, though, is that the new system does have much greater

flexibility with respect to time. Consider the two calls to smooth() in the above example script.

These two commands are supposed to execute simultaneously. The code needed to get that function-

ality – overlapping two actions of different duration – in the hinting talk was qualitatively different

than the code to execute the same two actions in sequence. Roughly translated into the language of

the hinting talk, the two alternatives would resemble this:

execute in sequence
smooth_transition 30 �ln_x2 80.0�
smooth_transition 60 �ln_y2 60.0�

execute in parallel
execute_plan [merge_plans [plan_smooth_transition 30 �ln_x2 80.0�]

[plan_smooth_transition 60 �ln_y2 60.0�]

In contrast, in SLITHY the behavior of smooth() is changed simply by bracketing the calls in

calls to parallel() and end(). In this parallel mode, time is backed up after each command

is issued so that other commands in the script can start at the same time. The details of the data

structures behind this mechanism will be discussed in the next chapter.

SLITHY-0 represented times and durations with floating-point values, rather than integer-valued

frame numbers as in the hinting talk and many earlier script-based animation systems. This allows

Slithy animation objects to be sped up, slowed down, or played at continuously varying rates of

speed without temporal aliasing artifacts. This choice complicates the implementation somewhat –

5“Option,” in hinting talk terminology.

19

the internal structures must be represented functionally, rather than as a simple list of a parameter

values for each frame – but with Python’s treatment of functions as first-class objects this is straight-

forward to implement. In fact, for lengthy transitions, this functional representation can actually be

more compact than an explicit list of values.

2.3.1 Drawbacks of SLITHY-0

While the basic animation framework of Slithy was reasonably easy to use, it turned out to be tire-

some and difficult to create complex animated figures. Slithy had little support for grouping and

transforming primitives together, or expressing relationships between primitives. As a concrete ex-

ample, consider the pulley depicted in Figure 2.4 on page 37. Graphically it is fairly complex, made

of a considerable number of lines and circles. Using our system to animate the pulley’s behavior as

the handle is pulled down would require a separate animation command to move each coordinate

of each graphical shape. (SLITHY-0 did include commands for applying affine transforms to one or

more elements in addition to being able to animate the parameter values themselves, but even so,

animating the pulley would still be a tedious proposition.) As soon as we moved beyond creating

the simplest diagrams this shortcoming became evident.

What was needed was a way to encode relationships between the individual lines and circles and

other graphical elements. In the case of the pulley figure, in fact, there is really only one variable

in the system—the distance the handle is pulled. Everything else – the position of the load, the

rotations of the wheels, the lengths of the various sections of rope – is a consequence of this single

abstract parameter. We wanted a way to wrap up these dependencies once, so a smaller set of more

meaningful parameters could be exposed to the animation script.

One approach we considered was using some sort of constraint system to tie together the param-

eters of individual elements. One could express constraints like “this line segment’s endpoint must

be coincident with that other line segment’s endpoint,” “this line segment has a fixed length l,” and

so on. Manipulating one graphical parameter would then invoke the constraint solver to propagate

changes across the system.

20

We chose not to use the constraint approach for a number of reasons. One was a feeling that

while it seemed natural for the mechanical device illustrations we were working with early in the

research, it might not be so appropriate for more abstract diagrams. We were concerned about the

performance of the constraint solvers, given that our system had to run in real time. Finally we were

worried that systems of constraints might be too unintuitive for novice users. It is not always clear

how to translate an idea of how a system should behave into a correct set of constraints on its parts.

We opted to return to the model used in the hinting talk, where the author writes a function

that takes a set of parameter values as inputs and procedurally draws a picture. In SLITHY these

objects are called parameterized diagrams. The parameterized diagram encodes how the diagram’s

appearance should change in response to various control values. This behavior can be defined once

and then driven from an animation script.

There is an obvious analogy here with character rigging in commercial 3D animation packages

such as Maya [2]. Animations aren’t produced by moving each vertex of a character independently.

The first step is to create an articulated model, allowing the character’s geometry to be manipulated

by high-level controls. Then the animator typically uses keyframes and spline interpolation to set

the values of those controls over time. While this two-step process is the accepted workflow for

3D animation packages, we have not seen 2D packages that work this way. (A more thorough

comparison to existing work can be found in Chapter 6.)

The simple animation commands of SLITHY-0 – like linear() and smooth() – while cum-

bersome for manipulating graphics at the level of individual vertices, turn out to be well-suited

for manipulating the abstract parameters needed for this kind of animation. Figure 2.2 shows an

example. The figure shows the animation timelines used for the opening segment of the hinting

talk, recreated in SLITHY-2. A single diagram with eleven parameters underlies this whole piece

of animation. Even though the figure is quite complex, once it is abstracted into a parameterized

diagram with an appropriate set of high-level controls, the manipulations of those controls required

to produce interesting animation is fairly simple.

The programming approach, while offering near-total control over how the graphics appear and

21

camera

decasteljau

onecurve_u

allcurves_u

show_controls

interior

outline_alpha

big_grid

big_pixels

small_interior

small_grid

Figure 2.2 Here we show the animation curves that control diagram parameters for part of the
hinting animation. The resulting frames are shown along the top. The dashed lines indicate
where the presentation pauses and waits for the user to press spacebar to continue. Notice that
all parameter changes are done with a single style of interpolation from one value to the next.
Because the ways in which parameters change are so simple in this type of animation, it is less
important to provide an elaborate interface for precisely keyframing the parameters.

22

move, is admittedly not suitable for many nontechnical users. It is computer programming, with

both the power and complexity that entails. We have hidden the details of OpenGL behind a library

that provides higher-level drawing primitives, but authors are still writing a Python function, and

so must understand to some degree the syntax and semantics of the language. In Section 2.4.1 we

describe some attempts to provide a graphical interface for creating certain classes of diagrams and

animations, but for now the primary method of creating material in SLITHY is writing Python code

using a standard text editor.

2.4 SLITHY-1 in production

SLITHY-1 was the first version of the system to incorporate the idea of parameterized diagrams. Us-

ing it, we were able to put together our first nontrivial presentations. In SLITHY-1, simple graphical

elements like “Line” and “Rectangle” were replaced with a single “Diagram” element type.

A Diagram element represents one instance of a parameterized diagram on the slide. When a Di-

agram element is bound to a particular parameterized diagram function, it takes on the parameters

of the parameterized diagram. An example of this scheme looked something like this:

def pulley(pull = (SCALAR, 0, 1)):
. . . # procedural drawing commands

def example_animation():
tx = Text(text = ’Slide One’, color = yellow, size = 20,

x = 30.0, y = 80.0)
d = Diagram(..., draw = pulley)

start_animation([tx, d])

smooth(1.0, tx.size, 30.0)
linear(2.0, d.pull, 1.0)

return end_animation()

Here the pulley function is a parameterized diagram; it takes a single parameter pull and

uses our drawing library to draw a figure. The other function, example_animation, constructs

and returns an animation object that uses this parameterized diagram. This is done by creating a Di-

agram element whose draw argument is the desired parameterized diagram function. (The other

23

arguments, which have been elided with “. . . ” for brevity, relate to positioning the element on the

screen.) While defining the animation, the parameters of the diagram function become parameters

of the diagram element, and can be manipulated by the same commands (linear(), smooth(),

etc.) as parameters of built-in elements like Text.

In this example, the script uses linear to manipulate the d.pull parameter. Note that since

the pulley’s intrinsic behavior in response to the pull parameter (rotating the wheel, lifting the

load, etc.) has been encapsulated once in the parameterized diagram, producing a more elaborate

pulley movement (such as raising and lowering it repeatedly) is now just a matter of manipulating

the single parameter pull in the appropriate way.

Multiple instances of a parameterized diagram can be on the screen simultaneously, simply by

creating multiple Diagram elements that use the same underlying draw function:

def example_animation_2():
d1 = Diagram(..., draw = pulley)
d2 = Diagram(..., draw = pulley)

start_animation([d1, d2])

parallel()
linear(2.0, d1.pull, 1.0)
smooth(2.0, d2.pull, 0.5)
end()

return end_animation()

A parameterized diagram function is stateless; all information about the state of the diagram

must be encoded in the values of the parameters. This animation has two instances of the exam-

ple_diagram diagram, which can be manipulated completely independently of each other.

2.4.1 Graphical interfaces for authoring

At this point in the research we began experimenting with more accessible interfaces for creating

presentations. We thought that scripting was a reasonable choice for creating animation objects,

since the typical patterns of parameter change are so simple (as illustrated in Figure 2.2). Although

these scripts are Python code, they typically make little if any use of more programming-oriented

24

features such as variables and control structures. Most animation scripts could be thought of as a

simple list of commands rather than a program. We believe providing a GUI for this part of authoring

would have been a straightforward exercise in software development, and was uninteresting from a

research perspective.

A much more challenging problem was providing a GUI for authoring parameterized diagrams.

Here we frequently take full advantage of the programming environment to create diagrams that

change in complex, interesting ways in response to input parameters. While this degree of control

is often useful, writing calls to individual library drawing functions is not the most intuitive way

to create graphics. Given the dual-mode nature of the diagram creation task (one is both writing a

function and drawing a picture), we thought it would be nice to have a dual-mode interface—one

where the user could see both a graphical representation of the diagram and the underlying code.

Edits to the code would be immediately reflected in the picture, and drawing objects interactively in

the picture would cause the code to be changed appropriately.

We put off the question of describing how the diagram would change based on the parameter

values, and first focused on a dual-mode system for creating static pictures. We created an extension

mode for Emacs [24] to allow the text editor to communicate (via a socket connection) to a running

instance of SLITHY-1’s interactive diagram test window. One direction of editing worked well: an

author could now make a change to the diagram code and see it on-screen with a single keystroke.

The system would also catch syntax and runtime errors in the diagram function and send them back

to Emacs, causing the editor to position the cursor at the point where the error was encountered. By

streamlining the edit-test loop, the process of iteratively refining a diagram became faster and more

convenient.

The other editing direction proved to be far more difficult. Our first tool let the user draw simple

shapes and appended the code to generate them onto the function. This let the user create static

pictures acceptably, but complicated the process of making them change according to the diagram’s

parameter values. A user who had interactively drawn a pulley diagram, for instance, would find that

the generated code was simply a structureless list of line- and circle-drawing commands. To make

25

them move correctly in response to a parameter value, the author would first need to understand

which drawing commands corresponded to what part of the figure, and to understand the coordinate

system in which things were drawn so as to work out appropriate motions. This knowledge comes

naturally when the drawing commands are written by hand, but interactively drawing a figure hides

all that from the user.

We attempted to improve upon this situation by making the editor insert a newly drawn object

into the function at the point where the cursor was, rather than always placing it at the end of the

function. Since the user could control how the resulting code was structured, the thinking went, he

or she would be able to group the commands logically to make parameterizing them easier.

This change added a new requirement, though: since the diagram library allows coordinate sys-

tem transformations, we needed to know what transforms had been applied at the insertion point in

order to compute the drawn shape’s coordinates. For instance, consider this snippet of parameterized

diagram code:

P1
translate(3, 4)
rotate(45)

P2
scale(2, 0.5)

P3

If the user interactively draws a circle on the diagram, the coordinates of the newly inserted code will

differ depending on whether the cursor is at point P1 or point P2. Moreover, if the cursor is at point

P3, the shape will not even be a circle (in the drawing coordinate system) due to the nonuniform

scale that has been applied. The system might need to generate completely different code to match

what the user has drawn with the mouse depending on where it is to be inserted in the function.

The situation gets worse when the effects of conditionals, loops, and helper functions are con-

sidered. Consider the diagram function shown below. What code should the tool insert when the

user draws a circle on-screen with the cursor at point P4?

def test_diagram(a = (INTEGER, 0, 5)):
while a > 0:

26

rectangle(0, 0, 1, 3)
P4

rotate(20)
a -= 1

Any code inserted at P4 could be executed zero, one, or multiple times depending on the value of

the parameter a. Without an understanding of what the user means by the existing code, no tool will

be able to generate the “right” code to add an interactively drawn object.

Trying to salvage something, we tried placing more and more restrictions onto where the inter-

active editor could be used—only in the top-level diagram function, only outside a loop, etc., etc.

Eventually we pared the system down to a tool that let the user query coordinates on the screen—

click a point with the mouse, see its coordinates projected back into the diagram coordinate system

at the point of the cursor.6 While this functionality is sometimes handy (and is incorporated in

modified form into the current SLITHY diagram tester), it is far from the general diagram-creation

tool we had hoped to build. We believe the degree of semantic understanding necessary to generate

useful code is beyond the reach of current analysis methods.

We have had more success in building interactive tools for creating diagrams and animations

for very limited domains such as “line charts” or “image slideshows,” but even these tools do not

have take the dual-mode approach to authoring. There is no need for the tool to analyze any human-

written code; they automatically generate an entire diagram based on interactive input, and the

generated code is not intended for human modification. These tools are discussed more thoroughly

in Section 3.4.

Another aspect of authoring for which we attempted to provide a useful graphical interface was

in laying out elements within animations. We expected that users would want the ability to create

PowerPoint-style slides within SLITHY: text accompanied by figures, the difference being that the

figures could be animations instead of static images. To make creating this type of animation easier,

we created an interactive tool that let users graphically arrange elements on the screen. An animation

script would then load the resulting “layout templates” and add the slide-specific content. A single

6To be precise, into the coordinate system at the last time execution passed the cursor.

27

Figure 2.3 The layout GUI included with SLITHY-1. Animation elements could be created and
positioned interactively. The saved collection would be instanced from within an animtion script.

template could be used repeatedly throughout a presentation, so all the slides would have a consistent

look. The layout template could be edited using the tool, and all the animation scripts that used it

would automatically pick up the changes.

The tool also provided a master template, modelled after the “slide master” feature in Power-

Point. Elements on the master template would be added to every layout template, allowing content

that appeared throughout a presentation (such as a background fill or a running footer) to be specified

in just one place instead of in every animation script.

2.4.2 Interactive diagrams

Since parameterized diagrams allow authors to hide much of the graphical complexity of a diagram

and expose only a relatively small set of domain-specific parameters, it is natural to imagine giv-

ing the presenter the ability to manipulate those parameters live, during the presentation. A live

interaction with a diagram could have even more impact during a presentation than a pre-scripted

animation.

To enable this, we implemented interactive controllers, which could be used instead of an ani-

mation script to drive a parameterized diagram. Both animation scripts and interactive controllers

28

could produce a set of time-varying values for a diagram’s parameters, but while the values produced

by the animation object depend only on the time, an interactive controller can produce parameter

values based on keyboard and mouse events (as well as time).

From a user perspective, our implementation was similar to that of Alice [16]: the controller

had a number of hooks that are called when various user events happen, and the author could attach

small animation scripts to these hooks. In SLITHY-1, the same set of commands available within

an animation script were available in interactive controllers. Here’s a very simple example of a

controller for the pulley parameterized diagram used above:

class ExampleController(Controller):
def key(self, k):

if k == ’a’:
set(self.d.pull, 0.0)
smooth(2.0, self.d.pull, 1.0)

ic = ExampleController(pulley)

Now the ic object is an interactive controller wrapped around the pulley function. This

controller responds to only one event: when the ‘a’ key is pressed, the pull parameter of the

diagram is instantaneously set to 0.0 and then raised smoothly to 1.0 over the next two seconds.

SLITHY-1 supported only a very limited type of interactive object. An interactive controller was

wrapped around a single parameterized diagram, translating user input events into animated changes

of that diagram’s parameters. Interactive objects were inserted into the presentation at the level of

the presentation script—that is, an interactive object could be shown at the top level instead of an

animation object. The single diagram controlled by the interactive object could be shown on top of

a static layout template, as described above. In SLITHY-2, many of these restrictions were removed,

as described below.

2.4.3 The presentation script

In order to tie together all the animation objects created for use in a particular presentation, we

introduced a new layer of script, called the presentation script. The purpose of this script is to

29

specify the order in which animations should be shown, where the system should pause and wait

for the presenter to press spacebar, and to bookmark certain points in the presentation for quick

random access. In SLITHY-1 it also controlled when interactive controller objects and video objects

were shown instead of animation objects. Here’s a sample presentation script, which simply plays a

sequence of animation objects:

import demoanim # import the animation objects,
stored in a separate file

bookmark(’start’)
play(demoanim.maintitle)

bookmark(’caveats’)
play(demoanim.caveats)
play(demoanim.purpose)

bookmark(’images’)
play(demoanim.images)

bookmark(’diagrams’)
play(demoanim.simple_diagram)
play(demoanim.invisible_diagram)
play(demoanim.image_alpha)

run_presentation()

The play() function is used to play back an animation object (or a list of such objects). The

bookmark() function assigns a name to the current point in the presentation, allowing the presen-

ter to jump directly to that point while presenting by selecting the name from a menu.

These presentation script commands work in a manner similar to animation script commands:

they aren’t executed immediately, but instead construct an object describing the presentation which

can be played back later. The run_presentation command, always the last thing in a presenta-

tion script, is where the display of a presentation actually starts. This allows the user to interactively

navigate back and forth or jump to arbitrary points during the presentation, instead of displaying

things in the exact order they are mentioned in the script.

30

2.4.4 User experiences

The pieces described so for comprise SLITHY-1, the first version of SLITHY that was given out to

other users. It included parameterized diagrams driven by either animation objects or interactive

controllers, presentation scripts for describing the order in which to display the animated slides, and

a graphical layout tool for arranging elements within an animation. We gave this system to four

computer science graduate students who used it to make presentations for technical papers at the

SIGGRAPH 2002 conference. We were not attempting a formal user study; we wanted mainly to

get feedback on the system from an outside perspective. (Also, we had colleagues who wanted to

use animation more extensively in their presentations.)

There were a number of practical concerns we had to address for our users. The first one was

that all of our potential users needed support for playing video files within the presentations—not

as a way of showing animated figures, but for showing results that were in video format. We added

video support to the Windows version of SLITHY by using Microsoft’s DirectShow library. A second

consideration was ensuring that the presentations would run on the A/V equipment available at the

conference. SLITHY requires substantially more system resources (especially in terms of graphics

hardware) than the average PowerPoint presentation, and we would not be able to test the system

before arriving at the conference, just a few days before the first of the talks. We were fortunate

in that SIGGRAPH is a conference dedicated to computer graphics, and consequently makes high-

powered computing and graphics hardware available to its presenters. Excerpts from these animated

presentation are shown in Chapter 5.

We met with the four users as a group after their presentations had been delivered at the confer-

ence. Their reaction to SLITHY was generally positive, though they felt building presentations with

the system was too time-consuming to be used for anything but major talks. For talks where mostly

static slides with a few animated features would suffice, users felt they’d be more likely to make

do without the animation than to use SLITHY to create the talk. This was not unexpected—after

all, we strongly believe that creating good instructive animation is intrinsically more difficult than a

typical bulleted-list type of presentation, regardless of the authoring tool used. The effort of creating

31

animation may be justified only for especially important presentations, or for material that is going

to be used multiple times. Making SLITHY material as reusable as possible was a major goal for

SLITHY-2.

A common complaint noted by the users was that positioning elements, within both animations

and parameterized diagrams, was one of their most time-consuming tasks. We had already recog-

nized this shortcoming of the system, and hoped that the graphical layout tool would be helpful,

at least in positioning elements in animation scripts. Unfortunately this tool proved insufficient,

since the layouts it produced were static. Users who wanted to animate the layout of the slide itself

were forced to hand-edit the automatically-generated code to augment the layouts with motion. This

process was difficult and made it impossible to load the layouts back into the editor.

Since the results of our attempts at making GUI-based authoring tools had been discouraging,

we changed approaches and tried to improve the way authors positioned elements manually via

scripting. Originally each element type had its own set of parameters for controlling its position. For

instance, a static image element had two parameters defining a reference point, two more defining

a width and a height, and a fifth giving the image’s position relative to the point, while a diagram

element took four parameters that defined an axis-aligned rectangle. This variety made it difficult

to figure out what combinations of parameters would lead to a desired position on the screen, and

what animation commands would lead to a desired motion.

In creating SLITHY-2 we redesigned all the animation elements to have a common positioning

mechanism. Each element’s position is now given by a single Rect object (a data type defined by

SLITHY). This object specifies a rectangle (not necessarily axis-aligned) on the canvas. Users can

create these rectangles from raw coordinate values, but a more natural way of using them is to start

with a rectangle encompassing the entire screen (or animation window) and use the object’s built-in

methods to subdivide it. For instance, an element might now be created like this:

tx = Text(get_camera().left(0.5).top(0.15), ...)

This would create a text element that occupied the top 15% of the left half of the animation’s window.

Since elements in SLITHY-2 use a common positioning mechanism, this rectangle could serve as

32

the position for any element type. An element’s position can either be a static rectangle, as shown

here, or a function that returns a rectangle and whose arguments are animatable parameters. A more

in-depth discussion of this mechanism appears in Section 3.2.3.

To address the difficulties with positioning graphics within parameterized diagrams, we inte-

grated the point-querying tool into the main object tester application. Previously it had been a

separate application, the remainder of our attempt at a dual-mode authoring tool. It was somewhat

bothersome to start up this application and load a diagram into it just to query a point, and some of

our users had not realized this separate application even existed. Previously the tool worked only

with parameterized diagrams; the new integrated tool worked with animation objects and interac-

tive objects as well. Moreover, we extended it so that it works with multiple levels of objects—if

one is viewing an animation that contains a parameterized diagram, the querying mode can return

positions in the coordinate system of either the animation object or the embedded parameterized

diagram. The ability to query coordinate systems across different levels of the hierarchy makes it

easier to align things on screen across object boundaries.

The most significant change we made after hearing from our initial group of users, however,

was to loosen the relationship between parameterized diagrams and animation objects. In SLITHY-

1, as in the hinting talk, there was a strict one-level hierarchy: the presentation displayed a single

animation object, which could contain zero or more parameterized diagrams. This structure reflected

that of existing animation systems. These systems compose a scene with character models; the

animation is the final output. In presentations, however, the relationship between the “models”

(diagrams) and animations is much more flexible.

Consider a situation where the presenter wants to show two animated diagrams side-by-side. In

the original SLITHY, the animation script would have taken this form:

left = Diagram(...)
right = Diagram(...)

start_animation([left, right])
parallel()
serial()
... animation commands for left diagram ...

33

end()
serial()
... animation commands for right diagram ...
end()
end()
end_animation()

This script creates a single animation object containing two parameterized diagrams, and uses

SLITHY’s animation commands to drive them in parallel. It is fairly straightforward, but what if

the presenter later wants to show only the left animation by itself? The animation object above is

of no help—it contains two diagrams being animated in parallel. The author must create a differ-

ent animation script with a single instance of the diagram, and duplicate the animation commands

needed to drive the diagram in the new script. Now this animation is defined in two places in the

source, which complicates editing and maintaining the presentation.

It would be easier to define this presentation if animation objects could somehow include one

another. If this were possible, we could first build the left and right animations independently,

defining each with its own script. (These scripts would essentially be the sequences of animation

commands elided in the previous code segment.) Suppose that leftanim and rightanim are

animation objects that have been defined in this way. The animation script that shows both in parallel

can simply include these objects and play them back:

left = Anim(..., anim = leftanim)
right = Anim(..., anim = rightanim)

start_animation([left, right])
parallel()
left.play()
right.play()
end()
end_animation()

The component animations can be defined in only one place and reused more flexibly.

Our users encountered other cases where this capability would have made code reuse easier.

Consider a standard slide layout with a title, some body text, and an animated figure. The user has

constructed an animation that does the following:

34

1. The title slides onto the screen and the figure fades in.

2. The figure animates.

3. Some body text appears.

4. The figure animation continues.

5. The title slides onto the screen and the figure and body text fade out.

This sequence of events would be unremarkable even with PowerPoint. It is straightforward to

construct something like this with SLITHY, but in the resulting code the sequence of commands for

manipulating each piece would be interwoven. To reuse the title-sliding effect, for instance, would

require extracting those portions of the script and copying them to a new script. This kind of “reuse”

is frequently more time-consuming than just recreating the effect from scratch each time, as some

of our users noted.

Our solution was to unify the concepts of “model” (parameterized diagram) and “animation.”

Instead of treating an animation as a sequence of frames to be displayed, SLITHY-2 treats an ani-

mation object much like a parameterized diagram, one with only a single scalar-valued parameter

called “t” (for “time”). Now both diagrams and animations are simply objects that can be invoked

to produce a picture based on a set of input parameters. We use the term drawing objects to refer to

this type of object collectively. “Parameterized diagrams” and “animation objects” might be thought

of as subclasses of this “drawing object” type, though the implementation is not structured this way.

We have not encountered this unified treatment of animations and models in existing animation

systems.

Under the new scheme, SLITHY-2 animations could include other animations just as easily as

parameterized diagrams.

d = Drawable(..., some_diagram)
a = Drawable(..., some_animation)

35

start_animation(d, a)

smooth(2.0, d.foo, 1.0) # manipulate some_diagram’s parameters
linear(2.5, d.bar, 6.5)

linear(4.0, a.t, 4.0) # manipulate some_animation’s time parameter

end_animation()

The Drawable element replaced the Diagram element, to reflect the fact that it could contain

either kind of drawing object. In this example some_diagram is a user-defined parameterized

diagram function, while some_animation is an animation object. (There is also an Anim ele-

ment, which is essentially a wrapper around Drawable that provides some convenience methods

specifically for displaying animations.)

We also extended the drawing library available within parameterized diagrams to allow them

to include either type of drawing object. In SLITHY-1 it was possible for one diagram to include

another simply by calling it, since they are simply Python functions. In revising the system we added

the embed_object() function, which takes a rectangle, a drawing object, and a set of parameter

values for that drawing object, and causes the object to draw itself on the parameterized diagram’s

canvas in that location. Diagrams can use this new mechanism to include other parameterized

diagrams or animation objects. In the latter case the point in time to be displayed is provided

by the enclosing diagram.

Creating this unified model for diagrams and animations was the most extensive revision to

SLITHY, but numerous smaller changes were made as well. The C implementations of the built-in

animation elements (such as Text, BulletedList, Image, etc.) were replaced with Python

implementations that made use of the parameterized diagram graphics library. This change cut the

amount of C code in the system by roughly one-third.

SLITHY-1 had three separate Python libraries, one each for parameterized diagrams, animations,

and interactive objects. They were mutually incompatible, so a user could only import one of

them into any single input file. This restriction forced the three different types of object to be

segregated into three separate files. Using multiple files was expected for large presentation projects,

36

but our four users noted frustration at having to organize their presentations according to SLITHY’s

restrictions (e.g., all the parameterized diagrams in one file, all the animations in another) instead

of their own more logical schemes (e.g., all the material for a particular section of the talk in its

own file). We combined the three libraries into one, which had the additional positive effect of

eliminating more redundant code.

SLITHY-1 also had three separate test applications, one for interactively testing type of object.

SLITHY-2 combined these into a single test harness, which can display drawing objects in any

combination and provides a useful point-querying mechanism (as noted above) for all objects. One

thing we learned from giving the system out to other users is that seemingly small things like this

(having a single tester application rather than three) matter a lot. User interface matters, even for

non-graphical systems. Removing as many of SLITHY-1’s arbitrary-seeming restrictions as we

could made the system much less of a chore to use, even though it is still based on programming.

The last significant change to SLITHY-2 was to reimplement interactive objects to be more

like animations. In SLITHY-1, an interactive controller functioned as a wrapper around a single

parameterized diagram, mapping input events like mouse clicks and keypresses into changes in the

diagram’s parameters. In SLITHY-2, an interactive controller looks much more like an animation

script—it can contain zero or more animation elements and control the parameters of all of them.

Elements can be created dynamically and added to or removed from the interactive animation as it

is running. Parameterized diagrams are included through use of the Drawable element, just as in

regular animation scripts.

2.5 Authoring principles

We believe that our current approach works well for creating animation that is effective and highly

reusable. We can summarize our experiences in three authoring principles, with emphasis on com-

paring our approach to that taken by most character animation tools:

Use parameterization. The first principle is the use of parameterization at all levels of the sys-

tem. The use of parameterized models is common in 3D character animation tools. Since it is

37

Figure 2.4 Two instances of a pulley diagram, with the handle in different positions. Parameteri-
zation lets us animate the diagram by manipulating a single abstract “amount of pull” parameter,
rather than managing all the individual graphical elements individually.

impractical to create 3D animation by keyframing individual pieces of geometry, a layer of indi-

rection is added. Models are created that encapsulate the details of geometry and expose high-level

logical parameters to the animator.

This idea is just as useful in 2D as it is in 3D, though it is not so commonly seen in 2D animation

tools. When we create a figure for use on an animated slide, we want to create not just a picture

but also a set of behaviors that restrict how the parts of the diagram move and change, similiar to

the work of Ngo et al. [41]. Encapsulating some of the diagram’s behavior this way simplifies the

task of animation considerably. Consider the pulley diagram of Figure 2.4. It is much easier to

create and edit an animation by changing an abstract “pull” parameter than by moving the rectangle,

lengthening and shortening the lines, rotating the triangle, and so on. We express the mapping

between model parameters and the underlying geometry just once; then we can (potentially) use

that model again and again in multiple animations. Of course, just as in character animation, the

model and the animation cannot be designed in isolation from each other. If a character needs to

smile in one scene, the model had better have a smile-control. If a slide diagram needs to animate

in a certain way, the diagram creator needs to make sure it exposes the appropriate controls.

Combining graphical primitives into models is not the only application for parameterization

within a presentation authoring system. Many elements of a presentation are typically used repeat-

38

edly throughout the talk, from the animated transitions to the layout of text on slides. We desire

support for creating all these elements through parameterizable functions, to avoid repetitious work

by the author and to encourage the use of a unified visual style throughout a presentation—including

the ability to make changes to the style without editing each individual slide. Since SLITHY pre-

sentations are created by writing code in a general-purpose programming language, users can po-

tentially write functions to generate any SLITHY object—parameterized diagrams, animations, or

interactive objects.

Treat animations as models. The second principle we have observed is the usefulness of treating

animations themselves as parameterized models that happen to have a single parameter: time. By

this way of thinking, both animations and models are objects that map a set of input parameters onto

a set of output graphical primitives. The only thing special about “animations” is that their input

parameter set happens to consist of a single scalar value.

It would be possible in SLITHY to create an animation using the same mechanism as parameter-

ized diagrams—by writing a Python function that takes a single parameter (time) and draws the state

of the animation for the time value it is passed. This method would work but is not very practical for

nontrivial animations. SLITHY animation scripts let the user create the animation by specifying a

set of persistent animation elements, then describing how those elements change from one moment

to the next. The resulting animation object behaves like a diagram with a single time parameter, but

is constructed in an easier and more natural way.

Build slides hierarchically. An animation object should not have to contain everything visible

on the screen at once. Instead, we would like construct animations in smaller logical units and com-

bine them to make slides, just as we would combine static graphics and text in standard presentation

tools.

The result of combining animations together is, of course, a new composite animation. This

suggests our final authoring principle, that of supporting deep hierarchical assembly. We want the

ability to nest these characters and models within each other to any degree of depth. This ability is

not typically necessary in a traditional character animation setting. There, the modeled characters

39

are placed into a scene, their controls manipulated via keyframing, and frames rendered out. In

presentations, though, the models and animations can be much more abstract, and it often makes

sense for them to be included in one another. For example, imagine a slide (an animation) that

features a block diagram of a system. The diagram would be created as a parameterized model.

Each block of the diagram might contain a thumbnail animation to suggest to the audience the task

performed inside that block. The small animations would each contain their own models as well.

While very deep nesting is not necessary – a few levels is all that is probably useful in practice – it

is clearly useful to support more than just one level of models-in-animations.

In SLITHY, each object type has a mechanism for including other objects. Parameterized dia-

grams can use the embed_object() function to imperatively draw other objects, just like draw-

ing a simple rectangle or circle. Animations and interactive objects can make use of the Drawable

element, which is a container for any drawing object. The system supports nesting objects almost

arbitrarily deep (in practice, the maximum depth is limited by the underlying OpenGL representa-

tion, but is typically in the hundreds). The next chapter will cover these mechanisms and the rest of

the SLITHY system in greater detail.

40

Chapter 3

THE SLITHY ANIMATION SYSTEM

In this chapter, we will describe the final design and implementation of SLITHY in detail. (This

is the system we referred to as SLITHY-2 in the previous section—from now on we will refer to this

system simply as SLITHY.)

The fundamental building block in SLITHY is the drawing object. A drawing object has a fixed

set of parameters; it uses the values of those parameters to produce a picture. The method used

to produce the picture is dependent on the particular type of drawing object and will be discussed

further below. First, though, we will introduce some terminology common to all viewing objects.

Drawing objects draw on a notionally infinite plane called the canvas (see Figure 3.1). The

drawing might include simple shapes like lines and circles, text, or bitmap images. The drawing

object also defines a camera, given as a rectangle, not necessarily axis-aligned, that determines

what part of the canvas will be visible. The visible part is mapped into the object’s viewport, which

could be the SLITHY application window (or the whole screen in full-screen mode), or could be

a rectangle on some other drawing object’s canvas. If the viewport and the camera have differing

aspect ratios, some parts of the canvas lying outside the rectangle will be visible. The camera

rectangle will always be centered in the viewport, axis-aligned, and as large as possible.

There are three major types of drawing object available in Slithy:

� A parameterized diagram is a function, written by the user, that is executed on each redraw.

It produces output by calling the drawing functions in our library of graphics primitives. All

of the Python language is available within the diagram function; the author may use variables,

arithmetic, control structures, and imported modules. The parameterized diagram may also

invoke other drawing objects, passing in the parameters they need to draw themselves.

41

(a) (b) (c) (d)

Figure 3.1 A simple drawing object canvas (part (a)) contains some text and a star shape. The
camera rectangle, shown in red, is specified in canvas coordinates. When the drawing object is
mapped into a viewport (part (b)) with a different aspect ratio, additional parts of the canvas
outside the camera may be visible as well. The viewport could be the entire SLITHY application
window, or it could be a rectangle on the canvas of a different drawing object (as in part (c)). This
second object has its own camera, which is mapped into a viewport in the same way (part (d)).
Objects may be nested to any depth.

� An animation object is a drawing object that takes a single real-valued parameter t, which

we will usually think of as representing time. These objects are also constructed by writing

Python code, but in a different way. Instead of writing a function that is executed for each

redraw, as for a parameterized diagram, the animation object author writes a function (an

animation script) that is executed just once to create the animation object. The animation

object is a complete description of the entire animation. The SLITHY runtime system can

then take this animation object and sample it to display the animation at arbitrary points in

time.

� Interactive objects are very similar to animation objects in that they represent a mapping from

a single scalar time parameter to a drawing. Unlike animation objects, though, which are

completely specified before the presentation begins to play, interactive objects can change as

they are playing, in response to input events such as mouse motion and keypresses. With

interactive objects, the presenter is effectively generating a new animation object live, on the

fly, during the presentation.

The remainder of this section will discuss the three classes of drawing objects and their imple-

mentations in more detail.

42

3.1 Parameterized diagrams

Parameterized diagrams are the most straightforward kind of drawing object. A parameterized

diagram is simply a Python function that imperatively executes drawing commands when called.

SLITHY provides a graphics library that has a variety of primitives beyond the lines and triangles

provided by OpenGL.

In order for SLITHY to use a Python function as a parameterized diagram, it must know the

number, names, and types of arguments expected by the function. This information is encoded

using Python’s default argument syntax. Like many other languages, Python functions can provide

default values for their own arguments, to be used when the caller omits arguments:

def some_function(a = 5, b = ’hello’):
print a, b

some_function(3, 21) # prints "3 21"
some_function(3) # prints "3 hello"
some_function() # prints "5 hello"

SLITHY co-opts this syntax as a convenient way to describe a diagram’s parameters. Each parameter

for a diagram is an argument to the function. The “default value” is not an actual value for the

parameter, but is instead a tuple that describes the parameter’s type and other necessary information.

Here is a simple example:

def my_diagram(x = (SCALAR, 0.0, 1.0, 0.5),
y = (STRING, ’hello’)):

. . .

When asked to use this function as a parameterized diagram, SLITHY will access Python’s internal

representation of the function to find these “default value” tuples, interpreting them as a description

of the parameters. In this case, the parameter “x” is defined to be a real-valued number between zero

and one, with a default value (an actual default value this time) of 0.5. Similarly, “y” is defined as a

string-valued parameter with “hello” as its default value. Note that if we were to call this function

with no arguments, then parameter x would receive the value “(SCALAR, 0.0, 1.0, 0.5)”,

43

a Python tuple containing four items. This would almost certainly cause errors within the function

body, which is expecting x to be a real-valued number. Whenever SLITHY invokes a parameterized

diagram, it will explicitly pass values for all parameters to avoid this situation.

The first item of each parameter’s description tuple is its type. The values SCALAR and STRING

are constants defined in the SLITHY library. Table A.1 contains a complete listing of the available

types. The type information is used by the tester application to provide appropriate UI controls for

interactively manipulating the diagram (in this case, a slider for x and a text entry box for y). The

information is also used within animation scripts, since scripts reference parameters by name. Also,

some animation commands can only operate on parameters of certain types—a linear interpolation,

for instance, can be performed on a scalar-valued parameter but not on a string-valued parameter.

3.1.1 Specifying the camera

The first thing that most parameterized diagrams must do is specify the camera. The camera is

implemented by manipulating the OpenGL model-view matrix, so it must be set before any drawing

is done. The camera is given as a rectangle (a Rect object, defined by SLITHY and documented in

Section A.2). Here we’ll begin building a simple diagram to display a clock:

def clock(hour = (INTEGER, 0, 24, 0),
minute = (INTEGER, 0, 60, 0)):

set_camera(Rect(-10, -10, 10, 10))
clear(white)
thickness(0.5)
circle(9, 0, 0)

In this example the call to set_camera() sets the camera to the square [�10, 10] � [�10, 10].

This region of the canvas – a square area slightly larger that the circle drawn by the last line –

is guaranteed to be seen in the viewport. If the viewport happens to be square, then the camera

rectangle will fill the viewport exactly. If the viewport is wider or taller than the camera, then more

of the canvas will be visible, in equal amounts either above and below the camera rectangle, or on

the left and right sides. Figure 3.2(a) shows an animation object that includes three instances of this

diagram in viewports of various sizes. (The remaining commands of the function clear the canvas

44

(a) (b)

Figure 3.2 Showing how the camera rectangle affects a diagram’s appearance. In part (a), we see
a diagram with a fixed camera rectangle as it appears in viewports of various aspect ratios. Part
(b) shows a diagram whose camera rectangle is computed based upon the cam input parameter.
The images of part (b) are screenshots of the SLITHY test application, which maps the parameters
of the diagram onto the sliders at the bottom of the window to allow interactive manipulation.

to white and draw a black circle of radius 9 centered on the origin. They will be introduced in the

following sections; they are included here so that something is visible in the figure.)

Like everything else in a parameterized diagram, the camera may be computed based on the

parameter values. The next example adds a parameter cam which is used to interpolate the camera

between two values:

def clock(hour = (INTEGER, 0, 23, 0),
minute = (INTEGER, 0, 60, 0),
cam = (SCALAR, 0, 1, 0)):

set_camera(Rect(-10,-10,10,10).interp(Rect(0,0,10,10), cam))
clear(white)
thickness(0.5)
circle(9, 0, 0)

Figure 3.2(b) shows the result as we interactively manipulate the cam parameter using the object

tester. In each image the circle is drawn in the same place on the diagram’s canvas; manipulating

the camera produces the change in view.

45

3.1.2 Drawing primitives

To draw on the screen, the Slithy graphics library contains a set of functions for common primitives:

line() draws a polyline, circle() and dot() draw stroked and filled circles, respectively,

frame() and rectangle() draw stroked and filled rectangles, respectively, and polygon()

draws an arbitrary filled polygon. All of SLITHY’s “stroke” primitives are actually drawn with

strips of triangles rather than with OpenGL lines. This method of line-drawing reduces performance

somewhat, but means that stroke thickness is specified in canvas coordinate space, which is easier

to work with than screen space and scales correctly when the diagram is drawn at different sizes.

Stroke thickness is set using the thickness() function.

All of the drawing functions draw in the current drawing color, which is set with a call to

color(). The color() function accepts graylevel or RGB tuples, with an optional alpha com-

ponent. (Transparency is handled using a simple painter’s algorithm.) The color() function can

also accept a color object as its argument. SLITHY predefines a number of color objects with names

like red and blue, and the user can define new color objects as well. Defining new objects is

useful for creating a consistent style throughout the presentation—for instance, the author might

define a color object called “caption_color” and use it throughout the presentation. If it is

used consistently, then to change all the captions in the presentation one only needs to change the

definition of caption_color. Color objects also have methods for translating RGB to and from

other color spaces and interpolating between colors.

The clear() function clears the diagram viewport to a given solid color. The current drawing

color is not used; instead, the color is specified as an argument to clear() (using any of the

forms legal for the color() function). It is not required to clear the canvas before drawing on

it; by not clearing the canvas the objects drawn by a parameterized diagram will appear on top of

whatever object includes the diagram. (Essentially this means that the background of the diagram is

transparent.)

46

3.1.3 Graphics state

The current color and stroke thickness are two components of the graphics state. Another com-

ponent is the current user space transform, used to map the coordinates given to primitive draw-

ing functions to positions on the canvas. Initially this transform is the identity, but various affine

transformations can be multiplied into it using the translate(), rotate(), scale(), and

shear() functions.

The functions push() and pop() are used to save and restore the current graphics state,

similar to the gsave and grestore operators in PostScript. The push() function pushes a copy

of the current state onto a stack, while pop() discards the current state and replaces it with the

state popped off the stack. State changes can thus be confined to a particular section of code by

bracketing it in a push()/pop() pair.

We’ll use the rectangle drawing primitive and coordinate system transforms to add hour markers

to the clock:

push()
for i in range(12):

push()
translate(7.5, 0)
scale(0.5, 0.125)
rotate(45)
rectangle(-1, -1, 1, 1)
pop()

rotate(30)
pop()

Within the loop, a series of transforms concatenated together serve to turn the square drawn by

rectangle() into a flattened diamond and position it at the edge of the clock face. The effect

of individual transforms is illustrated in Figure 3.3(a). The diamond is drawn twelve times, turning

the coordinate system after each one is drawn to position it correctly near the circumference of the

face. The resulting picture is shown in Figure 3.3(b).

47

rectangle(-1, -1, 1, 1)

rotate(45)
rectangle(-1, -1, 1, 1)

scale(0.5, 0.125)
rotate(45)
rectangle(-1, -1, 1, 1)

(a) (b)

Figure 3.3 Adding diamond-shaped hour markers to the clock face. Part (a) shows how coordinate
system transforms are used to turn a square into a flattened diamond shape. Part (b) shows the
clock face after a loop places 12 markers around its circumference.

3.1.4 Path objects

For more complex shapes, SLITHY’s path objects can be used. A path object encapsulates a path that

is built via a sequence of method calls (e.g., moveto(),lineto(), curveto(), etc.) that work

similarly to their PostScript namesakes. Path segments can be straight lines, or quadratic or cubic

Bézier curves. Paths can contain multiple subpaths, each of which can be either open or closed.

One difference that users accustomed to PostScript may encounter is that changes to the user space

transform do not affect a path’s definition. The transform is applied only when the path is drawn on

the screen.

Constructing a path object does not draw anything on the screen. To draw a path, the object is

passed to the stroke() or fill() functions, which draw the path stroked or filled in the current

color (and line thickness, in the case of stroking). Paths can also be drawn with arrowheads at the

ends, since arrows are a common graphic element in presentation diagrams.

Rendering a path is a relatively expensive operation. Curve segments must be expanded to

polylines (SLITHY uses an adaptive subdivision algorithm to do this). Filling a path requires trian-

gulating it in order to handle convexities and holes. Stroking it is even more expensive since Slithy

48

arc

arc

qcurveto

qcurveto

Figure 3.4 Schematic diagram of the path object used to draw the hands of the clock example.
The open circles and dotted lines mark reference points used in the shape’s construction, such as
the center of circular arcs and the off-curve control points for Bézier curves.

must construct a triangle strip for each segment and then join the strips together with an appropriate

miter or bezel. For efficiency, Slithy caches the result of triangulating a path object in an OpenGL

display list, so that the computation can be avoided when an object is drawn repeatedly.

Path objects are created by calling the Path() constructor. Line and curve segments are ap-

pended to a path object by calling methods on it; the available methods are detailed in Section A.5.2.

For the clock example, we’ll use a path object to define a curved, tapered object for the hands of the

clock:

hand = Path()
hand.moveto(0, 1).arc(0, 0, 90, 270, 1)
hand.qcurveto(0.5, -0.25, 8, -0.125)
hand.arc(8, 0, 270, 90, 0.125)
hand.qcurveto(0.5, 0.25, 0, 1)
hand.closepath()

This shape is illustrated in Figure 3.4. The path is constructed starting at the vertex marked with a

star and proceeds counterclockwise. Path object methods use a common technique of returning a

reference to the object itself, so that multiple method calls can be chained together. The second line

of the above sample shows this usage, where moveto() and arc() are both called in a single

statement. All of the method calls could have been chained together in this fashion, but here they

have been shown as individual statements for clarity.

An important point to note is that this hand object should be constructed outside the param-

49

eterized diagram function—the above block of code should go before the definition of clock(),

rather than within it. The primary purpose of path objects is to allow SLITHY to cache complex

shapes that are drawn repeatedly; to define it within the diagram function would result in the path

being constructed, drawn, and discarded each time the diagram is redrawn. Since the clock hand

shape does not change between redraws, we can incur the cost of constructing and triangulating it

just once, no matter how many times the diagram function is called.

Within the diagram code, we use the fill() and stroke() functions to draw a path ob-

ject on the canvas. These draw the path object in the current color, using the current user space

transformation. Here we will draw one instance of the hand path in red to form the minute hand:

rotate(90)

push()
color(red)
rotate(-minute * 6)
fill(hand)
pop()

This section of code is the first time we have made use of the minute parameter defined at the

top of the function. The first call to rotate() turns the coordinate system so that the hand path

object, which would point to the right (as in Figure 3.4), points straight up instead. We then multiply

the value of the minute parameter by six to transform it into the correct rotation angle in degrees,

relative to the straight-up position. (The negative sign is necessary because the rotate() function

rotates counterclockwise; we want our clock hand to move in the clockwise direction.) We then

invoke fill() to draw the hand in the correctly rotated coordinate system.

The next part of the code will draw a second instance of the path object in green as the hour

hand. We want the hour hand to be underneath the minute hand, so we must draw it before the

minute hand. This block will be inserted between the “rotate(90)” and the block that draws

the minute hand.

push()
color(green)
rotate(-(hour * 30 + minute / 2.0))

50

(a) (b) (c)

Figure 3.5 The clock example diagram after the hands have been added. Part (a) shows the dia-
gram in its default state. In part (b) the parameter sliders have been used to make the clock display
2:20. Changing the camera rectangle with the cam parameter still affects the whole diagram, as
shown in part (c).

scale(0.7)
fill(hand)
pop()

Here we must use both the hour and minute parameters to calculate the correct angle for the

hour hand. We also use scale() to shrink down the hand slightly. Figure 3.7 shows the resulting

diagram.

3.1.5 Text and images

The library can render high-quality text from PostScript Type 1 or TrueType fonts using the open-

source Freetype library. When a font is loaded, SLITHY creates a texture map containing characters

from the font. To render text into a diagram, the system draws one quadrilateral for each character,

setting the texture coordinates appropriately to extract each character shape. This process is illus-

trated in Figure 3.6. The library’s text function supports a variety of positioning and justification

options, simple word-wrapping, and using multiple fonts and colors within a single text string.

Bitmap images are also drawn using texture maps. Storing images as textures allows them to be

51

(a) (b) (c)

Figure 3.6 SLITHY renders text by drawing a quadrilateral for each character (part (a)). A font
is represented by rasterizing each character into a texture map (part (b)), packing the characters
together tightly to conserve texture memory. Applying the appropriate part of the texture map to
each quadrilateral results in rendered text (part (c)).

scaled, rotated, and made semitransparent, just like the primitive drawing shapes. It also means that

image data is stored on the graphics card rather than in system memory, increasing the performance

of the system.

Scripts use the load_image function to load an image from a file (most common image file

formats are supported, thanks to use of the Python Imaging Library). This function returns an

image object, which can be thought of as a handle to the image in memory. Within a parameterized

diagram, the image function is used to draw an image object to the screen, with controls for scaling

and positioning.

The return value of both the text and image functions is a Python dictionary object, which

contains information about the bounding box of the text or image drawn. This information is often

useful in aligning other drawing elements. This feature was added in response to requests from our

first set of users.

We can use the text() function to add a label beneath the clock. We will add the label text

as a parameter of the diagram, and adjust the camera to allow a little bit of extra room beneath the

clock. Here’s how the updated clock diagram begins, with the changes marked in bold type:

def clock(hour = (INTEGER, 0, 23, 0),
minute = (INTEGER, 0, 60, 0),

52

cam = (SCALAR, 0, 1, 0),
label = (STRING, ’’)):

set_camera(Rect(-10,-12,10,10).interp(Rect(0,0,10,10), cam))

Then, at the end of the function we can call text() to draw the string:

text(0, -10.5, label, font = thefont, size = 2)

The function takes a pair of coordinates for positioning the text and the string of text to be drawn.

The font is specified by passing a font object, which is a token return by SLITHY when it loads

a font file. Complete documentation on the text() function and font objects can be found in

Appendix A.

Figure 3.7 shows a complete SLITHY input file defining the final clock diagram.

3.2 Animation scripts

Earlier we claimed it is desirable to treat animations as simply a special case of parameterized di-

agrams, where the diagram has just a single scalar-valued parameter representing time. We can

imagine explicitly building animations as parameterized diagram functions. Consider creating a

four-second animation based on the clock: first the clock advances from 2:00 to 2:45 in two sec-

onds, then pauses for one second, then reverses back to 2:30 in the final second. We could write a

parameterized diagram to implement this animation by computing the value for each of the clock

diagram’s parameters based on a single time parameter:

def clock_animation(t = (SCALAR, 0, 4, 0)):
label = ’Seattle’
cam = 0
hour = 2

if t < 2:
minute = int(t / 2.0 * 45) # interval [0.0, 2.0)

elif t < 3:
minute = 45 # interval [2.0, 3.0)

else:
minute = int(45 - 15 * (t-3.0)) # interval [3.0, 4.0]

clock(hour, minute, cam, label)

53

from slithy.library import *

define the hand shape
hand = Path().moveto(0,1).arc(0,0,90,270,1)
hand.qcurveto(0.5,-0.25,8,-0.125).arc(8,0,270,90,0.125)
hand.qcurveto(0.5,0.25,0,1).closepath()

thefont = load_font(’wmb.pfb’, 60) # ’wmr.pfb’ is a PostScript
Type 1 font file

def clock(hour = (INTEGER, 0, 23, 0),
minute = (INTEGER, 0, 60, 0),
cam = (SCALAR, 0, 1, 0),
label = (STRING, ’’)):

set_camera(Rect(-10,-12,10,10).interp(Rect(0,0,10,10), cam))
clear(white)
thickness(0.5)
circle(9, 0, 0)

push() # draw the diamond-shaped markers
for i in range(12):

push()
translate(7.5, 0)
scale(0.5, 0.125)
rotate(45)
rectangle(-1, -1, 1, 1)
pop()

rotate(30)
pop()

push()
rotate(90)

push() # draw the hour hand
color(green)
rotate(-(hour * 30 + minute / 2.0))
scale(0.7)
fill(hand)
pop()

push() # draw the minute hand
color(red)
rotate(-minute * 6)
fill(hand)
pop()
pop()

color(black)
dot(0.3)

text(0, -10.5, label, font = thefont, size = 2)

test_objects(clock)

Figure 3.7 The complete SLITHY script for defining a simple clock parameterized diagram, con-
structed in Section 3.1. Two screenshots of the tester window with various parameter settings are
shown on the right.

Three of the clock diagram’s parameters (label, cam, and hour) are constant throughout the

animation, so determining their values is simple. The minute parameter, however, goes through

three distinct phases during the animation, so we must first determine into which interval the current

value of t falls, then compute minute appropriately for each interval.

While creating an animation in this way is difficult, editing it is even worse. To lengthen the

animation by expanding the initial two-second part of the animation to two and a half seconds

causes changes to cascade down through the other sections:

if t < 2.5:

54

minute = int(t / 2.5 * 45) # interval [0.0, 2.5)
elif t < 3.5:

minute = 45 # interval [2.5, 3.5)
else:

minute = int(45 - 15 * (t-3.5)) # interval [3.5, 4.5]

Here all the changed values have been marked in bold. If we wanted to introduce effects like smooth

rather than linear interpolation between values, the code would get even more complicated. Clearly

using the parameterized diagram mechanism directly is not the right approach to making animations

that behave like models.

SLITHY’s solution is to use a different kind of script, called an animation script. Instead of being

called once per redraw to draw a single frame, an animation script is called only once to produce a

description of the entire animation. In effect, the output of the animation script is a data structure

equivalent to the clock_animation() function listed above. It does not contain any actual

drawing functionality, but it substitutes for the code that computes a diagram’s parameter values

based on the input time parameter t.

Here is how our simple clock animation example might be written as an animation script:1

set(label, ’Seattle’) # set initial values
set(cam, 0)
set(hour, 2)
set(minute, 0)

linear(2, minute, 45) # over 2 sec, run "minute" up to 45
wait(1) # do nothing for 1 sec
linear(1, minute, 30) # over 1 sec, run "minute" down to 30

Now, even without the comments, the code more clearly reflects the design of the animation. Exe-

cuting this piece of code produces a data structure that encapsulates a function for each parameter:

label (t) = ’Seattle’

cam (t) = 0

1For simplicity, this code is presented in a somewhat abstracted version of SLITHY’s syntax. More realistic examples
will appear later in this section.

55

hour (t) = 2

minute (t) =

������
�����

linear(0, 0, 2, 45, t) for t � [0, 2)

45 for t � [2, 3)

linear(3, 45, 4, 30, t) for t � [3, 4]

where

linear(x1, y1, x2, y2, t) = y1 + (y2 � y1)(t � x1)�(x2 � x1)

This set of functions can be evaluated at any time t � [0, 4] to produce the appropriate pa-

rameter values for the clock parameterized diagram. These functions are clearly reminiscent of

the parameterized diagram-style code we originally used to create this animation: the if–elif–else

structure, for instance, is reflected in the block structure of the minute function. The difference is

that since we are using an animation script to describe the mapping from t to parameter values at

a somewhat higher level than direct computation, editing the animation becomes easier. To make

the same change we did before, extending the initial segment of animation by half a second, now

requires just one fairly intuitive change:

linear(2.5, minute, 45) # over 2.5 sec, run "minute" up to 45

Executing the modified script will propagate the effects of the change automatically, so the correct

functions and intervals are generated.

3.2.1 Animation scripts in SLITHY

In the simplified example above, we showed an animation script controlling the parameters of the

clock parameterized diagram. In practice, it is often useful to have multiple objects under the control

of a single animation. In SLITHY these objects are called animation elements (or just elements). All

of an element’s parameters may be controlled via the animation script. Each element has a position

on the animation’s canvas (these positions may be animated as well). Just like a parameterized

diagram, the animation has a camera rectangle that defines what portions of the canvas are visible.

56

The simplest element is the Drawable element, which acts as a container for another drawing

object (such as a parameterized diagram or animation object). The Drawable element takes on the

parameters of whatever object it is used to contain. Here we create an element to contain the clock

diagram:

d = Drawable(get_camera().left(0.5).inset(0.05),
clock,
label = ’Seattle’, hour = 2)

The first argument is the position of the element on the canvas, which is computed in this case by

taking the default camera rectangle (returned by get_camera()) and subdividing it to obtain the

desired location for the diagram. The second argument is the drawing object itself, which for this

example is the clock diagram. The rest of the arguments are optional, and provide default values

for the parameters of the contained object.

SLITHY provides other element types for drawing certain commonly needed slide elements.

The Text element draws a single string of text, the Image element draws a single static bitmap

image, the BulletedList element provides a simple PowerPoint-style text box with hierarchical

indentation and bullet points, and so on. Each of these can be thought of as a Drawable element

and a very simple parameterized diagram function rolled into one—each has a position on the canvas

and a set of animatable parameters for controlling what they draw. The rendering of these specialized

elements is, in fact, done using the very same graphics library that parameterized diagrams use.

For our example we will create an instance of the Fill element, which draws a simple colored

rectangle:

bg = Fill(style = ’horz’, color = black, color2 = blue)

Because this element is commonly used to fill the whole screen (thus the name Fill), the position

argument is optional. If omitted, as it is here, it fills the entire viewport. The other arguments are

default values for the element’s parameters, just as with the Drawable element. Here we have

specified a horizontal gradient fill, going from black at the top to blue at the bottom.

Once we have created the required elements, we can define an animation object.

57

Figure 3.8 The sole frame of a trivial zero-length animation object.

start_animation(bg, d)
animobj = end_animation()

The start_animation() function starts a new animation object. It takes zero or more elements

as arguments—these are the elements that initially appear in the animation. The order is significant.

Elements are rendered in the order in which they appear in the list, so later elements will be drawn

atop earlier ones. Both the set of elements and their ordering can be changed within the animation;

the arguments to start_animation() only specify the initial state.

The end_animation() function finishes up an animation definition and returns the resulting

animation object. Since no commands appeared between the start and end, this example defines an

animation of length zero. This trivial animation is shown in Figure 3.8. It shows both the black-blue

gradient fill in the background and an instance of the clock diagram on the left side. The figure also

shows that some of the clock diagram’s built-in parameter defaults have been overridden in creating

the element: the hour hand is at 2, and the label reads “Seattle.”

To make something actually happen in the animation, we insert some animation commands

between start_animation() and end_animation():

start_animation(bg, d)

58

t
=

0

t
=

1

t
=

2

t
=

3

t
=

4

Figure 3.9 Frames from a simple clock animation (rotated sideways).

linear(2, d.minute, 45)
wait(1)
linear(1, d.minute, 30)
animobj = end_animation()

The notation “element.parameter ” is used to refer to a particular parameter, since a given parameter

name may be used by multiple elements. Setting the default values when creating elements takes

the place of the initial set() commands used in the first abstract version of this animation script.

This example uses SLITHY’s actual syntax.

Frames from this simple animation are shown in Figure 3.9. As expected, the minute hand

advances by 45 minutes, then stops, then reverses back to the :30 position. Notice also that the hour

hand is moving as well, since its position is also tied to the “minute” parameter. This is the primary

advantage of using parameterized diagrams. Even though two graphical elements are moving in this

animation, we have already expressed their position in terms of the abstract parameter minute.

Now to make an animation, we need only worry about how to make the abstract parameters change

in the way we want, and the graphics will take care of themselves.

Within an animation object, each parameter of each element is represented by a data structure

called a timeline. A timeline represents the function mapping the input time t to a value for that

parameter. A timeline is a partition of the interval (��,�) into a set of nonoverlapping domains.

For each domain the timeline has either a constant value for that parameter, or a function that will

produce the value based on the value of t.

At the start of the animation each timeline is initialized to a single domain, extending to infinity

in both directions, with a constant value equal to that parameter’s default. Animation commands

59

d.minute (t) =
�

0 for t � (��,�)
time cursor = 0

d.minute

2

45

31t=0

���� linear(2, d.minute, 45)

d.minute (t) =

��
�

0 for t � (��, 0)
linear (0, 0, 2, 45, t) for t � [0, 2)

45 for t � [2,�)
time cursor = 2

d.minute

2

45

31t=0

Figure 3.10 Illustrating how the linear command operates by overwriting a portion of a pa-
rameter’s timeline starting at the time cursor.

such as linear() then edit the timeline of the parameter they operate on, overwriting portions of

the timeline with new domains. Figure 3.10 illustrates the effect of the linear() function on a

timeline.

This type of edit typically takes place at the position of the time cursor. There is only a single

time cursor in an animation script; it is not unique to each parameter or each element. Therefore a

series of commands will appear to happen in sequence, even if they modify different parameters:

60

linear(2, d.minute, 45)
linear(2, d.hour, 10)

In this example, we assume the time cursor begins at t = 0. The first command changes the minute

over a two-second duration, which leaves the time cursor at t = 2. The second command then

modifies the hour parameter, also over a two-second duration, starting at t = 2 (and afterwards,

advancing the cursor to t = 4). The net result is a four-second animation in which the minute hand

moves first, followed by the hour hand.

3.2.2 Expressing parallelism

Many animations require multiple parameters to be changing simultaneously. For example, we

might wish to have an animation with two instances of the clock diagram, and show the clocks

running together. SLITHY implements parallelism in animation scripts with three functions: par-

allel(), serial(), and end().

At the start of an animation script the system is in serial mode, and the time cursor behaves

as described above. After each command that has a duration (such as linear()), the cursor is

advanced by the duration of the command. Calling the parallel() function switches the system

into parallel mode, which changes the behavior of the cursor. In parallel mode the cursor is not

advanced after each command, so all commands will begin at the same time. Instead, the system

remembers the durations of each command within the parallel block, and when it is ended (by calling

end()) the cursor is advanced once, by the duration of the longest of the parallel events.

The net effect is that a script like this:

parallel()
linear(2, d.minute, 45)
linear(3, bg.color2, green)
end()

causes the parameters d.minute and bg.color2 (one of the colors of the background fill) to

change together. At the end of these four lines the cursor has been advanced by three seconds, the

61

length of the longest single animation command.

We can think of a parallel()/end() block as creating a “composite” animation event:

a collection of component animation commands that are executed together, but moving the time

cursor just once, as if a single command were given whose duration was equal to the maximum

of the individual commands. A serial()/end() block creates a different kind of composite:

it causes the component commands to be executed in sequence, moving the time cursor just like

a single command whose duration was the sum of the individual commands. These composite

commands may be nested within one another to any level, and mixed with the primitive commands

like linear.

3.2.3 Moving elements on the canvas

An element’s position on the canvas may be animated just like its intrinsic parameters, by specifying

the element’s position not as a static rectangle, but as a pseudoelement. A pseudoelement is like a

regular element in that it has parameters that are controlled by a timeline, but instead of producing

a picture as an element does, a pseudoelement produces a rectangle object. This rectangle is then

used as the position for an ordinary element.

As an example, here is an animation script where the clock element moves during the animation:

create a pseudoelement that interpolates between two rectangles
dv = viewport.interp(get_camera().left(0.5).inset(0.05),

get_camera().right(0.5).inset(0.05))

d = Drawable(dv, # the pseudoelement provides the diagram’s position
clock,
label = ’Seattle’, hour = 2)

bg = Fill(style = ’horz’, color = black, color2 = blue)

start_animation(bg, d)
linear(2, d.minute, 45)
smooth(2, dv.x, 1) # the pseudoelement’s ’x’ parameter

controls the interpolation
animobj = end_animation()

62

t
=

0

t
=

1

t
=

2

t
=

3

t
=

4

Figure 3.11 The result of using a pseudoelement to animate an element’s position.

This animation is shown in Figure 3.11. The effect of changing the x parameter of the dv

pseudoelement is to change the d element’s position on the canvas. Also, this example is our first

use of the smooth() function, which transitions a parameter to a new value over a duration, just

like linear(), but using a slow-in–slow-out interpolation instead of linear interpolation.

Figure 3.12 shows a complete SLITHY animation script, along with frames of the resulting

animation. It uses a common authoring convention of defining each animation in its own func-

tion (“def clock_animation():”) which returns the animation object. At the end, the line

“clock_animation = clock_animation()” executes the function, then binds the name

clock_animation to the return value (the animation object), effectively discarding the anima-

tion script itself once the execution is complete.

3.2.4 Changing the element set

The start_animation() function takes as arguments the initial set of elements to appear in

the animation and their stacking order, but as mentioned above, neither the set nor the ordering is

fixed for the whole animation. The enter() and exit() functions add and remove elements

from the set of active elements, while lift() and lower() change their relative stacking order.

These are all zero-duration commands, like set(), that take place at the position of the time

cursor. The sequence of objects over time is represented using the same timeline mechanism as for

element parameters; the four functions mentioned here are simply specialized animation commands

for manipulating this working set timeline. If a, b, c, and d are elements, then the animation script

63

from slithy.library import *

. . . # definition of the "clock" parameterized diagram here

def clock_animation():
c = get_camera()
d1v = viewport.interp(c.restrict_aspect(2.0/3.0).inset(0.05),

c.left(0.5).inset(0.05))
d1 = Drawable(d1v,

clock,
label = ’Seattle’, hour = 2)

d2 = Drawable(get_camera().right(0.5).inset(0.05),
clock,
label = ’Kansas City’, hour = 4, _alpha = 0)

bg = Fill(style = ’horz’, color = black, color2 = blue)

start_animation(bg, d1, d2)

parallel()
linear(5, d1.minute, 60)
linear(5, d2.minute, 60)
linear(5, bg.color2, green)

serial()
wait(1)
smooth(2, d1v.x, 1)
fade_in(2, d2)
end()
end()

return end_animation()
clock_animation = clock_animation()

test_objects(clock_animation)

Figure 3.12 A complete SLITHY script for defining a simple clock animation (except for the defi-
nition of the clock diagram, which can be found in Figure 3.7).

start_animation(a, b)
. . .

enter(c)
. . .

exit(a)
lower(b)
. . .

enter(d)
lift(b)
. . .

end_animation()

64

where each “. . . ” represents one second of animation, results in this working set timeline:

working_set (t) =

���������
��������

[a,b] for t � (��, 1)

[a,b,c] for t � [1, 2)

[c,b] for t � [2, 3)

[c,d,b] for t � [3,�)

To render a frame of the animation, SLITHY first evaluates the working set function at the desired

time t to determine which elements to render and in what order.

3.2.5 Partitioning animation objects

Frequently, presentation authors will want to break a long animation up into sections, inserting stops

at particular points where the animation will pause, allowing the speaker to catch up or highlight

details that could be missed. SLITHY makes it simple to split an animation up into pieces in this

manner, by using the pause() command.

Here we show a simple seven-second animation that makes use of pause():

start_animation()
set(x, 0.0)
linear(3.0, x, 1.0) # over 3 seconds, raise parameter x to 1
pause()
smooth(4.0, x, 0.0) # over 4 seconds, lower it back to 0
end_animation()

In this example, the end_animation() function will return a list of two animation objects, one

containing the animation from the beginning up to the pause(), and one containing the animation

from the pause to the end.

Scripts may contain multiple pauses. For a script with k pauses, the end_animation()will

return a list of k + 1 animation objects—one containing the portion of the animation from the start to

the first pause, one from each pause to the next, and one from the final pause to the end. In this way

authors can create a series of animation objects which run seamlessly end-to-end without having to

manually match up the parameter values in separate animation scripts.

65

Internally, SLITHY creates just one set of timelines for the entire animation sequence, as if the

pauses were not present. This object is called the base animation object. The pause() command

creates virtual animation objects that refer to this base object with offsets in time. In the above

example, the script creates the base animation object A, which contains a timeline for the parameter

x:

xA (t) =

���������
��������

0 for t � (��, 0)

linear (0, 0, 3, 1, t) for t � [0, 3)

smooth (3, 1, 7, 0, t) for t � [3, 7)

0 for t � [7,�)

The call to end_animation(), though, returns not A but two virtual objects derived from it,

A1 and A2:

xA1 (t) =

������
�����

xA(0) for t � (��, 0)

xA(t) for t � [0, 3)

xA(3) for t � [3,�)

xA2 (t) =

������
�����

xA(3) for t � (��, 0)

xA(t + 3) for t � [0, 4)

xA(7) for t � [4,�)

While this looks somewhat complicated written in function form, the implementation is quite

simple. Each animation object has a render() method that accepts a time t and draws the frame.

Normal animation objects render themselves by looping through the elements of the animation,

determining the parameters for each by accessing the timelines, and drawing each element. Virtual

animation objects contain neither a list of elements nor a set of timelines. They perform their

rendering by simply calling the render method of the base animation object, offsetting and clamping

the t value as appropriate.

66

3.2.6 Extensibility

One possible disadvantage of using SLITHY-style animation scripts compared to implementing the

t-to-parameter mapping “by hand” as at the start of this section (page 52) is that the manual method

might allow a wider variety of functions from t to a parameter value. As with parameterized dia-

grams, the manual method would allow arbitrary code to compute the mappings. With animation

scripts the author is limited to whatever transition functions (such as linear() and smooth())

are built in to the system. In practice we have not found this to be a serious limitation, but we

recognize that other users may have needs that go beyond these two simple interpolators.

Consequently, we have worked to make SLITHY’s animation commands as extensible as pos-

sible. The linear() and smooth() “functions” are not really functions at all, but objects of

the class Transition. Each class essentially encapsulates a function from the interval [0, 1] to

[0, 1]; SLITHY’s transition infrastructure handles all the scaling necessary to turn these into the cor-

rect interpolation. By writing new subclasses of Transition, users could add new interpolation

methods to SLITHY, which would function just like linear() and smooth(). This mechanism

is made possible by a feature of Python which allows objects with a “__call__” method to act as

functions, so the following two lines are equivalent:

x(...)
x.__call__(...)

A similar technique is used in the building of undulators. Undulators are similar to transitions except

that instead of changing a parameter to a new value and stopping, an undulator produces a repeating

periodic pattern in the parameter’s value. The built-in animation command wave() that varies a

parameter sinusoidally is not a true function, but an instance of a subclass of the Undulation

class. By writing new subclasses authors can extend SLITHY’s command set.

3.3 Interactive objects

SLITHY-1 allowed a very limited form of interactivity: instead of displaying an animation object on

the screen, the system could substitute an interactive controller that allowed a single parameterized

67

diagram to be manipulated interactively. The manipulation was done by user code that mapped input

events (like keystrokes and mouse actions) to changes in diagram parameters.

This mechanism was enhanced and integrated more closely into the rest of the SLITHY-2 system.

Now interactive objects are essentially animation objects whose timelines are constructed while they

are being played. The interactive object can control an arbitrary set of animation elements, rather

than a single parameterized diagram. The set of elements can be modified with the enter() and

exit() functions, just as in an animation. In addition, the interactive object itself is no longer

inserted into the presentation script in place of an animation object. Instead, interactive objects

are added to animations with a special Interactive element. This allows interactive objects to

coexist on the slide along with other pre-scripted parts of the animation.

In this section we will develop a simple interactive object that manipulates the clock diagram.

Interactive objects are implemented as Python classes, which the SLITHY system will instantiate at

run time.

class InteractiveClock(Controller):
def create_objects(self):

self.d = Drawable(get_camera(), clock,
hour = 2, label = ’Seattle’)

return self.d

The first line declares the class InteractiveClock, which inherits from the base class Con-

troller. Controller is part of the SLITHY library; all interactive object classes are derived

from this class.

Within the class we define methods (like create_objects()) that encode the class’s be-

havior. All methods take as their first argument a reference to the object whose method is being

invoked. It is analogous to the this pointer in C++, but in Python this object is traditionally called

self. All references to the object’s instance variable must be done via explicit references to self.

The create_objects() method is called by SLITHY when a new instance of the class is

created; its purpose is to create the set of elements controlled by the interactive object. It corresponds

to the part of an animation script above the call to start_animation(), where elements like

Drawable and Text and Fill are created. In this example we create just a single Drawable

68

element that displays the clock. The create_objects()method returns the objects that should

initially appear on the canvas. Note that this method also stores a reference to the element in an

instance variable (self.d) so that the element can be manipulated inside other methods.

The remaining methods use animation commands to edit the parameter timelines. When SLITHY

receives an input event (such as a keystroke), it positions the interactive object’s time cursor at

the current playback time and invokes the method. Here we will add a key() method to the

InteractiveClock class:

def key(self, k, x, y, m):
if k == ’a’:

m = get(self.d.minute)
smooth(1.0, self.d.minute, m+60)
set(self.d.minute, m)
set(self.d.hour, get(self.d.hour)+1)

This method receives five arguments: the standard self reference, which key was pressed, the x

and y coordinates of the mouse cursor when the key was pressed, and a list of the modifier keys

(“shift” and/or “control”) which were down at the time of the keypress. In this example, when the

‘a’ key is pressed, the time shown on the clock is advanced by one hour in a one-second animation.

Interactive objects can respond to mouse as well as keyboard events. The drawing library has a

hit detection mechanism to make it easier to detect mouse clicks on specific objects. This mecha-

nism uses the OpenGL depth buffer to store an object ID that can be queried later. Object IDs are

nonnegative integers; the exact range available depends on the underlying OpenGL implementation

but typically values in the range 0–16383 are available. The graphics library has a function to set

the “current drawing ID,” in much the same way that the current drawing color is set. To use this

mechanism we will make a small change to the clock() diagram function, to draw the minute

hand using object ID #1:

def clock(. . .):

. . .

push() # draw the minute hand
color(red)

69

id(1) # draw the hand in ID #1
rotate(-minute * 6)
fill(hand)
pop()

. . .

Now whenever the clock is drawn, the pixels covered by the minute hand will get ID #1 in the

invisible object ID buffer. We can query the buffer from within the interactive object’s methods:

def mousedown(self, x, y, m):
i, = query_id(x, y)
if i == 1:

smooth(0.5, self.d.minute, 5, rel=1)

Here the mousedown()method, which is called whenever the mouse button is pushed, is used to

advance the clock by five minutes whenever the user clicks on the minute hand. This determination

is made by querying the ID buffer at the location of the mouse click. Multiple locations can be

queried in a single call to query_id(); the return value is a tuple of object IDs. A call that

queries two locations might look like this:

id_a, id_b = query_id(xa, ya, xb, yb)

(A quirk of Python syntax requires the presence of a comma when the tuple returned is a singleton,

as in the mousedown example above.)

Some examples of interactive objects that use this enhanced functionality are shown in Sec-

tion 5.2. Appendix B shows the implementation of a more elaborate interactive object.

3.4 Interactive tools for authoring

Section 2.4.1 documents our various attempts to create interactive tools for authoring parameterized

diagrams and animation scripts. Our approach there was to seek what we called “power assist”

tools—graphical tools that would aid the author in writing SLITHY code, and would be applicable

for a wide variety of subjects. As we noted, this effort was largely unsuccessful. We encountered

70

two major problems in writing tools to automatically edit user-written code: understanding the

input (without putting onerous restrictions on it), and producing output in a form that meshed with

the author’s conception of the code’s structure.

We can imagine a second type of graphical authoring tool that bypasses both of these problems.

These tools have graphical interaction as their only input mechanism. They output SLITHY code,

but the code is not intended for subsequent modification by the user (except through the tool).

PowerPoint can be thought of as a tool like this for a more restricted domain: the space of animations

where otherwise static elements fly onto the screen using one of a predefined set of motions. SLITHY

explores the other end of the design spectrum: a much wider variety of possible animations, at the

expense of losing WYSIWYG graphical input and editing.

There may be a kind of “sweet spot” that lies between these two extremes. By choosing a small

domain, we can limit the range of animations enough to make interactive specification feasible,

while still producing useful, content-rich animations. For instance, consider the example of Fig-

ure 5.3 on page 90. We can imagine a bar-chart tool that lets us put in data and animate the graph

in a limited number of meaningful ways. The output would be a SLITHY animation, ready to be

integrated into a presentation.

In the ideal case, we can imagine assembling a library of these small tools that cover a wide

range of presentation topics. One tool might be used for producing ordinary bulleted-list slides,

another for producing animated data plots, a third for showing still images. (Even with still images

there are opportunities for useful animation: zooming in for closeups, labeling and captioning, etc.)

Hand-authoring of SLITHY code would be limited to the subjects so specialized that no tool covers

them—which, for some presentations, could be an empty collection.

While this grand vision remains for the moment just that – a vision – we have produced simple

prototype implementations of tools that work in this manner. The first is a tool for creating still

image slideshows, inspired by the work of documentary filmmaker Ken Burns. Our tool allows

the user to load in images and to interactively specify zooms and pans over them and animated

transitions between them. The output is a complete SLITHY animation. An example of using this

71

Figure 3.13 The left column shows screenshots of the prototype image slideshow tool. The user
can load images, optionally select a subregion of the image to show (as in the meddle row) and
specify the type and duration of the transition. The right side shows frames from the resulting
SLITHY animation.

tool is shown in Figure 3.13.

A second prototype tool produces simple line chart animations. The user can use the controls

72

Figure 3.14 The left column shows screenshots of the prototype GUI line-chart tool. Here the user
has interactively arranged the data in three different ways. The right side shows frames from the
resulting SLITHY animation, which interpolates smoothly between successive states.

at the bottom of the window to specify the appearance of the chart. Successive appearance states

are saved in the list on the left side, and the tool generates SLITHY code to animatedly transition

between the states. Screenshots of the tool and its output are shown in Figure 3.14.

73

Chapter 4

ANIMATION PRINCIPLES

When desktop publishing and laser printers started to become more common, displacing the

typewriter, the immediate result was not better-looking documents. Confronted by dozens of type-

setting options, people simply chose them all, even within a single document. The message was not

“look at my content,” but “look what I can do with my software!” Today, too many presentations

use animation with similar results. Animation can enhance the content, or it can be visually distract-

ing. Over the course of this project we have accumulated a fair amount of experience in creating

animated presentations. By summarizing the results of our experience in making animated presenta-

tions as a set of general principles, we hope to encourage good animation, leading to more engaging

and informative presentations. It is important to remember that these are not meant as rules, but

more as a set of defaults. Like most rules, the principles here should at times be judiciously broken.

Use motion economically. When we first started adding animation to presentations, we naturally

tried to apply traditional animation principles such as squash and stretch and exaggeration, with

generally poor results. These principles are intended to turn a drawing (or a rendered model) into a

character in the mind of the viewer. While this liveliness is desirable in animation made to entertain,

it is distracting when the goal is to inform. The audience is drawn away from the speaker and

becomes focused on the animation itself, wondering what interesting thing is going to happen on the

screen next. We had better results when motion was as economical as possible. Figure 4.1 contrasts

a character animation-style motion (column (a)) with a simpler, economical motion (column (b)).

Other classical animation principles such as anticipation and staging are employed to draw the

audience’s attention to the right part of the screen at the right time. In presentations, though, it is

usually better to do this in a way that maintains a distinction between the attention-getting animation

and the action the audience needs to see. If something interesting is about to happen in a particular

74

(a) (b) (c)

Figure 4.1 Contrasting three ways of moving a square from one side of the screen to the other:
(a) using traditional animation principles of anticipation and squash and stretch, (b) using an
economical slow-in-slow-out motion, and (c) instantaneously, with no animation. (The ghosted
images are not shown by SLITHY, but are added here to suggest the motion.)

75

section of a figure, that section should be highlighted by a color change, a superimposed arrow, or

even the speaker manually pointing at it with the cursor—anything that can’t be confused with the

interesting action itself. There is no need to add an artificial buildup to the start of the action in order

to draw attention to it.

While we do caution against using overexaggerated motions, we also suggest avoiding instan-

taneous change. We have come to believe that smooth transitions – even something as simple as a

crossfade – should be the standard way of getting information on and off the screen. When jump

cuts are used on a small scale, as in adding a single bullet point or subtly modifying a diagram, it

becomes easy for the viewers to miss the change. This principle is known in film editing as well

[40]. In presentations, it causes the audience to focus intently on the screen, to make sure that noth-

ing important is missed. Figure 4.1 contrasts an instantaneous change with a simple smooth motion.

Even very brief transitions are better than sudden cuts at creating a feeling of continuity, which lets

the focus move easily from the screen to the speaker and back as needed.

Reinforce structure with transitions. An advantage of using subtle transitions is that it increases

the impact of the more showy effects when they are used. A presentation in which every single bullet

point tap-dances its way onto the screen is a presentation where the audience quickly learns to ignore

the tap-dancing. Used carefully, transitions can reinforce the structure of the presentation. A section

can be visually tied together with simple transitions. Using a more dramatic effect to move to a new

section will then create a visual break, subtly punctuating the visual half of the talk as the speaker

punctuates the verbal half. Figure 4.2 shows a simple application of this principle.

Good and Bederson [27] call this effect the “sense of semantic distance.” In their system static

PowerPoint slides are arranged on a large canvas at various scales; the transitions from one slide to

the next are then pans and zooms of the camera across this canvas. The natural way of laying out

slides in clusters by topic then leads to small transitions between related slides and longer, sweeping

motions between more distant sections. Our recommendation can be thought of as a generalization

of this effect, where the concept of a “bigger” movement is extended to more than simple Euclidean

distance.

76

(a) (b) (c)

Figure 4.2 Used uniformly, both a crossfade transition (column (a)) and a sliding transition (col-
umn (b)) are simply noise, adding little to the content of the talk. Different transitions can be used
meaningfully, though, by choosing each transition to reflect the structure of the talk. In column
(c), the use of a different transition creates a visual break, dividing the four slides into two distinct
groups—the Aa/Bb group, and the Cc/Dd group. (Lines have been manually drawn on some of the
still images to suggest motion.)

77

Create a large virtual canvas. Often when creating a presentation it seems like there is not

enough room on the slide to include everything the author thinks is important. Animated panning

and zooming can be used to naturally increase the effective real estate of the screen. A figure that

slides off one side of the screen remains more “visible” in the mind’s eye of the audience than

one that simply blinks out of existence. This effect is supported by psychological research: Dillon

et al. [17] summarize a number of studies supporting a positive correlation between memory for

location and memory for content in both text and electronic documents.

As a concrete example of this, imagine a situation in which the presenter is comparing items.

Comparison is a very common thing to do in presentations—to show “before” vs. “after,” or “stan-

dard method” vs. “our new method,” etc. A typical sequence would go something like this: show

each item by itself, in order to give detailed description. Then, go to a comparison slide that shows

all the items side-by-side, to highlight the differences among them. A set of slides that follow this

pattern is shown in column (b) of Figure 4.3. It takes mental effort on the part of the audience and

spoken explanation by the presenter to make the connection between the item on the first slide (and

its corresponding narrative description) to what is shown on the third slide. By simply replacing the

instantaneous flips with a pan over to show the second item, then a zoom out to show both, we very

naturally give a strong impression of comparing two things side-by-side. This kind of sequence is

shown in Figure 4.3(a). This sequence also illustrates the previous principle: by replacing the abrupt

jump cuts between slides with smooth motion, we reinforce the idea that this part of the presentation

is one interrelated section, rather than four disconnected slides.

Smoothly expand and compress detail. A closely related principle is that of using animation

to expand and compress detail. Earlier we suggested using camera pans and zooms to give the

impression of the screen as a window onto a very large space. It is also effective to use it as a kind

of magnifying glass for examining figures at a variety of scales. In this way the presentation can

easily fill the screen with the active portion of a diagram, shutting out the parts not relevant to what

the speaker is saying. Figure 4.4 contrasts two versions of an animation: one where scale changes

are used to fill the screen with the region of highest interest, and one where a single intermediate

78

(a) (b)

Figure 4.3 In column (a), motion is used to suggest the three colored shapes lie on a virtual canvas
larger than the slide. (Lines have been manually drawn on these still images to suggest motion.)
When the camera pulls back to show all three, the arrangement of the objects in space makes it
immediately clear which one is which. In column (b), where the screen simply blinks from one
picture to the next, viewers must refer to the labels to establish the correspondence.

79

scale is used throughout.

Another alternative to animated zooming is to jump instantly between the different scales. Fig-

ure 4.5 illustrates this alternative. It typically requires explanation by the presenter and effort by the

audience to make the mental links between the different views. While it may not be too taxing to

follow one scale jump, covering a complex figure may require examination of several locations at

multiple levels of detail, and it is easy to lose track of the relationship between what is being shown

on the screen and the figure as a whole.

Animation makes this kind of navigation much easier to follow. Linking the different views with

smooth, continuous camera motion takes advantage of the viewers’ natural spatial abilities, with less

need for artificial visual mechanisms like superimposed highlight rectangles and verbal explanation

from the presenter. The audience does not need to be told that the display is about to focus in on

one section because they can see it happen. Zooming in to emphasize detail can be done much more

often because there is less overhead involved in maintaining context.

Manage complexity through overlays. Panning and zooming allow attention to be focused on

one spatial region of a figure, keeping unnecessary detail off the screen while providing context.

Instead of breaking a diagram into pieces spatially, one can imagine instead slicing along an axis of

“complexity,” separating detail into layers that become visible only as required. This idea of accu-

mulating complexity through layering does not require computer graphics to implement—overhead

transparencies work very well for this kind of sequence, where different layers are printed on sep-

arate sheets and are stacked up on the projector. The use of electronic projection and sequences of

perfectly aligned slides made through cutting and pasting is arguably less effective than the older

technology. Now, instead of seeing the presenter physically add a transparency to the stack and

watching the screen as the new sheet is aligned, we often see new elements blink up onto the screen

instantly, indistinguishable from what was there before. This is one area where PowerPoint’s ani-

mated transitions could be used for great effect but too often are not. A simple animated transition

such as a quick fade-in or a small sliding motion can provide a subtle and effective cue for differen-

tiating the layers of information.

80

(a) (b)

Figure 4.4 Using animation to expand and compress detail. The figure has three levels of detail:
a closeup on the three points defining one curve segment, and intermediate level showing curves
connecting end-to-end, and an overall view showing the whole character as it is filled with pixels.
In part (a), animated zooming is used to smoothly connect the three levels, so each can be shown
full-screen. In part (b), the animated content is the same; only the zoom is missing. Now the screen
is too cramped for the final part of the sequence, while it is hard to see the detail of the initial part.

81

(a) (b)

Figure 4.5 Comparing animated zooming to the use of multiple scales without animation. Part
(a) shows an animated transition from one point on a map to another. The animation helps orient
the viewer in the space and gives a sense of distance. Part (b) shows the same map but with
instantaneous changes between the different scales. It requires much more effort on the part of the
viewer to determine how the different views are linked.

82

Figure 4.6 Building up a complex diagram gradually by means of successive overlays. This tech-
nique predates the use of computers for projection, but can be implemented effectively in SLITHY

with motion and fading.

83

Do one thing at a time. The last two principles are useful for focusing attention on a single,

important part of a figure. In general, doing one thing at a time is a useful principle for making

animation that explains rather than distracts. Animations where many things are changing at once

give an overall impression of the change, but make it difficult to concentrate on any single part. We

have had the best results when complex diagrams are animated relatively slowly and with frequent

pauses, as in Figure 4.7(b), so that the animations track the speaker’s words. The technological

advances in slide creation and projection have made it increasingly common for the presenter’s

words to take a back seat to the elaborate visuals.1 The extensive use of animation threatens to

make this effect worse. We believe it is important to treat any visuals – animated or otherwise – as

an accompaniment to the talk, rather than the other way around. The presenter can only talk about

one thing at a time; the animation on the screen should match.

Reinforce animation with narration. The idea of using animation simultaneously with narration

is a useful one. In our own presentations we have noticed a frequent impulse to try and make

two points at once—to have the animation showing one thing on the screen while we talk about

something else. Even though the two topics are usually closely related, it is very difficult to follow

both threads, and usually the result is that neither point gets made very effectively. When used

simultaneously, animation and narration should reinforce each other. The speaker should describe

what is happening on the screen as it happens. To make a point that isn’t illustrated, a pause in the

on-screen motion will naturally shift attention back to the presenter. The effectiveness of narration

in concert with animation has been demonstrated in a series of studies by Mayer and Anderson

[35, 36].

Distinguish dynamics from transitions. Our final animation principle also deals with reducing

the potential for confusing the audience. We can divide presentation animations into two major

classes: dynamics and transitions. Dynamics refers to perhaps the most natural use of animation:

depicting change over time in a real-world process. This change could be physical, such as a moving

1The worst incarnation of this style is the all-too-common presentation where the speaker puts up one text-filled slide
after another and simply reads them aloud.

84

(a) (b)

Figure 4.7 In this sequence, a series of dynamic animations, fades, and camera motions elaborate
a simple diagram into a filled character. In version (a), many of the individual actions are over-
lapped as in traditional character animation. The effect is smooth and continuous, but difficult to
follow. We recommend separating distinct actions, as in version (b), so that each piece can be seen
on its own, and natural pause points are created where speaker can catch up with the animation.

85

illustration of a mechanical system, or abstract, such as data flowing through a computer algorithm.

The essential notion is that the animation is used to show some kind of change in the material being

presented. Transitions is the term we use to capture all the other uses of animation—using it to

highlight, to draw attention, to move the talk from one topic to the next. Here, the animation serves

to help guide the audience through the presentation itself.

We have found it important to make sure that there is a clear distinction between dynamic an-

imations and transition animations. It is very easy to create animation that can be misinterpreted.

For example, one of our SLITHY-1 users was using the system to prepare a talk on a technique for

simulating the motion of nonrigid bodies. He wanted to contrast between two different states of his

system and had created an animated transition between the two illustrations. Because the subject of

the talk was a system for simulating motion, viewers were often confused by the transition, thinking

that the motion they were seeing represented the output of the simulation. Fortunately, this problem

was identified before the final presentation: replacing the confusing motion transition with a simple

crossfade resolved the ambiguity, making it clear that the sequence was showing two static states

rather than an actual motion. A recreation of the sequence and its alternatives appears in Figure 4.8.

86

(a) (b) (c)

Figure 4.8 Each column shows a transition from one state of the diagram to another. Because the
topic of this presentation was the dynamics of nonrigid bodies, it was easy to mistake the transition
of column (a) for output of the system, rather than a simple transition between two static diagrams.
In column (b), the motion has been replaced with a simple fade, eliminating the ambiguity. Another
option would be to slide the diagram up to make room for a second copy, allowing the comparison
to be done directly.

87

Chapter 5

EXAMPLES

In this chapter we will show some animated sequences created using SLITHY. While paper is

not the ideal medium for showing the output of SLITHY– these were, after all, created to be shown

in motion, accompanied by a live speaker – we hope that these examples will illustrate some of the

possibilities of using meaningful animation effectively in a presentation setting.

Our first example is Figure 5.1, a visual proof of the Pythagorean Theorem, similar to that used

in the study of Thompson and Riding [58]. Squares have been constructed on each of the three sides

of a right triangle, and we want to show that the green square on the hypotenuse is equal in area

to the sum of the other two squares. First, an altitude of the triangle is constructed, splitting the

green square into two rectangles. Then three area-preserving transformations: a shear, a rotation,

and another shear are used to transform the yellow rectangle into the blue square. A second shear–

rotation–shear sequence lines up the purple rectangle with the red square.

This animation is based on a single diagram, shown in Figure 5.2. This diagram has nine pa-

rameters. The a and b parameters control the lengths of the legs of the triangle (and thus the size of

the squares). The opacity of the altitude line and the length of its extension across the hypotenuse

square are controlled by linealpha and lineextend, respectively. The opacities of the yel-

low and purple shapes are jointly controlled by the subdivide parameter; note that in Figure 5.1

the animator has left these shapes at least partially transparent throughout the animation so that the

original squares can be seen underneath. The textlabel parameter controls the opacity of the

labels on the squares. The cam parameter moves the diagram’s camera; it is fixed in the animation

of Figure 5.1, though other sequences that use this diagram make use of it. The last two parameters,

slidea and slideb, have the most complex implementations. They control the transformations

of the yellow and purple shapes, respectively. Each ranges from zero to three. The first shear takes

88

Figure 5.1 A SLITHY sequence that illustrates a proof of the Pythagorean Theorem based on
shears and rotations.

89

(a) (b)

Figure 5.2 The diagram used to create the Pythagorean Theorem animation of Figure 5.1, shown
in the test window. Parts (a) and (b) illustrate two different settings of the slidea parameter.

place over the interval [0, 1], the rotation over the interval [1, 2], and the second shear over the in-

terval [2, 3]. Figure 5.2 shows this diagram inside SLITHY’s object tester; the two screenshots differ

only in their setting of the slidea parameter.

The last two parameters are good examples of how parameterized diagrams are used to en-

capsulate complexity: even though this three-step transformation is graphically complex, it can be

expressed as a function of a single parameter. The diagram object allows us to express that func-

tion once and then animate at a higher level—to change the timing or order of the animation we

only have to change how we manipulate the slidea and slideb parameters, which abstractly

represent all the low-level graphical manipulations.

Figure 5.3 shows an example of using animation in a business context. The sequence begins

with a chart of quarterly revenue, introduced one year at a time. Next the data slides out to the

left, leaving only the last three bars, which are then broken out by company division. Some of

the divisions fade to gray, leaving two particular ones highlighted. Next the graph transforms from

showing revenue in dollars to percentage of the total: the y-axis labels fade out and are replaced

while the bars themselves stretch out to the full height of the graph. Labels are then introduced,

90

Figure 5.3 A SLITHY sequence that uses an animated graph to illustrate a set of financial data.

91

(a) (b) (c)

(d) (e) (f)

Figure 5.4 Each row shows one of the parameterized diagrams used in the creation of the anima-
tion of Figure 5.3. The diagram of parts (a)–(c) has just two controls: one for the number of bars
to draw and one to slide out all but the last three bars. The second diagram has a different set of
parameters, which draw only the last three bars but in a wider variety of styles: colored to show a
breakdown by division, as percentage of the total, with labels, etc.

92

underscoring how the green division is slowly decreasing in percentage while the blue division has

jumped up sharply.

In this example, financial data is being used to tell a story, just as characters are used to tell a

story in animation made for entertainment. Without animation, this sequence would be more like

a flipbook of graphs, forcing the speaker to explain verbally how each graph is connected to the

next. Animation shows these connections naturally, freeing the presenter to focus on explaining the

content rather than the visualization.

The implementation of this talk also illustrates one of the advantages of a programming-based

authoring mechanism mentioned by the authors of Menv—precision [50]. This animation actually

makes use of two different parameterized diagrams, as shown in Figure 5.4. One is used to draw the

first half of the sequence, up to the point where there are just three blue bars (Figure 5.3, top center).

At that point the second parameterized diagram is substituted. It only knows how to draw the last

three bars, but has controls for breaking them down by division, showing them as percentages,

adding labels, etc. Since we are creating these pictures with code rather than interaction, it is a

simple matter to make the diagrams line up exactly so that the transition is seamless. Note how

parts (c) and (d) of Figure 5.4 show identical pictures, even though they are drawn by different

diagram functions with different parameter sets.

5.1 Real-world presentations

The next set of examples are taken from the presentations created by the four users we recruited to

try out SLITHY. These were made using the first implementation of SLITHY, but should be easily

portable to the latest version. They illustrate a number of our animation principles as well as some

of the situations that led to improvements in the design of SLITHY.

Figure 5.5 has three examples of animated diagrams. Part (a), from the work of Liu and Popović

[33], shows the cumulative effect of rotations on a 3D object (implemented in SLITHY with an

OpenGL diagram). Part (b) shows how a deformed object is represented as a rest state plus a

displacement. As the rest state is varied, the displacements change to compensate. This diagram

93

(a) (b) (c)

Figure 5.5 Three examples of animation being used to show actual movement in a physical or virtual space.

94

is a 2D representation of a technique that is actually carried out in 3D (in the work of Capell et

al. [8]). The final example, column (c), is a more abstract example that shows how Allen et al. [3]

take twelve sets of input data (range scans of a human arm) that have been fit to a model (the colored

skeleton overlaid in the first image) and place them in a space whose axes are the model parameters.

Again, this diagram shows just two of a larger number of dimensions. Animation is used to slide

each example from the arbitrary grid to its correct position in the map, then to bring in a list of

challenges and check off those that are addressed by this representation.

These are examples of the “dynamics” type of animation, where the motion is used to illustrate

movement of objects in either physical or virtual spaces. Another is illustrated in Figure 5.6, which

shows how a template surface (the blue-and-white checkered surface, whose control points are the

yellow spheres) is adjusted to fit a set of range scan data (shown superimposed, at the top of the

second column). The camera is then rotated for a better view, and a cross-section through the arm is

shown.1 These types of animation are perhaps the most obvious applications of animation, at least

for topics where they can be usefully applied. Next we will look at some examples of animation

being used more abstractly.

The sequence in Figure 5.7 is used to introduce the goal of the work, cover some related work,

and then move into the newly proposed method. It begins with a simple slide indicating the desired

input and output of the system. The two icons then shrink and slide apart to make room for some

illustrations of previous attempts to solve the problem. The pink box groups together one kind of

approach to the problem, while the yellow box contains a different set of techniques. One issue with

the yellow set is highlighted via inset closeups that emerge from the picture. The presentation then

moves from talking about related work to talking about the new method, indicated by the “Related

Work” title bar sliding out to be replaced by the “Our approach” title. The figure shrinks down to

make room, and then images of the scanning apparatus and collected data are shown. These are then

replaced by a grid of twelve images representing a set of input data obtained by the scanner. Finally,

1This animation, like all 3D examples in SLITHY, is created by bypassing SLITHY’s Python drawing library and
implementing a parameterized diagram directly in C and OpenGL.

95

Figure 5.6 Frames from an animation that uses a 3D parameterized diagram implemented in C
and OpenGL.

96

Figure 5.7 A SLITHY sequence that uses motion to show the overall goal of the system is related
to previous work in the area as well as the new approach. Images representing different parts of the
system slide around on the screen, maintaining continuity while making room for new information.

97

the screen focuses in on one of these examples and begins to enumerate a list of challenges to be

addressed in processing the input.

This sequence makes excellent use of animation, even though movement is not part of the topic

it addresses. The two images representing the overall system goal remain onscreen throughout the

related work section and into the “our approach” section, providing continuity and underscoring

how the other pieces fit into that goal. It would be hard to get this effect with a series of still

slides: While the two images could be placed on each slide, every time they change position or

scale might require explanation. With animation the audience can immediately see how the two

large images on the initial slide are connected to the small icons of the other sections. The fact that

they have smoothly slid around and shrunk has not changed their identity, whereas an image that

instantaneously blinks from one spot to another might not be recognized as representing the same

“thing.”

The next two sequences, Figures 5.8 and 5.9, were created to present the video matting work

of Chuang et al. [13]. The first sequence illustrates the image compositing algorithm, which takes

three input images: a background image, foreground image, and an alpha mask, and combines

them to form a single output image. The animation starts by showing the three inputs. Then the

camera pulls back to make room, and the foreground and alpha images are combined to form an

intermediate image. Next a copy of the alpha mask slides over and is inverted, and the inverted

mask is combined with the background image. The two intermediate images are then combined

to form the final composite. Finally, the intermediate constructions disappear and the remaining

images slide together to summarize the overall process. This is a subtle but nice example of using

animation to expand and compress detail. It would be hard to come up with a layout that worked

well for showing all seven images of the construction, but also looked good when the intermediates

were removed to show a summary. Animation is used here to solve the problem of changing the

layout of the slide and making the changes transparent to the viewer—the audience doesn’t need to

look at the labels to establish correspondences, because each element has moved smoothly from one

position to the next.

98

Figure 5.8 This sequence starts with three images and illustrates the steps by which they are
combined to form a composite. Animation makes it possible to slide the images around as needed to
lay out each stage of the construction attractively, without having the pieces jump around between
slides.

99

The second example from Chuang et al., Figure 5.9, uses larger scale changes to focus on very

small details. This sequence starts with an illustration of the overall matting problem, which is to

reverse the compositing operation and extract the three source images from the composite. (Note the

similarity of the opening frame to the final frame of Figure 5.8. Though not shown here, animation

is also used to move continuously from that figure to this one.) In this case the algorithm requires

some supplemental information, called a trimap and represented by the blue contours.

The contours slide over to line up with the image as the camera focuses in on it. First the

algorithm’s overall strategy is shown, by highlighting the pixels in yellow in the order in which they

are calculated. The camera then zooms in even more to focus on one small part of the image and

illustrate how the algorithm operates on a single target pixel. An RGB cube appears next to the

image, and pixels from the target pixel’s neighborhood fly out to populate the RGB space. These

clouds of points are replaced by statistical distributions, drawn as ellipses, that are then used to

estimate the alpha mask at the target pixel. Having demonstrated the complete algorithm on one

pixel, the camera pulls back to show the result on the whole image.

Figure 5.10 is similar to the example of Figure 5.7 in that images are used to represent different

parts of the system in a diagram that shows their relationship. The sequence begins with the desired

input and output of the system (the images look the same in this figure because the “images” are

actually video clips showing different animation styles, and the two videos have the same ending

frame). The images representing input and output shrink down and slide apart to make room for

the block diagram that will develop between them. As each block is introduced, a callout image

emerges to illustrate the need for that part of the system.

This block diagram lends structure to the whole presentation. Figure 5.11 shows one portion of

the talk. The camera zooms in to the “momentum constraints” block of the system diagram while

fading to a new slide, as though all the slides of this section are contained within that block. The first

diagram illustrates breaking the motion up into flight stages and ground stages. A pair of boxes, one

for each of these classes, then slide in. Each box contains smaller diagrams illustrating a particular

type of constraint. These boxes are not still images, but small animations. The camera zooms

100

Figure 5.9 Animation illustrating the Bayesian matting algorithm of Chuang et al. [13]. This
animation uses animated zooming to show the technique at both micro and macro scales.

101

Figure 5.10 This sequence constructs a block diagram of a system, beginning with the input and
desired output. Small callout images and animations emerge from each block to highlight specific
issues with that part of the system.

102

further in to each of these animated vignettes, where motion is used to illustrate the constraint.

The camera moves from box to box, showing each illustration. When it pulls out again, each of

the small illustrations is now in its end state. This part of the talk concludes by pulling back out

to reveal the overall block diagram. The other blocks are explained with similar sequences. This

presentation uses the transitions between slides to reflect the hierarchical organization of the talk,

which addresses the various issues in a depth-first manner.

This example illustrates the need for deep hierarchical assembly of slides. It would be nice to

actually show the detail slides inside the diagram blocks, rather than just suggesting the containment

by a zoom and crossfade. This presentation was authored with SLITHY-1, which did not allow this

kind of deep assembly. Seeing examples like this one spurred us to allow a richer relationship

between diagrams and animations in subsequent versions.

5.2 Using interactivity

Despite the severe restrictions imposed on interactive objects by the first version of SLITHY (see

Section 2.4.2), one of our users was able to integrate a nice use of interaction into his presentation.

Figure 5.12 shows four screenshots of the interactive portion of this presentation. The chart shows

several example input data sets laid out in parameter space. The algorithm described in the presen-

tation uses a weighted k-nearest neighbor algorithm to generate data for new points in this space.

The interactive tool lets the presenter move the sample point around with the mouse, connecting the

point to its four nearest neighbors. The weight of each neighbor is reflected in the thickness of the

connecting line.

This kind of simple “live demo” can be much more engaging to the audience than an entirely pre-

scripted sequence. In smaller-scale situations, it also allows the presenter to respond to hypotheticals

and questions from the audience.

The improvements to interactive objects described in Section 3.3 make it easier to implement

more elaborate interactive demos. Figure 5.13 shows an interactive demonstration of the de Castel-

jau algorithm for drawing Bézier curves. The user can click in the background to add control points,

103

Figure 5.11 This sequence uses the block diagram to structure the remainder of the talk. Zooming
is used to give the impression that each set of detail slides are located within the corresponding
block. This containment in used recursively; with some of the detail slides the camera zooms in
further to focus on individual animated images.

104

Figure 5.12 This “slide” lets the presenter move the sample point using the mouse, allowing
interactive exploration of the diagram.

105

(a) (b)

(c) (d)

Figure 5.13 A complex interactive object that lets the user draw Bézier curves and animate their
geometric construction. Green control points can be added and moved around with the mouse,
while the dark blue points can be dragged around to modify the value of u. The interactive object
coexists on the slide with other SLITHY elements such as text and bulleted lists.

shown in green. Keypresses are used to advance through steps of the construction (using animated

transitions). The green control points and blue construction points can be dragged around with the

mouse, with the rest of the diagram adjusting in real time. The later frames show how the inter-

active object itself is part of a larger SLITHY animation: it shrinks and slides over to make room

on the screen for the bulleted list. The movement on the screen and the text bullets are not part of

the interactive object itself; they are elements of the animation object that contains the interactive

object.

Another use of interactive objects made possible by their integration with other animation ob-

jects is the ability to extend SLITHY’s interface to some degree. Figure 5.14 shows two interactive

objects that allow on-screen annotation of running animations. In each case the interactive object

106

(a)

(b) (c)

Figure 5.14 Interactive objects are being used to allow the presenter to make annotations on top
of a running SLITHY animation. Part (a) shows an ordinary SLITHY slide before any annotations
have been added. In part (b) the mouse is used to sketch lines on the slide; at the conclusion of
each stroke the actual path recorded is replaced with a smooth curve. Part (c) shows how the same
interactive objects also lets the presenter draw arrows gesturally by clicking where the arrow is to
point and moving the mouse to indicate the direction.

is laid on top of an existing animation object, by creating a new animation object that contains two

elements: the original animation object, and the interactive element. No change to the original ani-

mation script is necessary, because the system can manipulate the object that results from executing

the script.

107

Chapter 6

RELATED WORK

In this chapter we will discuss three areas of previous work that are relevant to our research.

First, we will look at some of the efforts by cognitive and educational psychology researchers to

quantify the effectiveness of animation. The question of whether animation is superior to static

graphics is still unsettled, though many studies seem to lean at least slightly in favor of animation.

Sections 6.2 and 6.3 compare SLITHY to other software systems: first those created for making

animation, then those created for giving presentations. Our system appears to be the first specifically

intended for doing both in a general way.

6.1 Effectiveness of animation

Just as a static graphic uses position to represent relationships between elements in physical spaces

(e.g., maps) or abstract space (e.g., an organizational chart), it is widely believed that animation

can use time as a natural representation for a variety of processes, procedures, and algorithms. The

effectiveness of animation in instruction has been studied by a number of researchers in the fields of

psychology and education. In this section we will summarize some of those results.

Reiber [54] summarizes twelve prior studies of animation’s effectiveness in learning to come

up with three broad recommendations regarding the instructional use of animation. The first is to

use animation only when it fits the subject matter well. Animation is most effectively used to show

motion and trajectory, so the observed usefulness of animation depends on how fundamental these

kinds of concepts are to the learning task. He criticizes one study [9] that found no differences

between text, text plus still graphics, and text plus animated graphics for using subject matter not

well-suited for visual support. Another study [55] used a subject that most students found “exceed-

ingly demanding.” Measurements of the time spent viewing each lesson frame suggested that the

108

students may have been devoting the time intended for watching the animation for other tasks, such

as reading text. A follow-up study that simplified the lesson material and allowed the students to

proceed at their own pace (by breaking the lesson frames down into “chunks” and letting students

add chunks one at a time by pressing a key) found that the animation group did perform better than

both the static graphic and no graphic groups.

Rieber’s second recommendation is concerned with the fact that novices may not know what the

relevant cues and details are when viewing an animation, and this may detract from the animation’s

effectiveness. The use of “chunking” – breaking down an instructional sequence into individually-

displayed components – as a major contributing factor in finding a positive effect for animation is

supported by both the above-mentioned study and a second, separate study by Rieber [52]. We

informally came to the same conclusion in our own experiences with animation, and this is reflected

in some of the animation principles discussed in Chapter 4.

Rieber’s final recommendation notes that the potential of animation for computer-based instruc-

tion may be greatest in the area of interactive lessons, where students have some control over the

animated dynamics. A number of studies have demonstrated effective learning by using animated

“applets,” though it is hard to isolate the effect of the animation from that of the interactivity, which

is known to contribute to learning on its own (for an example, see Ferguson and Hegarty [23]). Our

current work has not explored this line of research. While our system allows the creation of interac-

tive parts of the presentation, it is the presenter who is controlling the interaction, not the audience.

Our primary goal in adding the option of interactivity is to allow the author to add some flexibility

and variety to the presentation, not to give each audience member a personally varied experience.

This might be an interesting application of our system, however, and will be mentioned again in the

section on future work. For now we are focusing on the more common, passive style of presentation.

A study by ChanLin [11] tested this type of passive presentation. The experiment was performed

with 135 college undergraduates learning about how genetic information is used to encode protein

structure. The participants were classified as either “novice” or “experienced” learners based on

their major; those with majors in some area of science were considered to be experienced learners,

109

while those in the social sciences were considered novice learners for this subject area. The partic-

ipants were randomly assigned into one of three treatment groups: non-graphics, still graphics, or

animated graphics. Each treatment included the same textual information, but the graphical ones

were augmented with either static or animated graphics. After viewing the lesson, learners were

given a pencil-and-paper test that had questions about both descriptive facts (defined as “describing

an object, a definition, a rule, or specific factual information”) and procedural facts (which “[refer]

to a series of executable actions, or [contain] to-be-remembered steps presented in a specific time

sequence.”)

For descriptive knowledge, both types of graphics treatments performed better than the non-

graphical treatment for novice learners. For the experienced learners, though, only animation was

significantly better than the text-only treatment. ChanLin hypothesized that for these students who

already had a scientific background, the use of animation served as a mnemonic device to help them

remember the new factual information.

For procedural knowledge, the results were somewhat different. Again there was no statistically

significant difference between the treatment groups for novice learners. For experienced learners,

though, only static graphics were better than the text-only treatment. Here the author observes that

the pacing of the presentation may play a role: both the animated version and the text-only version

presented the information sequentially, with the timing controlled by the system, not the student.

The still-graphics version presented a procedure as a single graphic, allowing students to process

each step at their own pace.

It is worth noting that almost all of our experience with animated presentations has been in giving

technical talks to a well-informed audience, who may be classified as “experienced learners.” This

audience bias may account for at least part of our positive experience with animated presentations;

it would be interesting to see if SLITHY presentations were as effective with novices (e.g., in a

classroom situation).

Park and Gittelman [44] compared students who viewed an animated tutorial on electronic cir-

cuits to those who viewed a tutorial using static graphics. While the animated tutorial took no more

110

time than the static one (students could advance both tutorials at their own pace; the difference in

time taken was not statistically significant), those who learned from animation needed significantly

fewer trials to troubleshoot faulty circuits on a subsequent test.

Thompson and Riding [58] found that showing an animated proof of Pythagoras’s Theorem

(similar to Figure 5.1) to a group of middle- and high-school students was more effective than static

diagrams presented either in series on a computer screen or as small multiples on paper. While

the difference was statistically significant, it was small. The authors speculate that this was due to

the highly controlled nature of the experiment, which was fairly dissimilar to a normal classroom

situation. In this experiment, the teacher gave no explanations during the presentations; the students

sat and watched in silence. No questions from the students were allowed.

The tight controls imposed on a formal study of this nature can be both a curse and a blessing.

On one hand, it allows the experimenters to reasonably determine if it is the animation itself which

brought about the improvement, and not some combination of other factors. On the other hand, it

says very little about the efficacy of animation in a real-world situation.

Tversky and colleagues [62, 39] also raise objections to some studies of this type from a psy-

chologist’s perspective. They question the conclusions of all of the above-mentioned studies on the

basis that the static and animated graphics did not present exactly the same information. In Rieber’s

study evaluating graphics on Newton’s laws of motion [55], for instance, both types of graphics

were used to accompany text. The animation, however, illustrated some aspects of the motion that

were not discernible from the static graphics. Students viewing the static graphics would have had

to extract this information from the text.

The claimed difference between the static and animated graphics of the Thompson and Riding

study [58] is even more subtle. They compared a smoothly animated graphic to a short series of

discrete diagrams shown flipbook-style. Tversky et al. criticize this comparison on the basis that

the animation showed the individual “micro-steps” leading from one state of the diagram to the next,

while students viewing the static graphic condition had to infer the motion for themselves.

From our perspective, the fact that animation allows us to show more dynamic information (and

111

more information overall) does not make the comparison to static graphics an invalid one—it is in

fact that difference that is being tested. We are forced to wonder how Tversky et al. would go about

constructing static and animated graphics that were exactly equivalent, “except for the animation.”

A study of this nature might be interesting from a cognitive research perspective, but would seem

to be of little use in guiding the creation of presentations for actual use. For this and other reasons,

we have elected not to attempt rigorous, formal user studies to see if presentations made with our

system are “better” than those made with PowerPoint or other available systems. There are so many

factors that go into making a presentation effective – from the enthusiasm and skill of the speaker

to the knowledge and interest levels of the audience – that such a comparison seems doomed from

the start.

Even without the requirement that both types of presentation contain exactly the same informa-

tion, it is difficult to test the hypothesis that presentations with animated visuals are more effective

than presentations with static visuals. For one thing, “effective” can be interpreted in many different

ways. All of the studies we have seen concentrate on some educational aspect, with performance

measured via a post-presentation test of recall or problem-solving related to the content. Not all

presentations are made in order to educate, though. The presenter may be trying to convince the

audience of a point, or perhaps just entertain them, or some combination of the three.

Many confounding factors complicate the design of a formal study—the presenter’s experience

with both systems, the audience’s interest in and knowledge of the subject, and so on. One inter-

esting effect that we have observed with animated presentations is that audience members typically

respond well to the presentation due to the novelty of using animation. One of our early users noted

that people coming up with questions after his talk were often asking about the presentation tool it-

self rather than about his work. It may be difficult to make a fair comparison between our animated

presentations and traditional formats until audiences are as accustomed to seeing animation as they

are to seeing standard PowerPoint material.

In the meantime, the use of animation, static graphics, and text are not mutually exclusive. Our

goal in building SLITHY is to provide a good animation tool; we leave it up to the judgment of the

112

presenter as to whether or not to use it in any given situation.

Incidentally, in addition to the criticisms noted above, there is no shortage of studies that found

no benefit to animation over static graphics (e.g., [48, 49, 53]), though many of these have also been

criticized on methodological grounds and on the appropriateness of animation for the subject matter

used. However, the fact remains that people do use animation, despite the lack of conclusive psy-

chological research in support of it. The animated effects available in presentation software today,

crude though they may be, are frequently seen in practice. (Gagné [26] points out that attention-

gaining is an important precursor to instruction, which may serve as some justification for using the

flying-text type of animation.)

Since many presentation authors seem to believe that animation is an effective tool, we may

as well enable creating the most useful animation that we can. Here the psychological literature

is somewhat more useful in providing specific recommendations. Even Tversky et al. [62], while

faulting the published studies for what they see as poor methodology, offer principles guiding the

use of animation in instruction. Park and Hopkins [45] suggest five specific instructional conditions

where animation can be effectively applied:

1. demonstrating procedural actions,

2. simulating system behaviors,

3. explicitly representing invisible movements or phenomena,

4. illustrating structural, functional, and procedural relationships among objects and events, and

5. focusing the learners’ attention on important concepts.

Current commercial presentation tools are geared exclusively towards the last of these situations,

using animation only to draw the viewer’s eye. Research efforts in the presentation domain, such

as Pad [47] and Counterpoint [27], address the fourth situation, by using animated navigation to

113

illustrate the relationship between slides of static content. In this work we have sought to enable the

creation of animations that cover all five of these possible scenarios.

A series of experiments by Mayer and Anderson [35, 36] tested animation used in concert with

narration. Their findings are consistent with predictions based on the dual-coding theory of Paivio

[43], which says that learners can build separate mental representations based on visual and ver-

bal input, and can form referential connections between the two mental models. In their largest

experiment, Mayer and Anderson divided a set of college undergraduates into seven groups:

� One control group received no instruction.

� Two groups received either three repetitions of a narrated explanation of a mechanical system

(the “NNN” group) or three repetitions of an animation of that system (the “AAA” group).

� Four groups received three repetitions each of both the narration and the animation, inter-

spersed in various ways (“AAANNN”, “NNNAAA”, “ANANAN”, “NANANA”).

� A final group received three repetitions of the animation and the narration delivered simulta-

neously, in synch with each other (the “concurrent” group).

The results showed that all the groups receiving instruction did equally well on a subsequent test

of simple recall. The concurrent group, though, did significantly better than the others on a test of

problem-solving, such as diagnosing a fault in the system. The authors hypothesize that seeing and

hearing both modes of instruction together helps build mental links between the separate models,

which later aids in creative reasoning about the material. These results suggest that narration is an

essential accompaniment to animation, which we have also found to be the case using SLITHY.

One possible objection to our system is that the lack of a WYSIWYG graphical interface for

creating diagrams limits the ability of authors in creating elaborate illustrations. We have not found

this to be a problem in practice. Many guides on giving presentations (such as [63] and [30])

and creating scientific illustrations (such as [5]) encourage authors to make their visual displays as

simple as possible, to focus the audience’s attention on the most essential aspects. This philosophy

114

is also reflected in the well-known works of Edward Tufte [59, 60, 61], who calls it “maximizing

the data-ink ratio.”

The use of simple graphics in presentations is also supported by educational research. Dwyer

[18] compared using three different anatomical illustrations along with oral instruction: a realistic

photograph, a detailed, shaded drawing, and a simple line drawing. (A fourth treatment group

received only the oral instruction, with no visualization.) The results showed that the photograph

was the least effective visualization, while the line drawing was the most effective. This conclusion

was also supported by a number of follow-up studies [19, 20, 21], though [20] found that while

different visualizations produced differences in immediate retention, these effects did not show up

on tests given later, after some time had passed.

6.2 Creating animation

In this section we look at prior systems for creating animation using scripting. Most of them predate

the widespread availability of high-performance graphics hardware and graphical interfaces on the

desktop. Such systems are designed for batch rendering, not real-time display. The scripting style

of interface seems to have been largely abandoned by the computer graphics community in favor

of interactive, mouse-based editing. Scripts are associated with a more mechanical, less expressive

style of animation. While that style may be bad for character animation, it is often exactly what is

needed for making presentations.

SLITHY has borrowed or reinvented many ideas from these prior scripted systems, adapting

them for real-time use. One apparently unique aspect of SLITHY is our time cursor model for

expressing overlapping actions, and the use of the parallel() and serial() functions to alter

how other animation commands move the time cursor. We have not found a system that uses a

similar mechanism in the literature.

We will now take a closer look at each related system, going in chronological order.

115

Anima II

Amima II [28] was an early system that used a scripting language to animate 3D objects. The

language consisted of directives such as

CHANGE POSITION name TO, x, y, z, FROM frame 1, TO frame 100

The input script was read in by a parser and stored as a sequence of “command blocks.” To generate

each frame, the system would go through and determine which command blocks were active, based

on the current frame number. Each active command block was evaluated to execute its change, and

the resulting scene was rendered. By specifying overlapping ranges of frame numbers, parameters

could be animated in parallel.

One limitation of this evaluation scheme is that frames must be evaluated in order from the

beginning of the sequence. Note that the CHANGE command above does not specify the starting

point of the position change, only the end point. Change command blocks would examine their

parameter’s value the first time the block became active (in this case, at frame 1) and use that value

to compute a per-frame delta vector that was stored in the command block itself. This vector was

used to incrementally compute the value of the parameter for subsequent frames. This method of

computation did not provide random access to frames of the animation. This was not considered a

drawback, since rendering on the hardware of the day took over one second per frame anyway.

ASAS

The Actor/Scriptor Animation System of Reynolds [51] was one of the first scripting-based model-

ing and animation systems to be based on a general purpose language, in this case, Lisp. It has a

number of similarities to SLITHY.

In ASAS, models were defined using primitive functions (or “operators”) such as vector and

polygon. These functions created and returned geometric objects. Other operators like move

and rotate, when applied to an object, returned a transformed copy of the object. Because the

system was built as an extension of Lisp, users could use all the regular features of the language

116

to build parameterized objects. The following code defines a new operator rotated-triangle

that takes an angle parameter and returns a triangle:

(defop rotated-triangle
(param: angle)

(rotate angle y-axis (polygon blue
(vector 1 0 0)
(vector 0 1 0)
(vector 0 0 1))))

SLITHY’s parameterized diagrams are very much reminiscent of this design—the system itself pro-

vides a set of graphical primitives from which the user can build functions to draw arbitrary things.

One difference is that ASAS primitives returned their graphical objects; the object returned by the

top-level call is what was drawn on the screen. This style of programming is common for functional

languages like Lisp. SLITHY is based on Python, an imperative language, so SLITHY primitives are

implemented as commands that have drawing side effects.

Animation was also created through Lisp code. Animators would write a function called an

actor, which would be executed once per frame and would add objects to the scene for that frame by

calling model operators like those described above. Multiple actors could be active at once. A top-

level Lisp program, called a script, controlled the overall animation by starting and stopping actors

at the appropriate times. As each actor was called, the ASAS system would save and restore its local

variables so that, to the actor, it looked as if it were executing by itself. There was also a message-

passing interface allowing actors to communicate with each other, so behavioral simulations such

as flocking could be implemented.

Like ANIMA II, ASAS was intended for offline rendering. The state of the animation was

distributed across multiple modules (the actors, in this case), and each actor encoded only how to

go from one frame to the next, so the animation had to always be generated starting at the first

frame. While the modeling systems of ASAS and SLITHY are quite similar (modulo the choice

of implementation language), we believe that random access to the animation is important for the

presentation domain, as is having time defined continuously, rather than as discrete frames.

117

Dial

The Dial (“diagrammatic animation language”) system of Feiner et al. [22] took a novel approach

that combined scripting and graphical definitions of animation. In Dial, an animation script defined

events using an ordinary command language, but the timing was specified through an ASCII art-style

diagram. Here is a very simple Dial script:

% throw moverel "ball" 0.0 0.5

throw | |- |-- |--- |---- |-----

The first line defines an event called “throw” which will move the ball model. (The object “ball” is

defined elsewhere and loaded into the animation system; Dial itself had no modeling component.)

The definition specifies what is to happen (a relative movement) and how far the movement should

be, but says nothing about timing. That is specified in the second line. On this execution line each

frame is represented by one character position. A single “|” character indicates that the event should

be executed in that frame. An event can be stretched out in time by following it with “-” characters,

so “|---” indicates that the event is to happen over four frames. In this example, the ball will be

moved six times, moving more slowly each time.

Parallelism is expressed through multiple execution lines. Here is a more complex example:

% throw moverel "ball" 0.0 10.0
% swing rotate "bat" 0.0 1.0 90.0
% hit moverel "ball" 0.0 -50.0

throw |--------
swing |--
hit |---------------

Here the three execution lines will run in parallel; the “throw” will start first, then end at the same

time as the “swing” event, and both will be followed by the “hit” event.

118

Hanrahan and Sturman

Hanrahan and Sturman [29] describe a language for creating parameterized 3D models that can be

manipulated interactively.1 Here is the definition of a cylinder with a spherical endcap:

�% tube
parameter scalar a = 2, r = 1
�% center

rot -90 z
scale r, 2*a, r
cylinder

�
�% cap

move -a, 0, 0
scale r
sphere

�
�

This example defines a model with two parameters, a and r. These parameters are used in computing

the transformations that are applied to the cylinder and sphere primitives. The example shows

the use of arithmetic expressions, but this is not a general-purpose programming language—there

are no loops or conditionals. Because of this, the system can statically determine which parts of

the model are affected by which parameters, allowing for fast incremental update when parameters

change. This incremental update property is important to allow for real-time modification of the

parameters, and would not be possible if more complex control flow constructs were available.

In SLITHY the entire model function must be executed from the beginning on each redraw.

The faster machines available today allow us to trade some efficiency for the additional power of

performing arbitrary computation within parameterized diagram functions. We still rely on the

author to write code that can be executed reasonably efficiently, but a lot more computation can be

done per-frame on current hardware than was possible in 1985.

The Hanrahan and Sturman language does not do animation, but they produce animation using

a simple keyframe mechanism. The models are manipulated by binding their parameters to physical

1They do not give their system a name.

119

input devices like dials and sliders, then adjusting them interactively. Once a desired combination

of parameters is found it is saved as a keyframe, and the keyframes are then interpolated to animate

the model.

BAGS/SCEFO

SCEFO, the animation component of the Brown Animation Generation System (BAGS) described

by Strauss [57], is another example of a special-purpose animation language. Here is the script for

a simple animation in SCEFO:

read ("cube.off") cube;

change (cube) translate <0, �0, 0, 0�>
<10, �3, 2, 1�>,

set_color <0, RED>,
<5, GREEN>,
<10, BLUE>;

The first line loads a polygonal object from a file cube.off and gives it the name cube. The

change statement is the main animation-producing command in SCEFO. It takes any number of

sub-actions, called change-ops. In this example translate and set_color are the change-

ops. Each change-op takes a list of keyframe times and values. When the script is evaluated, the

appropriate value for each change-op at that point in time is used, applying linear interpolation

between the keyframes as necessary. Thus, this system can render frames independently, as a frame

does not rely on the state left behind by rendering previous frames.

While SCEFO does allow the renderer to display arbitrary points in time (in principle, at least—

the overall system was built for batch rendering, so it’s not clear that this property was ever needed

or used), the language itself does not allow general computation. Its “variable” and “function

call” mechanisms work much like a macro pre-processor; these are expanded at compile time into

straight-line code.

120

CHARLI

The CHARLI system of Chmilar and Wyvill [12] takes an innovative approach in which modeling

and animation are specified together in a single script. The animated value of a parameter is specified

in the model itself. A simple example is this animated triangle:

def triangle
polygon(0,0,0, 1,0,0, 0.5,�0.6667 at 0 sec linear 2 at 1 sec�,0);

end;

Here one of the numeric parameters in the call to polygon is replaced by a curly-brace expression

that specifies a value that varies over time. These model-animation objects can use recursion to

produce very intricate and complex animations. While this approach to animation is probably best

suited for algorithmic or simulation-based animation, the idea of models with their own built-in

animations could be useful in the presentation domain. A pendulum diagram, for instance, might

have a parameter for controlling the pendulum’s length, but the swinging behavior would be built

in to the diagram itself, with no need for the animation driving the diagram to manage moving a

“swing” parameter back and forth. This capability is currently lacking in SLITHY, but presents an

interesting avenue for possible future work.

Menv

The Menv system [50] is one of the most successful efforts at using a script-based system for pro-

ducing animation. A descendant of the system is still used today by Pixar for producing animated

feature films. Models are created in Menv using a modeling language called ML. ML is a specialized

language with primitives for creating 3D geometry and performing common graphics operations,

but it also has many of the features found in general-purpose programming languages: variables,

expressions, control flow constructs, procedures, and so on.

Menv’s authors point out three major advantages that language-based modeling systems have

over interactive ones: replication, parameterization, and precision. While both types of systems

allow replicating a model through instancing, a language-based system has the additional power

121

to allow calculation of how many times to replicate and how to transform the various instances.

A procedural specification of models also allows for complex parameterization, so that multiple

instances can vary in nontrivial ways. The third advantage, precision, derives from the fact that the

model’s subparts can be positioned through calculation, eliminating the problems in alignment that

can come from graphical placement, especially as the model is animated. Menv was built for doing

3D character animation, but all of these issues are as relevant for the creation of abstract 2D figures

as they are for realistic 3D characters.

ML models are animated by tagging certain model parameters as articulated variables, or avars,

which exposes them to the animation system so that their values may be varied over time. Menv

uses an interactive keyframe-based system for animating these parameter values, though they note

that procedural animation techniques could also be used.

Alice

The goal of the Alice project of Conway et al. [16, 15] was to create a 3D graphics programming

environment specifically targeted at users with no graphics or programming experience. They con-

centrated heavily on user testing and careful attention to the terminology used in the API (e.g., using

the term “move” instead of “translate”). It has no modeling component; Alice animations are cre-

ated by manipulating 3D primitives created in other systems. Like SLITHY, Alice animations are

created by writing scripts in Python, but Alice’s animation model is closer to that of ASAS [51] than

SLITHY. Here is a sample Alice script, which makes a bunny model jump into the air:

doinorder(
bunny.resize(toptobottom, 0.5, likerubber), # scrunch down
dotogether(

bunny.resize(toptobottom, 2, likerubber), # leap
bunny.move(up, 1)

),
bunny.move(down, 1), # fall
bunny.resize(toptobottom, 0.5, likerubber), # bounce
bunny.resize(toptobottom, 2, likerubber)

)

Each animation command (such as “bunny.move”) creates an object containing information about

122

the model to be affected, the animated transform to apply, the extent and style of that transform, and

the duration. (All animation commands in Alice have a default duration of one second, which is why

no durations explicitly appear in the example above.) These objects are added to a central queue.

Once per frame a scheduler goes through this queue and calls each object’s update method to make

its changes to the scene. This process is somewhat similar to ASAS’s calling all the active actors

once per frame. When a particular animation is finished, the corresponding object is removed from

the queue.

The doinorder() and dotogether() functions create composite animations. Consider

this simplified bunny example:

doinorder(
bunny.move(...),
bunny.resize(...)

)

When this script is run, the bunny.move() and bunny.resize() calls are executed first, and

their objects are inserted into the queue. Normally this would make both actions run simultaneously,

which is not the desired effect. However, each animation function returns a reference to the queued

object it created. These references are what doinorder() receives as its arguments. It immedi-

ately pauses these objects, which causes the scheduler to ignore them. Since they are created and

paused in the same frame, no change is visible on the screen. The doinorder() function creates

its own queued animation object, whose update method unpauses the paused objects at the correct

times to make them play in sequence. Like other animation functions, doinorder() returns a

reference to its own animation object. This object can itself be paused and unpaused, so these

composite animations can be nested arbitrarily.

While doinorder() and dotogether() serve a similar purpose as the serial() and

parallel() commands of SLITHY, their implementation is very different. The Alice commands

take animation objects as arguments and build a new composite animation object. The SLITHY

commands take no arguments, but instead change the state of the system so that other animation

commands behave differently with respect to time. This model makes it possible to use control

123

structures like loops, conditionals, and function calls within an animation script. Alice scripts can’t

use control structures because an Alice script is always a single Python expression.

Alice is used to create interactive 3D worlds, with these animation scripts attached to events

such as user input or collision between models. For instance, the first example script above might be

attached to a mouse event so that the bunny jumps whenever the mouse button is clicked. The ani-

mation mechanism is well suited for running many scripts “simultaneously”—an animation script is

actually completely evaluated instantaneously (between frames), leaving a set of animation objects

in the central queue to play out the effects of the script. This queue naturally merges the effects of

several scripts, so many animations can be affecting the scene simultaneously.

Like ASAS, though, this model does not easily provide random access to the animation. To

answer the question “where is the bunny at time t?” there are two alternatives. One is to examine

the script source itself. Since Alice scripts can contain arbitrary Python code, to answer this question

is equivalent to solving the halting problem. The alternative is to look at the collection of animation

objects created by executing the script. We would need to look at all the objects that affect the

bunny’s position, but that is not sufficient. We would also need to examine all the objects that could

pause or unpause those that move the bunny, and all the objects that could pause or unpause those

objects, and so on. Each of these objects has some update method attached to it, so we would need

to understand what each update method was going to do. Essentially we would be running the

animation from the beginning each time we wanted to know its state at some particular time.

Algorithm animation

A number of systems for producing animated representations of computer algorithms have been

proposed [6, 7, 56]. These work by providing a library that allows instrumenting an implementation

of the algorithm with graphical output events. Here is an example of an insertion sort animation:

(from [6, Figure 5.2])

for i := 2 to N do
begin
v := a[i]; j := i;

124

while a[j-1] > v do
begin
a[j] := a[j-1]; j := j-1; OutputEvent.Swap(j, j+1)
end;

a[j] := v;
end

Note that this insertion sort animation actually is an implementation of insertion sort. Within the

call to OutputEvent.Swap some graphical representation of that action takes place, such as

two bars swapping positions on the screen. These systems provide elaborate systems for displaying

representations of key events like this, but at their core the thing that is generating the “plot” of the

animation is an implementation of the algorithm. It is not clear how this approach could be applied

in other fields of instruction.

While the techniques used to build these systems may not be generally applicable, a number of

studies have been done to gauge the effectiveness of algorithm animation in teaching. Hundhausen

et al. [31] surveys 24 such studies, finding that about half of them find that algorithm visualization

significantly improves learning. (Of the rest, most find the difference to be statistically insignificant.

Only one study found algorithmic visualization to produce worse results than a text based system.)

These results lead us to be hopeful about the utility of using animation more generally, though

it should be noted that many of these studies were using animated visualizations in non-lecture

settings.

Flash

The most widespread commercial system for producing the kind of 2D animations we see with

SLITHY is Flash, from Macromedia [34]. Flash was designed for use on the web; a freely available

player and low bandwidth requirements have made it popular on a wide variety of web sites. It is

mainly a 2D, vector-based keyframe animation system. Originally it had no programmability at all,

but in later versions added “ActionScript,” a customized version of the JavaScript language.

Flash could certainly be used to build animated presentations. A more interesting question is

how well Flash supports the style of authoring we’ve found to be useful: building diagrams with

125

arbitrary parameters, then scripting how the values of those parameters change in order to create an

animation.

Flash’s graphical interface has two major components: the stage and the timeline. The stage

represents the screen; the author can use interactive tools to draw graphical objects like lines, curves,

and text. The user can then move to a different frame in the timeline and edit the graphics to define

a new keyframe; Flash will automatically generate the in-between frames. The resulting object is

called a clip. A clip may be played by itself or layered together with other clips; a typical use of

ActionScript is to fire off certain clips in response to a mouse click or key press.

The interactively-drawn graphical primitives cannot be combined to form parameterized models

in any meaningful way. The primitives can be grouped, but only simple changes like affine trans-

forms and opacity and color changes can be applied to the group as a whole. To express complex

relationships between the parts, we must turn to ActionScript.

While ActionScript can modify the graphics primitives used in a clip, it can only modify the

simplest things: affine transform, opacity, color. It is not possible, for instance, to change one

control point of an interactively specified Bézier curve from an ActionScript function, only apply

a transform to the whole shape. Even the things that can be modified must be specified by writing

code, just as in SLITHY—the interactive drawing tools are of no use here.

If we want to modify the drawing in nontrivial ways, we can’t use the primitive objects. Instead,

we can use ActionScript’s imperative drawing commands (such as lineTo) that draw immediately

on the screen. Now the ActionScript function can draw arbitrary things on the stage given a set of

parameter values, but all the drawing is done by writing code. In effect, we have simply recreated

SLITHY’s parameterized diagrams using JavaScript instead of Python.

Now let us turn to animating the diagrams that we have built. In SLITHY this is done by writing

an animation script. In Flash, the timeline UI provided by the system can’t be used—it only allows

the parameters of the built-in graphical primitives to be keyframed. It can’t be used to drive an arbi-

trary ActionScript function. We could write code to compute parameter values “by hand” based on

the frame number. This would be similar to the straw man clock_animation example at the top

126

of Section 3.2, on page 52. ActionScript has no facilities for describing animation—the normal use

of the language is to implement per-frame or per-event callbacks that take some immediate action:

drawing something in the current frame, or starting playback of one of the premade clips stored in

the Flash document. An alternative would be to write our own animation system in ActionScript,

or use Flash’s “custom components” facility to create a new timeline UI. (The custom components

mechanism allows a user interface for a new Flash component to be built in Flash itself.)

Essentially, in order to use SLITHY’s authoring model in Flash, we could need to first reim-

plement most of SLITHY, substituting JavaScript and ActionScript’s immediate drawing library for

Python and OpenGL. The natural way of using Flash is by keyframing graphical primitives directly,

missing all the benefits of encapsulating graphics in parameterized models.

6.3 Presentation software

Finally, we will look at a few other systems that are designed or have been used for giving presen-

tations.

PowerPoint

PowerPoint, the presentation graphics part of the Office suite from Microsoft, is by far the most

commonly used piece of software for giving presentations today. It makes designing static slides

very simple, through an intuitive WYSIWYG graphical interface. PowerPoint is essentially a word

processor targeted at making slides. Presentation authors can interactively create and position text

boxes, images, and simple graphical shapes such as lines and rectangles. It lets users edit text

directly on the slide, and can perform some basic editing operations on imported images, such as

cropping and brightness adjustment.

Its animation features, however, are somewhat limited in scope. Figure 6.1 shows two screen-

shots of PowerPoint’s animation interface. PowerPoint doesn’t really have animation, so much as

it has “animated effects.” Slide elements (or groups of elements) can slide on and off the screen

in a variety of eye-catching ways. These features, with the possible exception of “motion paths,”

127

(a) (b)

Figure 6.1 The animation interface of PowerPoint XP. Part (a) shows how the available animated
effects are divided into four categories: entrance, emphasis, exit, and motion paths. Part (b) shows
PowerPoint’s “advanced timeline” view. Animations can have one of five durations, and can be set
to start on a mouse click, in parallel with the previous animation in the list, or after the previous
animation.

were clearly not intended to be used to create meaningful animated diagrams, and consequently

attempting to do so is difficult.

PowerPoint is, of course, a commercial product, and ease of use for the nontechnical user was

certainly a primary consideration in its design. Consequently the product has animation features that

cover what most business users probably want: a way to add a little motion and visual excitement to

an otherwise text-centered presentation, with an interface that makes using these effects relatively

straightforward. For SLITHY we made the opposite choice: trading ease-of-use for a more general

purpose animation system that lets us draw and animate in a much wider variety of ways.

While our script-based authoring system has its disadvantages – most notably the awkwardness

of positioning elements by typing coordinates – total programmability has advantages even outside

of producing animation. Authoring a presentation often presents many repetitive tasks; the ability to

easily use functions to automate tasks is useful. PowerPoint has a facility for recording and playing

back macros, but these don’t offer any parameterizability. To implement a more complex macro

that requires arguments or user input, PowerPoint’s COM interface must be used from within Visual

128

Basic or some other language. A significant leap in sophistication is required to go from creating

simple presentations to writing macros that help automate the creation process. A user, even an

experienced one, who needs to create a series of nearly identical slides in PowerPoint will often use

cut-and-paste and hand editing rather than switch to Visual Basic and create a macro. SLITHY’s use

of one model for everything means that macros and customization are more closely tied to the basic

authoring mechanism.

Pad

The Pad system of Perlin and Fox [47] was introduced not as a presentation tool but as a new

metaphor for interface design. In Pad, information is arranged spatially on an infinite 2D plane. A

portal is a viewport onto this plane; the computer screen itself is treated as a portal. Portals can roam

around the plane to show any piece of information. Portals can also zoom in to magnify portions of

the plane, and objects on the plane can draw themselves in different ways depending on the level of

magnification. Zooming in on one day of a calendar display might reveal a list of events scheduled

for that day, for instance.

While neither the original paper [47] nor the paper on its followup system Pad++ [4] specifically

mention presentations, they have been used for that application. The “slides” are laid out in the

Pad space, and an animated portal is used to navigate through the material. This mechanism allows

for creation of some of the animations we’ve found to be effective: creating a large virtual canvas,

expanding and compressing detail, and reinforcing the presentation structure through transitions.

This last animation style particularly was explored further in the CounterPoint system.

CounterPoint

The CounterPoint system of Good and Bederson [27] is a descendent of Pad created expressly for

giving presentations. It is integrated with PowerPoint, allowing the PowerPoint slides to be scaled

and positioned in arbitrary locations on a large virtual plane. A path representing the order of the

presentation is drawn through the slides, and animated zooms and pans are used to transition from

129

one slide to the next. The authors of CounterPoint argue that using this zoomable user interface

paradigm in the presentation domain exploits the spatial memories of the audience members in

order to assist in following the material. This argument is supported by psychological research that

suggests humans encode spatial information distinctly from verbal information, so a presentation

tool that takes advantage of both encoding mechanisms can lead to a better understanding and appeal

to a wider variety of learning styles.

CounterPoint’s animation is focused exclusively on navigation, and conveying the structure of

the presentation. The slides themselves are ordinary PowerPoint slides; only the transitions between

them are animated. In our work, we want to support the animation of content as well. SLITHY can

be used to create both kinds of animation.

130

Chapter 7

CONCLUSIONS AND FUTURE WORK

In this work we’ve created a system for giving presentations that use animation to add meaning

rather than novelty. SLITHY occupies a different point in the design space than applications like

PowerPoint: we’ve given up a graphical interface and some ease of use in order to have much

more variety and power in our animations. We’ve built on others’ work in scripting systems for

animation and in designing graphics libraries in order to create a useful, modern system. Our model

of animation combines the advantages in precision and encapsulation of a script-based system with

the testing and viewing features required for a practical production system.

Our representation of animations as time-based models allows a more flexible relationship be-

tween models and animations than is typically seen in systems designed for character animation.

This unified design has proven useful in creating the kind of abstract figures and diagrams seen in

the presentation domain.

Our tool has allowed us to experiment with the medium of animation in presentations. We’ve

gained an understanding of how to use these capabilities well, and summarized our recommenda-

tions into a set of guiding principles that we believe are applicable in a wide range of domains.

This work also presents a number of interesting opportunities for the future.

Improved authoring tools. The largest obstacle to making this kind of presentation widely

available is the ease of authoring. The vast majority of potential users are unable or unwilling to

write code in order to create a presentation. We believe the prototype tools described in Section 3.4

have promise, but it will take a great deal of work and testing to determine if they can be made to be

both easy to use and cover a sufficient part of the animation design space.

It may also be possible to make the job of developing SLITHY presentations easier for those

who do use the programming interface. Our attempts to build power-assist tools for writing param-

131

eterized diagrams were unsuccessful, due to the arbitrary nature of user-written code that is used

in diagrams. Animation scripts, however, tend to be much simpler. While things like loops, con-

ditionals, and function calls can be used (and are sometimes quite useful), many animation scripts

– perhaps most – are simple straight-line code. Figure 3.12 is an example of a straightforward an-

imation script. We can imagine a timeline-style graphical interface for creating this kind of simple

animation. Such an interface may ease the learning curve for new users of the system, but it’s not

clear that this solution makes authoring and maintaining a presentation easier in the long term.

Increased scope for interactive objects. In the current system interactions are simply animations

that are edited on-line. It turns out that we can use these objects not just for putting little interactive

widgets in the presentation, as we’d originally imagined, but for doing meta-level tasks like drawing

annotations on the slide and controlling the playback of animations. We can imagine extending

this power further, by making hooks into SLITHY’s runtime system available within interactive

event handlers. An interactive object could make the system jump to a completely different part

of the presentation, for instance. A SLITHY presentation would not be just a fixed sequence of

visuals, but a small animated hypertext system. Such a system could have applications beyond

simply giving presentations—with enough structure embedded in the presentation itself, perhaps it

could be handed out to students for self-study or review.

Restricted manipulation of diagrams. Another possible enhancement that could make it easier

to use SLITHY as a system for creating self-study interactive applets would be if parameterized

diagrams could place more restrictions on the parameter values they receive. Currently there are no

such restrictions, apart from enforcing the types of the parameter values. Many diagrams, though,

only produce sensible pictures with certain combinations of parameter values.

Figure 7.1 illustrates this idea with the Pythagorean Theorem diagram of Chapter 5. In this

diagram, the subdivide parameter controls the visibility of the yellow and purple shapes, while

the slidea and slideb parameters control the deformation of the two shapes. The diagram is

intended to be used in a sequence where the shapes become visible, they deform one at a time to

their end state, then they fade away. However, the diagram function itself imposes no restriction on

132

subdivide sl
id
eb

s
l
i
d
e
a

subdivide sl
id
eb

s
l
i
d
e
a

(a) (b) (c) (d)

Figure 7.1 Part (a) represents the parameter space for three of the parameters of Figure 5.2.
SLITHY allows any combination of parameters within this cube, which can result in nonsensical
diagrams (part (b)). Restricting the parameter values to a structured subspace – the thick lines of
part (c) – ensures that the diagram is always in a meaningful state (part (d)).

following this sequence. An arbitrary combination of parameter values may be passed in, resulting

in a nonsensical picture like that of Figure 7.1(b). It is left up to the author of the animation script

to ensure that the diagram doesn’t pass through these states.

A representation like simplicial complexes [41] could be used to enable the diagram to specify

which parts of its parameter space are allowed. Allowing diagrams to encode how they are intended

to be used – which combinations of parameter settings make sense – could also make it easier to

provide and use libraries of prepackaged diagrams.

Self-animating diagrams. Chmilar and Wyvill [12] mention the possibility of a modeling sys-

tem that allows models to have intrinsic animations built in. Right now in SLITHY all time-based

behavior must be driven from an animation object; parameterized diagrams keep no state of their

own. It is possible to obtain the value of the computer’s real-time clock from with a diagram, but

we would like to have a richer set of animation primitives than manually calculating values based

on a the time. This could also aid in the creation of premade diagrams libraries, by encapsulating as

much behavior as possible inside the diagram itself.

Hard-copy output. For some presentation situations – most notably classroom use – the ability

to produce a paper handout is important. Automatically producing a still representation of a SLITHY

animation is an interesting direction for research that we have not explored. This task amounts to

constructing a storyboard from the finished animation—the reverse of the usual task. Even some-

133

thing as simple as choosing a sequence of individual frames to convey the idea of the animation is

difficult. (All the examples of Chapter 5 were done by hand.) A more complicated approach might

involve using “ghosted” figures or superimposing motion lines on the images to indicate the motion

within a single still image.

134

Appendix A

SLITHY REFERENCE GUIDE

This appendix contains reference information on all the functionality included in the SLITHY

library. It is not a tutorial; the intent is to give a complete and in-depth description of the system.

Each function or object method introduced is marked with a triangle, like this:

� function_name(required argument, [optional argument = default value],
named_argument = named argument,
[optional_named_argument = default value])

Library functions may have up to four different types of argument:

Required arguments. The caller must pass a value for this argument.

Optional arguments. The caller may pass a value for this argument. If a value is not given, the

indicated default value is used.

Named arguments. The caller must pass a value for this argument, but the value must be preceded

by the argument name and an equals sign — e.g., “foo(argname = value)”.

Optional named arguments. As the name implies, these arguments are optional but if they are

used, they must be preceded with the argument name.

The order of arguments matters only for those which are not named, but all named arguments must

come after any unnamed arguments. The square brackets that denote optional arguments are not

part of the syntax.

A.1 Preliminaries

Parameterized diagrams, animation objects, and interactive controllers are all created by writing

code in the Python language. Most of the SLITHY system is a library (or module, in Python termi-

135

(a) (b) (c)

Figure A.1 The SLITHY object tester showing different kinds of drawing object. Part (a) shows
a parameterized diagram; the tester provides widgets for interactively setting all the diagram’s
parameters. Part (b) shows an animation object in the tester; here the controls are “play” and
“stop” buttons as well as a slider for scrubbing time. Part (c) shows an interactive controller; the
user can use the mouse and keyboard to interact with the object.

nology); SLITHY scripts begin by importing the contents of the library:

from slithy.library import *

The materials created for a presentation may be spread out across multiple files. The import

statement may be used to access objects defined in another file. For instance, if the file “file1.py”

contains the definition of the object obj, then another file might say

import file1

and then refer to the object as “file1.obj”. The Python documentation [25] contains more

information on using import to access objects across source files.

A.1.1 Testing objects

While developing a SLITHY presentation, it is often useful to interactively test out the objects being

authored. Scripts may contain a call to the test_objects() function to bring up an interactive

test harness. Usually this call will come at the end of the script, after all the object definitions.

136

� test_objects([object1], [object2], [. . .], [screen_size = (800,600)],
[clear_color = white])

The object tester can be used for parameterized diagrams, animation objects (or lists of anima-

tion objects), and interactive controllers. Figure A.1 shows screenshots of the tester with each of

these types of object. test_objects() can only be called once in a script, but many objects

may be passed to it and the user can interactively choose which to show. The optional arguments

are used to set the initial window size and background color.

A.2 Rectangles

SLITHY uses oriented rectangles for a number of different purposes, including positioning elements

in animations and describing cameras within parameterized diagrams. Rectangles are represented

using the Rect data type. This section describes functions for creating and manipulating these

objects.

The Rect type is a subclass of the Python tuple type. All rectangles are represented as 5-

tuples (ox, oy, w, �, a), where (ox, oy) is the lower-left corner of the rectangle, w is its width, � the

angle of its baseline with respect to the x-axis, and a its aspect ratio (width divided by height). This

representation is illustrated in Figure A.2.

(ox, oy)

θ

w
h

Figure A.2 The five parameters defining a rectangle in SLITHY. Note that the rectangle type
stores the aspect ratio w�h instead of the height itself.

137

Rectangle objects are created by calling the Rect() function, which has a few different forms:

� Rect(ox, oy, width, theta, aspect)

This form constructs a rectangle object from the five-parameter representation used internally

(see Figure A.2).

� Rect(x1, y1, x2, y2)

This form constructs an axis-aligned rectangle given the coordinates of two diagonally opposite

points.

� Rect(x, y, width = width, height = height, [anchor = ’c’])

This form constructs an axis-aligned rectangle of the given height and width. By default it

is centered on the point (x, y), but this can be changed with the optional anchor parameter. An

anchor value of nw, ne, sw, or se will place the appropriate corner of the rectangle at (x, y), while

specifying n, s, e, or w centers the corresponding side on (x, y).

Rect objects also have a number of methods that can be called to create new rectangles. These

are illustrated in Figure A.3. Note that calling one of these methods on a rectangle does not modify

the original rectangle, but instead returns a newly constructed Rect object. Rect objects them-

selves are immutable; once created their values can never be changed.

� r.top(f)

� r.bottom(f)

� r.left(f)

� r.right(f)

Each of these methods creates a rectangle by taking a fraction f of the rectangle r along the

specified side, for f � (0, 1].

� r.move_up(f, [abs = 0])

� r.move_down(f, [abs = 0])

� r.move_left(f, [abs = 0])

� r.move_right(f, [abs = 0])

These methods creates a rectangle by sliding the rectangle r by f of its extent in the indicated

direction. If the optional argument abs is true, then f is interpreted as a distance rather than a

fraction of the original rectangle’s size.

138

r

r.right(0.333) r.top(0.5)

r.inset(0.1)

r b.restrict_aspect(1)

a.restrict_aspect(1)

a

b

(a) (c) (e)

r

r.move_left(0.2)

r.move_down(0.7)

r.outset(0.2)

r

a.interp(b, 0.6)

a

b

(b) (d) (f)

Figure A.3 Methods that can be applied to Rect objects to generate new rectangles.

� r.inset(f, [abs = 0])
� r.outset(f, [abs = 0])

These methods generate a new rectangle by moving all four sides of the rectangle r in (or out)

by the given fractional amount f . (For inset(), f should not exceed 0. 5—trying to create a

degenerate rectangle will result in an error message.) The optional parameter abs, if true, will

cause f to be interpreted as an absolute distance instead of a fraction.

� r.restrict_aspect(a)

This method generates a new rectangle that has the same center and orientation as the rectangle

r, has an aspect ratio of a (width divided by height), and is as large as possible. The effect is to slice

an equal amount off the top and bottom sides or the left and right sides of the original rectangle to

achieve the required aspect ratio.

� r.interp(other, f)

This method interpolates f of the way from the rectangle r towards the rectangle other. When

f is zero, the original rectangle r is returned. When f is one, the rectangle other is returned, and

intermediate values of f produce a smooth interpolation between the two.

� r.width()

139

� r.height()
� r.aspect()

These convenience methods do not return new rectangles, but rather just return the width, height,

or aspect ratio of the rectangle r.

A.3 External resources

There are two types of external resources that SLITHY presentations can make use of: fonts and

images. These are called external resources because they are not stored in the SLITHY script itself

but are loaded at runtime from files on disk. This section details how to load these items.

A.3.1 Using fonts

� load_font(filename, pixels)

This function loads a TrueType (.ttf) or Type 1 (.pfb) font, returning a font object that

represents that font. This object is used anywhere SLITHY requires a font: the text() function

within parameterized diagrams, the font parameter of Text elements in animation scripts, etc.

Slithy draws text by rendering one instance of each character into an OpenGL texture map,

then drawing textured polygons on the screen. The pixels argument is used to specify the height of

characters in the texture map. This value should be approximately the height of the characters as

they will be seen on the screen. Too small a value will result in poor-looking text; too large will

consume a great deal of texture memory and slow down rendering (and may also look bad). 50 is a

good default value for most presentation-sized text.

It is acceptable to load the same font file multiple times with different values for pixels if a font

is needed at widely-varying sizes. The call will return a different font object; make sure to use the

right one depending on what size text is needed.

The filename may be an absolute pathname, or a pathname relative to the current directory. To

make it easier to relocate presentations, it is recommended that the search_font() function

described below be used instead of load_font().

� fontpath

140

� search_font(filename, pixels)

search_font() functions just like load_font(), except that it searches for filename in

each of the directories in the list fontpath before looking in the current directory. fontpath is

a Python list that is initially empty; it can be manipulated with any of the standard list operations,

such as“fontpath.append(pathname)”.

� add_extra_characters(unicodestring)

Normally, when SLITHY loads a font, it looks for only characters in the Unicode range U+0000

to U+00FF (the “Basic Latin” and “Latin-1 Supplement” pages). This is sufficient to cover English

and many other Western European languages. Characters that were not loaded will be silently

dropped whenever SLITHY renders a string of text. To request characters not in the default range,

the add_extra_characters() can be called with a string of additional characters to search

for in the font file. For example,

add_extra_characters(u’\u0107’)

will cause SLITHY to look for character U+0107 (“LATIN SMALL LETTER C WITH ACUTE”)

in every subsequently loaded font file. The call to add_extra_characters() must come

before any calls to load_font() or search_font() to have effect. Note also that there is

no guarantee that a requested character will be available; most fonts contain only a subset of the

characters defined by Unicode, and a particular font might lack a requested character.

A.3.2 Using bitmap images

� load_image(filename)

� search_image(filename)

� imagepath

These two functions for loading bitmap images work analogously to their font-loading counter-

parts, with search_font() using the list imagepath in place of fontpath. The return value

is an image object that can be used anywhere an image is required. SLITHY, through the Python

Imaging Library, can load most common image formats, including JPEG, PNG, Targa, BMP, and

141

GIF. If the image file includes an alpha channel, SLITHY will make use of it when drawing the

image on the screen.

A.4 Colors

SLITHY uses color objects to represent colors in parameterized diagrams and animation scripts. A

number of commonly used colors are predefined in the library:

red orange yellow green

blue purple black white

In addition to these standard objects, new color objects can be created with the Color() construc-

tor:

� Color(gray, [alpha = 1.0])
� Color(red, green, blue, [alpha = 1.0])
� Color(color object, [alpha = 1.0])

These constructors create Color objects from individual component values (which range from

0.0 to 1.0), or from pre-existing color objects. When the last form is used, if the alpha argument is

given then its value is used instead of the alpha value of the input color object.

� hsv(hue, saturation, value, [alpha = 1.0])

This function constructs a Color object using the HSV color space. All three components (hue,

saturation, and value) range from zero to one.

� c1.interp(c2, frac)

Color objects have an interp method that interpolates between two colors. For instance,

red.interp(blue, 0.25)

returns a new color object that is 25% of the way from red to blue (in the RGB color space).

A.5 Parameterized diagrams

Parameterized diagrams are written as ordinary Python functions, using the def keyword. The

diagram’s parameters are expressed as the function’s arguments, and the default for each argument

142

Table A.1 Parameter types available within parameterized diagrams. The “Tester?” column
indicates if a parameter can be manipulated interactively in the object tester. The “Interpolate?”
column indicates if SLITHY can interpolate between values of this type—a requirement for using
commands like linear() and smooth() to animate the parameter. Non-interpolatable values
can only be changed within animations by the set() function.

Type Format Tester? Interpolate?
real value (SCALAR, min, max, [default = min]) Y Y
integer (INTEGER, min, max, [default = min]) Y Y
color (COLOR, [default = black]) Y Y
string (STRING, [default = ’’]) Y N
Boolean (BOOLEAN, [default = 0]) Y N
object (OBJECT, [default = None]) N N

is used to express its type as well as its default value. Here is an example:

def sample(name = (STRING, ’hello’),
number = (SCALAR, 0, 10, 3.5),
yesno = (BOOLEAN, 1)):

. . .

This code starts defining a parameterized diagram called “sample” that has three parameters: a string

value called “name,” a real-valued number called “number”, and a Boolean value called “yesno.”

These parameters have default values of “hello,” 3.5, and true, respectively. The other two values

given for the “number” parameter are used to set the endpoints of the controlling slider when this

object is loaded into the object tester. Note that these min and max values are used only in the

object tester; an animation script that contains this diagram may provide values for “number” that

lie outside this range.

Parameter names can be any legal Python identifier that does not begin with an underscore.

Names beginning with underscores may conflict with SLITHY’s internal workings and produce un-

defined behavior.

Table A.1 summarizes the available parameter types. The COLOR type defines a parameter

whose value is a color object as defined in Section A.4. The OBJECT type can be used to pass an

arbitrary Python object to a diagram.

143

A.5.1 Graphics state

The following commands do not draw anything, but are used to manipulate and query the state of

the drawing library.

� set_camera(rectangle)

SLITHY’s drawing commands affect an infinite virtual canvas. This function is used to specify

what portion of that canvas is mapped onto the viewport (which may be the whole screen, or a

smaller region if the diagram is included in an animation). The argument is a Rect object, as

described in Section A.2. This “camera rectangle” is centered in the viewport and made as large as

possible. If the aspect ratio of the camera rectangle does not match that of the viewport, then some

of the canvas outside the camera rectangle will also be visible (as strips along the top and bottom,

or left and right, of the viewport.)

Typically this function will be called just once at the top of a parameterized diagram function,

but the camera can be changed in the middle of a function as well.

The default camera rectangle is centered on the origin, has a height of 2 units, and has the same

aspect ratio as the viewport.

� camera()
� visible()

camera() returns the current camera rectangle. visible() returns a rectangle that fills the

viewport exactly. This rectangle will always contain the camera rectangle, but will be larger if the

camera and viewport aspect ratios do not match.

set_camera() can be thought of as controlling a mapping from the virtual canvas “world

coordinates” into the viewport on the screen. A second transform matrix, analagous to the model-

view matrix in OpenGL or the CTM in PostScript, is used to map from the “user coordinates” given

in primitive drawing functions to world coordinates. The effects of all these functions is illustrated

in Figure A.4.

� translate(tx, ty)

This function translates the user coordinate system by (tx, ty).

144

rectangle(0, 0, 1, 1) translate(0.8, 0.8)
rectangle(0, 0, 1, 1)

rotate(30)
rectangle(0, 0, 1, 1)

scale(2, 1)
rectangle(0, 0, 1, 1)

scale(1.5, 0.5, 0.5)
rectangle(0, 0, 1, 1)

rotate(45, 0.5, 0.5)
rectangle(0, 0, 1, 1)

shear(0, 0.5)
rectangle(0, 0, 1, 1)

shear(0.5, 0.5)
rectangle(0, 0, 1, 1)

rotate(-30)
translate(0.8, 0.8)
rectangle(0, 0, 1, 1)

Figure A.4 Illustrations of various coordinate system transforms applied to a square.

145

� rotate(deg, [cx = 0.0], [cy = 0.0])

This function rotates the user coordinate system by deg degrees counterclockwise. The center

of the rotation is the point (cx, cy); if these are omitted then rotation is about the origin.

� scale(s)
� scale(sx, sy)

� scale(s, cx, cy)

� scale(sx, sy, cx, cy)

This function scales the user coordinate system. The forms with an s argument do uniform

scaling, while those with both sx and sy allow different scale factors in the x and y directions. If cx

and cy are specified, then scaling is relative to the point (cx, cy), otherwise the scaling is relative to

the origin.

� shear(hx, hy)

This function shears the user coordinate system by the given amounts. Shearing is always rela-

tive to the origin.

� push()
� pop()

Like other graphics systems, SLITHY maintains a stack of graphics states to allow for easy

modification and restoration of state. The SLITHY graphics state includes the current user transform

matrix, as well as the current drawing color and line thickness. The push() function saves a copy

of the current state on the stack. Calling pop() pops a state off the stack and uses it to replace

the current state, which is discarded. These functions are analagous to the gsave and grestore

operators in PostScript.

� color(color object)

� color(color object, alpha)

� color(...)

The color() function sets the current drawing color, which is initially black. The color can be

specified in a number of different ways: as a color object, a color object multiplied by an additional

alpha, or using any of the ways to construct color objects as described in Section A.4. Here are some

examples:

146

color(red) # red
color(blue, 0.5) # blue, alpha = 0.5
color(0) # black
color(0.2, 0.5) # dark grey, alpha = 0.5
color(0, 1, 0) # green
color(1, 1, 0, 0.3) # yellow, alpha = 0.3

� thickness(t)

This function sets the current line thickness to t. Line thickness is drawn in user space, so it is

affected by the current user transform matrix. Applying a scale to the coordinate system (including

a nonuniform scale) will affect the appearance of lines on the screen.

� id(id)

This function sets the current drawing object ID. When SLITHY draws a shape, in addition to

writing pixels of the current color into the framebuffer, it writes “pixels” of the current ID into an

invisible ID buffer, which can be later queried to determine what was drawn at a particular point.

IDs are nonnegative integers. The range available depends on the number of bits in the depth

buffer; a 16-bit depth buffer will allow object IDs ranging from 0 to 16383. If the id() function

is called with a negative argument, writing into the ID buffer is disabled, so subsequent drawing

commands do not change it. Initially the buffer is initialized to all zeroes.

An example of using the object ID buffer appears in Section A.7.1 on page 180.

A.5.2 Drawing functions

SLITHY provides a number of simple primitives for drawing on the diagram canvas. These are

illustrated in Figure A.5. All the functions (except image()) use the current drawing color.

� line(x1, y1, x2, y2, [. . .])

� polygon(x1, y1, x2, y2, [. . .])

line() and polygon() take a series of coordinates and draw a polyline and a filled polygon,

respectively. line() makes use of the current line thickness; the drawn stroke is centered on the

ideal mathematical line.

147

line()

polygon()

circle()

dot()

frame()

rectangle()

Figure A.5 Primitive drawing shapes available in SLITHY. The red dots indicate the coordinates
passed to each function; the gray areas are what is actually drawn.

� circle(r, [x = 0.0], [y = 0.0])
� dot(r, [x = 0.0], [y = 0.0])

circle() and dot() draw outlined and filled circles, respectively. Outline circles are drawn

using the current line thickness and the stroke is centered on the ideal circular path. The x and y

parameters specify the center of the circle.

� frame(x1, y1, x2, y2)
� frame(rect)
� rectangle(x1, y1, x2, y2)
� rectangle(rect)

Rectangles can be drawn from either the coordinates of diagonally-opposite corners, or from

a Rect object as described in Section A.2. rectangle() draws a solid filled rectangle, while

frame() draws an outline rectangle using the current line thickness.

� text(x, y, text, font, [size = 1.0], [justify = 0.0],
[anchor = ’c’], [wrap = -1.0], [nodraw = 0])

The text() function is used to draw text on the screen. The first four arguments are required:

� x and y specify a position on the canvas. By default the bounding box of the text string is

centered on this point, but this behavior can be changed with the anchor parameter.

148

� font is a font object, as returned by the load_font() and search_font() functions

(see Section A.3.1).

� text is the text to be drawn. In its simplest form it can just be a string (or Unicode string). The

more complex form is a list containing:

– strings,

– font objects, to change the font,

– color objects, to change the color,

– RESETFONT, to return to the original font,

– RESETCOLOR, to return to the original color,

– RESET, which combines RESETFONT and RESETCOLOR.

We will call this kind of list a text list — every text-drawing facility in SLITHY can take this

kind of list instead of a simple string.

Here is a simple example:

text(0, 0, ’Hello, world!’, romanfont)

Assuming that romanfont is a valid font object, this code will draw the string “Hello, world!” in

the current drawing color, centered at the origin. Here is a more complex example, which uses a

text list instead of a single string:

text(0, 0,
[’This is ’, red, italicfont, ’not’, RESET, ’ a test’],
romanfont)

Assuming that italicfont is also a valid font object, this code will draw the phrase “This is not

a test” centered at the origin. The word “not” will be drawn in red (and a different font), while the

rest of the string will be drawn in the current drawing color.

text() can also take a number of optional arguments:

149

multiple
lines
of
writing

multiple
lines

of
writing

multiple
lines

of
writing

justify = 0.0 justify = 0.5 justify = 1.0

Figure A.6 The justify parameter controls the horizontal positioning of multiline text within the
bounding box.

� size specifies the em-height of the text in user-space units.

� justify controls the justification when the text has multiple lines. A value of 0.0 means left

justification, 0.5 centers each line horizontally within the bounding box, and 1.0 pushes each

line over to the right. The effect of this value is illustrated in Figure A.6. Intermediate values

interpolate between these three positions. This parameter has no effect on the positioning of

the bounding box relative to the reference point; that is controlled by the anchor parameter

described below. justify only controls the positioning of different lines of text within the

bounding box.

� wrap controls word-wrapping. If this parameter is less than zero, no wrapping is done—line

breaks occur only where explicit newline characters appear in the text string. A positive value

causes line breaks to be inserted at spaces in the string so that no line is longer that wrap

units long. (However, if an individual word is wider than this parameter’s value, it will not be

broken.)

� anchor specifies how the text is positioned relative to the reference point (x, y). A value of c

means that the text bounding box will be centered on the point. Values of n, s, e, and w place

150

multiple
lines
of
writing

t or n
l or w c r or e

f

c

l
b or s

fi
rs

t c
ha

ra
ct

er

second character first character
t, n top of bounding box
f baseline of first line
c vertical center of bounding box
l baseline of last line
b, s bottom of bounding box

second character
l, w left edge of bounding box
c horizontal center of bounding box
r, e right edge of bounding box

Figure A.7 The two-character form of the anchor parameter to text() can select one of 15
possible placements of the text relative to the reference point.

the point at the midpoint of the north, south, east, or west sides, respectively. (t, b, r, and

l are synonymous with n, s, e, and w, for those who like to think in terms of top-bottom-

left-right.) A two-character value can be used to select other positionings; see Figure A.7 for

details.

� The return value of the text() function is a six-element Python dictionary containing the

information about the text’s bounding box. The ’left’ and ’right’ keys in this dictio-

nary index the x-coordinates of the bounding box’s left and right sides. Similarly ’top’ and

’bottom’ store the y-extents of the bounding box, and ’width’ and ’height’ store its

size. This information can be used to position other drawings relative to the text.

The nodraw parameter, if set to true, suppresses all drawing, so that computing and returning

this dictionary is the only effect of calling text().

� image(x, y, imageobj, [width = None], [height = None],
[anchor = ’c’], [alpha = 1.0])

The image() function draws bitmap images on the canvas. The imageobj parameter is an

image object representing the image to be drawn; these objects are returned by the load_image()

and search_image() functions described in Section A.3.2. x and y position the image on the

151

canvas. By default the image is centered on this reference point, but this behavior can be changed

with the optional anchor parameter.

The anchor parameter works just as it does for the text() function (see Figure A.7), omitting

those anchor positions that refer to text baselines. Alternatively, the image() anchor parameter

may be given as a 2-tuple of numbers to allow for continuously variable positioning of the image.

An anchor value of “(0.0, 0.0)” is equivalent to ’sw’, while “(1.0, 1.0)” is equivalent

to ’ne’.

The width and height parameters control the size of the image drawn. If both are omitted then

the image is drawn one unit wide, with the height scaled to preserve its aspect ratio. If exactly one

of these parameters is given, then the other is scaled to match. By specifying both a nonuniform

scaling of the image can be obtained. Passing in the value None for either is equivalent to omitting

it entirely.

Like the text() function, image() returns a six-element dictionary containing information

about the drawn image’s extents and size.

Path objects

For drawing more complex or frequently-repeated shapes, the Path object can be used. A Path

object stores a path made up of straight and curve segments. The methods for constructing these

paths are similar to the drawing operators of PostScript. A path object can then be instanced in the

diagram in a filled or outline style. A path may consist of multiple subpaths, each of which can be

open or closed.

� Path()

An empty path object is created by calling the Path() constructor, which takes no arguments.

The geometry of the path is created by calling methods of the path object — each method appends

a segment to the path. Path objects contain a current point, which is where the next segment will

begin. The current point is initially undefined.

� p.moveto(x, y)

152

p = Path.moveto(0,0)
 .lineto(1,0)
 .lineto(1,1)
 .lineto(0,0)
widestroke(p, 0.2)

p = Path.moveto(0,0)
 .lineto(1,0)
 .lineto(1,1)
 .closepath()
widestroke(p, 0.2)

Figure A.8 The right image shows a path that has been closed with the closepath() method.
The first segment is joined to the last. The left image illustrates a path where a line segment back
to the origin has been added, but the path is left open. No join is drawn.

� p.rmoveto(dx, dy)

moveto() begins a new subpath by moving the current point to the location (x, y). The

rmoveto() method is identical except that the arguments are interpreted as relative to the cur-

rent point at the time of the call.

� p.lineto(x, y)

� p.rlineto(dx, dy)

Both of these methods append a line segment from the current point to the a new location, and

move the current point to that location. lineto()‘s arguments are absolute coordinates, while

rlineto()’s are taken as offsets from the current point.

� p.closepath()

This method closes the current subpath by appending a line segment from the current point back

to the start of the subpath (that is, the destination of the most recent moveto() or rmoveto()).

The current point becomes undefined. Closing a path is different from simply doing a lineto()

back to the starting point in that closed paths are drawn with the first and last segments joined

together, while open paths (those not ended with a call to closepath()) are not. Figure A.8

illustrates this distinction.

� p.curveto(x1, y1, x2, y2, x3, y3)
� p.rcurveto(dx1, dy1, dx2, dy2, dx3, dy3)

153

curveto() draws a cubic Bézier segment from the current point to (x3, y3), with (x1, y1) and

(x2, y2) as the two off-curve control points. rcurveto() is the relative form of the command, with

all arguments taken as offsets from the initial current point. The endpoint of the curve becomes the

new current point.

� p.qcurveto(x1, y1, x2, y2)
� p.rqcurveto(dx1, dy1, dx2, dy2)

These methods are analagous to curveto() and rcurveto(), except that they draw a

quadratic rather than a cubic Bézier segment. They require only a single off-curve point.

� p.arc(cx, cy, startangle, endangle, r)

� p.arcn(cx, cy, startangle, endangle, r)

These methods are used to draw circular arcs, centered at (cx, cy) with radius r. arc() produces

an arc that runs counterclockwise from startangle to endangle, while arcn() produces a clockwise

arc. Both angles are specified in degrees.

If the current point is undefined when arc() or arcn() is called, an implicit moveto() is

done to set the current point to the start point of the are. If the current point is defined, an implicit

lineto() the start of the arc is added instead. (Any zero-length line segments produced will be

culled.) The end point of the arc always becomes the new current point.

All of these methods return a reference to the path object, so that method calls may be easily

chained together. For example, these two blocks of code construct the same path, a unit square:

p1 = Path()
p1.moveto(0,0)
p1.lineto(1,0)
p1.lineto(1,1)
p1.lineto(0,1)
p1.closepath()

p2 = Path().moveto(0,0).lineto(1,0).lineto(1,1).lineto(0,1).closepath()

Figure A.9 illustrates a path with all the different types of segment, constructed using the chaining

technique.

� fill(path)

154

(x0, y0)

(x1, y1) (x4, y4) (x5, y5) (x7, y7)

(x2, y2) (x3, y3) (x6, y6)

α

β

r

 Path().moveto(x0,y0).lineto(x1,y1).curveto(x2,y2,x3,y3,x4,y4).qcurveto(x5,y5,x6,y6).arcn(x7,y7,α,β,r)

Figure A.9 Construction of a path object containing line, cubic and quadratic Bézier, and circular
arc segments.

� widestroke(path, width)

These functions are used to draw a path object on the screen. fill() draws the path as a filled

shape, implicitly closing every open subpath. widestroke() draws a stroke of the specified

width along the path. Both functions use the current drawing color.

Since drawing a path can be computationally expensive, SLITHY caches the OpenGL commands

needed to fill or stroke a particular path object in a display list. To take best advantage of this, path

objects that are used repeatedly should be constructed outside any diagram function, like this:

thepath = Path().moveto(...).lineto(...).curveto(...) # etc.

def my_diagram(param1 = (SCALAR,0,1),
param2 = (STRING)):

. . .
fill(thepath) # draw the path here
. . .

Using path objects this way means that SLITHY incurs the expense of converting the path to a set of

triangles just once — the first time the path is drawn. Code structured this way:

155

widestroke(p, 0.1) widestroke(p, 0.1)
arrow(p, (0,0.4,0.5))

widestroke(p, 0.1)
arrow(p, (1,0.4,0.4),
 (0,0.4,0.4))

Figure A.10 The arrow() function is used to draw arrowheads of various styles at the ends of a
path drawn with widestroke().

def my_diagram(param1 = (SCALAR,0,1),
param2 = (STRING)):

. . .
thepath = Path().moveto(...).lineto(...).curveto(...) # etc.
fill(thepath) # draw the path here
. . .

means that the path object is constructed, converted to triangles, drawn, and discarded every time

the diagram is redrawn. Of course, if the path’s shape depends on the diagram’s parameters, then

there is no alternative to constructing a new path on each redraw. For paths that are static, though, it

is best to take advantage of the caching behavior wherever possible.

� arrow(path, endarrow, [startarrow = None])

The arrow() function does not draw the path itself, but draws arrowheads on either or both

ends of each open subpath of a path object. In combination with widestroke() this can be used

to draw a path as an arrow.

The endarrow and startarrow parameters are each either the value None, or a 3-tuple (style,

width, length). style can be either 0 to draw a triangle or 1 to draw a rectangle. The arrowheads are

always drawn in the current drawing color. Some examples of arrowheads are shown in Figure A.10.

� embed_object(viewport, object, parameter dictionary, [clip = 1],
[_alpha = 1.0])

156

With this function, parameterized diagrams can incorporate the output of other drawing objects

(animation objects and other parameterized diagrams). The viewport argument, which must be a

Rect object, specifies where on the diagram canvas the object will be drawn. The second argument

is the object itself. The third argument is a dictionary containing parameter values to be passed to

the drawn object. For animation objects, this dictionary will have a single key ’t’ whose value is

a number. For paramaterized diagrams, the number, name, and types of the parameters will depend

on the diagram itself.

The optional argument clip, if false, lets the included object draw outside the boundary of the

viewport. By default the object’s drawing is clipped to the viewport rectangle. The other optional

argument alpha is can be used to control the overall opacity of the embedded object by applying a

scaling factor to the alpha value of everything it draws.

A.5.3 Miscellaneous functions

There are a few more functions included for use within parameterized diagrams that don’t fall into

any of the above sections.

� clip(rect)
� unclip()

clip() restricts subsequent drawing to occur only within the given rectangle (specified as a

Rect object). Multiple calls to clip stack, so that drawing only happens within the intersection of

all the clip rectangles. Calling unclip() cancels the effect of the most recent call to clip().

� mark(name)

The mark() function takes a single string argument and stores the current user coordinate

system and camera away in an internal dictionary under that name. The object tester can then

access that dictionary and use it to project screen coordinates back into the user coordinate space.

This mechanism provides a convenient way to position drawings within a diagram, even after a

series of coordinate system transformations: insert a call to mark() into the desired place in the

diagram code, and load the diagram into the tester. Clicking in the test window will then display the

157

coordinates of the mouse position, translated back into the coordinate system in effect at the time of

the mark() call.

mark() also returns a token representing the current coordinate system that can be used with

the unproject() function described below.

� project(x, y)
� unproject(x, y)

� unproject(x, y, token)

project() takes a point in the current user space and returns its coordinates in screen space

(i.e., in pixels). unproject() does the reverse, transforming pixel coordinates into user space.

The two-argument form returns coordinates in the current user space, and consequently can be

used only within a parameterized diagram function (where the notion of user space is well-defined).

unproject() is also available in a three-argument form, where the third argument is a token

returned by the mark() function, and returns coordinates in user space at the point of the call to

mark(). This form can be used anywhere within a presentation.

These functions are useful mostly in writing interactive objects, and will be illustrated in more

detail further below, in Section A.7.1.

A.6 Animation objects

Animations in SLITHY function very much like parameterized diagrams that happen to have just

a single real-valued parameter called t. It would be possible to create an animation by writing a

diagram function as described in the previous section. Such a function would have to start with

the input value of t and compute from scratch everything that should be displayed for that point in

time. This way of constructing an animation would be extremely tedious and error-prone. SLITHY

provides another way of putting together an animation, by creating animation objects.

Animation objects function just like parameterized diagrams, but instead of the author writing

the code that is executed on each redraw, the author writes code that describes the desired animation

by creating a set of elements that are used in the animation and specifying how they change over

time. This piece of “description code” is called an animation script. Executing an animation script

158

produces an animation object, which the system can then play back.

The animation object contains a timeline for each parameter of each element that tells what that

parameter’s value should be at each point in time. An animation script therefore consists of two

major sections: first creating and setting up the elements, then describing the parameter timelines.

Here is a small sample animation script:

def sample_animation():

create elements
bg = Fill(color = black)
tx = Text(get_camera(), text = ’hello, world!’,

font = fonts[’roman’], size = 40, color = white,
justify = 0.5, vjustify = 0.5)

start_animation(bg, tx)

script parameter changes
smooth(3.0, bg.color, red)
smooth(3.0, tx.size, 60)

return end_animation()
sample_animation = sample_animation()

We’ll start by giving a high-level overview of what happens in this piece of code, with details of the

individual library functions appearing later.

The first line starts defining a new Python function. It is often useful, though not required,

to write each animation script in a presentation as its own function. To do so helps structure the

presentation code and frequently aids in debugging, so we will do so throughout this document.

This function takes no arguments, though it could if we wanted to parameterize this animation

script, making it return different animation objects depending on the parameters passed to it.

The first block within the function creates two elements: a Fill element, which fills the view-

port with a solid color, and a Text element, which draws a string of text. The first argument to

Text() positions it on the screen. The remaining arguments are default values for the element

parameters. (Fill elements do not take a positioning argument, since they always fill the entire

animation screen.)

159

The next line (start_animation()) starts defining a new animation. Its arguments are the

elements that initially appear in the animation. Note that order is important: in this example, the

tx element will be drawn on top of bg. Both the set of elements and their stacking order can be

changed dynamically as the animation proceeds.

Between start_animation() and end_animation(), library calls are used to edit the

parameter timelines to produce the goal animation. In this short example just two animated changes

take place: first, the color parameter of the bg element is smoothly changed to red over a 3-second

interval, then the text element’s size parameter is smoothly increased to 60 over the following three

seconds. This section is where the bulk of a typical animation script lies.

The call to end_animation() finishes defining the animation and returns the resulting an-

imation object. We simply return this object to the caller, so that the return value from a call to

sample_animation() is an animation object.

The final line of the example is another convention that we have found useful in creating pre-

sentations. Before this line is executed, sample_animation is an animation script — a Python

function that when executed will return an animation object. We must call this function in order

to obtain the animation object we give to the SLITHY player. Since the source animation script is

typically not useful once the animation object is obtained, we can discard it. The last line calls the

sample_animation() script, then throws the script away and binds the identifier “sample_

animation” to the animation object returned.

A.6.1 Animation elements

This section describes the constructor functions that create elements for use in animations. Anima-

tions are similar to diagrams in that elements are placed on an infinite virtual canvas, and a camera

rectangle (the animation camera) is used to map a portion of this canvas onto the animation’s view-

port. Frequently the animation’s viewport will be the entire screen, but it may be some subregion if

the animation object is used within a composite object.

Most of these element constructors require a viewport argument, which specifies where the

160

element is positioned on the animation’s virtual canvas. This position will always be a rectangle on

the canvas — a simple Rect object (see Section A.2) is the most common value for this argument.

More complex methods of specifying this position that allow for animating the element’s position

are detailed in the next section.

Each type of element has a global default value for each of its parameters, which is given in the

tables below. This default may be overridden for a particular instance of the element by giving it in

the constructor. For example, both of these calls create valid Fill elements:

bg1 = Fill()
bg2 = Fill(color = yellow)

bg1 uses all the global defaults for the fill element type. bg2 overrides the default value of

color, but uses the global defaults for the remaining parameters. All parameters may be modified

as the animation proceeds by using the animation commands of Section A.6.2.

Now we’ll describe in detail the element types available.

� Fill([parameter defaults])

parameter type default

style string ’solid’

color color black

color2 color black

_alpha scalar 1.0

The Fill element creates a solid or gradient color fill, and is usually used as a background

for other elements. This element has no position on the canvas; it always fills the entire animation

viewport and so is unaffected by the animation camera.

The style parameter has three legal values: ’solid’ fills the viewport with solid color color,

’horz’ creates a horizontal gradient from color at the top of the viewport to color2 at the bottom,

and ’vert’, which creates a gradient from color on the left to color2 on the right. The alpha

parameter controls the transparency of the fill.

161

� Text(viewport, [parameter defaults])

parameter type default

text string or list ’’

color color black

font object None

size scalar 1.0

justify scalar 0.0

vjustify scalar 0.0

_alpha scalar 1.0

This element creates a text box on the animation canvas. The text starts at the upper-left corner

of the viewport rectangle, and is word-wrapped to the viewport’s width. If there is more text than

fits in the viewport it may extend out the top or bottom.

The text parameter may be a simple string, or a text list of strings, fonts, and colors, as described

on page 148. color and font specify the initial text color and font, respectively. size gives the

em-height of the text, in animation canvas units. justify specifies the horizontal justification of the

text within the viewport: 0.0 for left justification, 0.5 for centered text, 1.0 for right-justified text.

vjustify similarly specifies the vertical justification. The alpha parameter scales the transparency of

the entire text element.

� Image(viewport, [parameter defaults])

parameter type default

image image object None

fit object BOTH

anchor object ’c’

_alpha scalar 1.0

The Image element places a static image on the canvas. The image parameter is used to specify

the image, given as an image object (described in Section A.3.2). The fit parameter specifies how

the image is scaled to fit the viewport. It can take one of four constants:

� BOTH ensures that the image fits within the viewport, scaling it uniformly to be as large as

possible.

162

� WIDTH scales the image uniformly so that it fills the entire width of the viewport. Depending

on the relative aspect ratios of the viewport and the image, the image may extend outside the

viewport on the top and bottom sides.

� Similarly, HEIGHT fits the image’s height to the viewport’s height, allowing it to extend out

the left and right sides if necessary.

� STRETCH stretches the image to fill the viewport exactly, even if this means the image is

scaled nonuniformly.

While fit determines the image’s size, anchor determines its placement in the viewport. The

default value of ’c’ centers the image. The strings ’n’, ’s’, ’e’, and ’w’ cause the image to

be centered against the corresponding side of the viewport (north, south, etc.), while ’nw’, ’ne’,

’sw’, and ’se’ push the image into a corner of the viewport.

Like most other elements, the alpha parameter scales the transparency of the entire element.

� Drawable(viewport, [drawing object = None], [parameter defaults])

parameter type default

_alpha scalar 1.0

. . . parameters of drawing object . . .

The Drawable element is used as a container for other drawing objects—most frequently for

parameterized diagrams. It can also be used to contain animation objects, but it is usually more

convenient to use the specialized Anim element, described next, for this purpose. The drawable

element itself has only one native parameter, alpha, for controlling the overall transparency, but the

element also takes on the parameters of whatever object it is being used to contain.

For instance, if we wanted to include the parameterized diagram sample from page 142 in an

animation, the code might look like this:

d = Drawable(viewport, sample, name = ’bob’, yesno = 0)

The arguments name and yesno are parameters of the diagram sample. (The diagram has a

third parameter, number, but in this example we’ve chosen not to override its default value.) Now

163

we can animate the diagram by using animation commands to manipulate the parameters d.name,

d.number, and d.yesno. We can also manipulate d._alpha to fade the whole diagram in and

out.

A parameterized diagram can be used multiple times within an animation by creating multiple

Drawable elements that contain it.

� Anim(viewport, [parameter defaults])

parameter type default

anim object None

t scalar 0.0

_alpha scalar 1.0

The Anim element is a kind of Drawable that has specialized methods for showing animation

objects. Its three parameters are anim, the animation object to display, t, the time point to show,

and alpha, the standard transparency scaling factor. The contained animation can be played back

by using the standard animation commands (Section A.6.2) to manipulate these three parameters,

but the Anim element itself has a number of methods to simplify common tasks. These methods

can be called in the part of the script that defines the animation timelines (i.e., inside a start_

animation()/end_animation() pair).

� an.play(animation object or list, [fade = 0], [fade_duration = 0.5],
[pause = 1], [duration = None])

This plays back a single animation object or a list of animation objects inside the element. If

the fade parameter is true, the playback is preceded by a fade-in of the first frame and followed by

a fade-out of the last frame. The duration of this fade is given by the fade duration parameter.

If the pause parameter is true, then a pause is inserted between the playback of successive

animation objects, as well as after the fade-in and before the fade-out (if fade is also true). See

page 170 for an explanation of pauses.

The final parameter, duration, can be used to manipulate the length of the contained animations.

If it is None then each animation object is played back at its regular speed. Otherwise it should be

a positive number; each animation object will be scaled in time to take this long to play.

� an.fade_in_start(animation object or list, duration)

164

� an.fade_out_end(animation object or list, duration)

These methods perform just the fading-in and -out parts of the play method above. The first

of these fades in the first frame of the given animation object (the first animation object, if a list is

given). The second method fades out the final frame of the object (the last object, if a list). The fade

duration must be given for both methods.

� an.show(animation object or list, [t = 0.0])

The show method causes the Anim element to show a still of the specified animation object at

the specified point in time.

� an.clear()

This method clears the Anim element so that it draws nothing.

Here is an example of using these methods with an Anim element to show an animation object

sample_animwith a caption:

an = Anim(viewport)
cap = Text(viewport, text = ’Here is the caption’,

_alpha = 0.0,
...)

start_animation(an, cap)
an.fade_in_start(sample_anim, 0.5) # fade in the start frame
linear(0.5, cap._alpha, 1.0) # then, fade in the caption
pause()
an.play(sample_anim) # play the animation
pause()

parallel()
an.fade_out_end(sample_anim, 0.5) # fade out the last frame ...
linear(0.5, cap._alpha, 0.0) # ... and the caption together.
end()

Some of the commands in this example (parallel(), linear(), etc.) have not yet ap-

peared in this appendix; they are documented in subsequent sections.

165

� BulletedList(viewport, [parameter defaults])

parameter type default

font font object None

color color black

size scalar 1.0

sizescale scalar 0.8

indent scalar 1.0

leading scalar 0.5

bullet string or list or None ’-’

bulletsep scalar 0.5

show scalar 0.0

_alpha scalar 1.0

The BulletedList element provides a set of hierarchially-indented text strings with optional

bullet markers, of the type commonly seen in presentations. A bulleted list contains a number of

text items, each of which has an indent level. Note that all of the element parameters control the list

layout; the content is added by calling the add_item()method described below.

As with the Text element, the font and color parameters set the initial font and color for the

text items contained in the list.

The size argument sets the base size of the bulleted list element. This is the text size of items at

level 0 (the outermost level). In general, the size of an item at level k is the base size times the value

of the sizescale parameter, raised to the power k. With sizescale set at 0.8, the font size of a level-1

item will be 80% of the size parameter, a level-2 item will be 0. 82 = 64% of the size parameter, and

so on. A level-k item will be indented k�indent�size units, and will have leading�sizescale k�size

vertical units of space after it.

If bullet is not None, a bullet will be drawn before each item. This argument may be a string or

a text list, as described on page 148. The bullet will typically be just a single character or very short

string—the purpose of allowing a text list is to allow the bullet character to come from a different

font or be in a different color than the body text. The bulletsep parameter gives the spacing (in

multiples of the base size) between the bullet and the body text.

The show parameter controls which items are visible. For example, if show were 3.4, then the

166

first three items would be fully visible, and the fourth would be drawn with � = 0. 4. Items can be

made to fade in one-by-one by smoothly changing the show parameter. Everything in the element

has its transparency scaled by the value of the element’s alpha parameter.

� bl.add_item(level, string or list, [duration = 0.0], [trans = linear])

Bulleted list elements are empty when they are first created; this method is used to actually

add an item to the list. level must be a nonnegative integer, and the second argument is a string

or a text list, just as in the Text element. It is legal to call this method either before the call

to start_animation() or after it. If it is called in the middle of the animation (that is, after

start_animation()), the optional duration and trans parameters can be used to specify a fade-

in for the new item, which is done by just manipulating the element’s show parameter. Usually the

default linear transition is fine, but any transition function can be specified via the trans argument;

see Section A.6.4 for details on transition functions.

� bl.remove_item([duration = 0.0], [trans = linear])

remove_item() removes the last item from the bulleted list; the duration and trans argu-

ments function just as those for the add_item()method.

� Interactive(viewport, [parameter defaults])

parameter type default

controller object None

_alpha scalar 1.0

The Interactive element places an interactive controller object in the animation. The ar-

gument for the controller parameter should be a controller class, which the runtime system will

instance as necessary. See Section A.7 for details and examples of interactive controllers.

� Video(viewport, filename, [parameter defaults])

parameter type default

fit object BOTH

The Video element is used to play digital video (MPG, AVI, etc.) from within a SLITHY

presentation. It is subject to a number of limitations:

167

Table A.2 Keystroke commands used to control Video elements.

key effect
‘ (backtick) toggle play/pause (with control to play in loop mode

insert play (with control to play in loop mode
delete pause

left-arrow step back one frame
right-arrow step forward one frame

home jump to beginning
backspace jump to beginning and pause
up-arrow increase playback speed

down-arrow decrease playback speed
end reset playback speed to standard

� Video is only supported on Windows, using the DirectShow library. Video elements will be

ignored on other platforms.

� The viewport must be static and aligned with the axes of the screen. SLITHY will take the

locations of the lower-left and upper-right corners of the viewport, projected into screen space,

as the corners of the bounding rectangle for the video. The fit parameter governs the placement

of the actual video image within this rectangle. The legal values are the same as those for the

fit parameter of the Image element, listed on page 161.

� Video will always appear on top of everything drawn by SLITHY (it’s actually drawn in a sep-

arate window atop the SLITHY window). The stacking order of overlapping video elements

is undefined.

� Video can not be faded in or out.

� Video elements do not appear in the object tester, only when the animation object is shown

from a presentation script (see Section A.8).

The keyboard is used to control the playback while a video element is on the screen. The key

commands available are listed in Table A.2.

168

y z

x
def sample_slide():
 c = get_camera()
 x = c.top(0.15).inset(0.05)
 y = c.bottom(0.85).left(0.6).inset(0.05)
 z = c.bottom(0.85).right(0.4).inset(0.05)

 title = Text(x, ...)
 bl = BulletedList(y, ...)
 im = Image(z, ...)

 ...

Figure A.11 Using Rect object methods to subdivide the area of the slide. The upper right image
shows the rectangles x, y, and z in relation to the camera rectangle. The bottom right image is a
screenshot of a slide produced with this layout.

Element viewports

The viewport argument to each element constructor (except for Fill, which does not take such an

argument) is used to specify the element’s position on the animation canvas. For elements that do

not move, this argument may simply be a Rect object as described in Section A.2.

� get_camera()

A common strategy for laying out slide elements is to first obtain a rectangle representing

the whole screen, then use the methods available for Rect objects to subdivide it appropriately.

The get_camera() function, when used while defining an animation (that is, between calls to

start_animation() and end_animation()), returns the current camera rectangle (as a

Rect object). When called while not defining an animation, it returns the default camera rectangle

(the axis-aligned rectangle from (0, 0) to (400, 300)).

Figure A.11 shows an example of using this approach to lay out a typical slide arrangement.

SLITHY also allows the viewport of an element to be animated itself. This is done by creating

a special viewport pseudoelement. A viewport pseudoelement is something like a parameterized

diagram in that it takes an arbitrary set of animatable parameters, but instead of producing a drawing,

it produces a single Rect object that will be the viewport for some animation element.

Currently there is only one kind of viewport pseudoelement implemented.

169

� viewport.interp(rect0, [rect1], [. . .])

This constructor takes one or more Rect objects and returns a viewport object that interpolates

between the rectangles. The viewport object has a single parameter called x. An example will help

to make this clear:

tx_v = viewport.interp(vp0, vp1)
tx = Text(tx_v, text = ’hello, world!’, ...)

start_animation(tx)
smooth(2.0, tx.color, white)
smooth(2.0, tx_v.x, 1.0)
end_animation()

tx_v is a viewport object. It interpolates between rectangles vp0 and vp1 (which we assume

are Rect objects defined elsewhere). tx_v is then passed to the Text element constructor as

its viewport argument. Once we begin defining an animation that contains the tx element, we can

animate the x parameter of the viewport object just like the parameters of the text element. Changing

the viewport object’s x parameter will cause the element to move around on the canvas.

A.6.2 Animation commands

Next we will describe the library functions for creating animation objects from a collection of ele-

ments.

� start_animation([element1], [element2], [. . .],
[camera = Rect(0,0,400,300)])

This function begins defining an animation. The arguments are the initial set of elements to

appear in the animation. The order of the arguments is significant—elements later in the list will be

drawn on top of earlier elements. Both the stacking order and the set of elements appearing can be

modified dynamically as the animation proceeds.

The optional named argument camera can be used to specify a starting camera rectangle other

than the default. The start_animation() function returns a camera element that can be used

to change the camera rectangle during the animation; this is described in Section A.6.3.

� end_animation()

170

This function finishes up defining an animation and returns a list of the animation object or ob-

jects created. (A single start_animation()/end_animation() pair may create multiple

animation objects through use of the pause() function, described next. The return value is always

a list, even if just a single animation object is created.

The remaining commands in this section may only appear while defining an animation, that is,

between calls to start_animation() and end_animation().

� pause()

The pause() function is used to split an animation sequence into multiple sub-objects, each

one continuing where the previous one left off. The most common use of this is to break up a long

animated sequence with pauses where SLITHY waits for the presenter to press a key to continue.

If there are k calls to pause(), then end_animation()will return a list of k + 1 animation

objects. For instance, this code would produce three animation objects:

start_animation()
...
pause() # first animation object ends here
...
pause() # second animation object ends here
...
end_animation() # third animation object ends here

A collection of elements in animated in SLITHY by changing their parameter values over time.

An animation object has one timeline for every parameter of every element used in the animation.

The call to start_animation() creates these timelines and initializes each to a constant default

value (the value specified in the element constructor, if any, otherwise a built-in default for that

parameter).

Each animation command makes an edit to one or more of these timelines, overwriting portions

of them with new values. At the end of the script, when end_animation() is called, SLITHY

bundles up all the parameter timelines into an animation object, which can then be displayed at an

arbitrary point in time.

While an animation script is in progress, SLITHY maintains a value called the time cursor that

marks the point at which edits will take place. Some edits (such as set()) have zero duration, and

171

do not change the position of the time cursor. Others (such as linear()) have a duration, and

generally cause the time cursor to advance to the end of the edit.

All edit durations are nominally expressed in seconds, though a completed animation object

can be sped up or slowed down arbitrarily. Parameters are specified with dot notation, with “e.p”

denoting the parameter p of element e.

� linear(duration, parameter, tovalue, [relative = 0])

� linear(duration, parameter, fromvalue, tovalue, [relative = 0])

� smooth(duration, parameter, tovalue, [relative = 0])

� smooth(duration, parameter, fromvalue, tovalue, [relative = 0])

The linear() and smooth() functions change a parameter to a new value through continu-

ous interpolation over a finite interval. linear() uses linear interpolation, while smooth() uses

a slow-in-slow-out interpolation. Figure A.12 illustrates the effect of these commands (and others)

on a sample parameter timeline.

If fromvalue is omitted, then the interpolation begins at the parameter’s current value at the posi-

tion of the time cursor. If fromvalue is present, the parameter jumps instantaneously to fromvalue at

the start of the interpolation. Passing a true value for the optional argument relative causes tovalue

(and fromvalue, if present) to be treated as relative to the parameter’s current value at the start of the

transition.

These functions may only be used for parameters that have interpolatable values—real numbers,

integers, and colors. Attempts to use linear() or smooth() to change parameters of other

types (such as strings) will raise an exception.

� set(parameter, value)

This function instantaneously changes the given parameter’s value to the new given value, at the

position of the time cursor. It can be applied to parameters of any type (though no type-checking is

done on the value). This edit is of zero duration.

� wait(duration)

This function produces an edit of the specified duration, but does not change any parameter

timelines.

172

initial state

linear(...)

set(...)

wave() (with duration) wave() (without duration)

smooth(...)

wait(...)

el = Element(x = 0.5)
start_animation(el)
wait(0.5)

linear(0.5, el.x, 1.0)

wait(0.5)

smooth(1.0, el.x, 0.0)

1.0 2.0 3.0

1.0

el
.x

1.0 2.0 3.0

1.0

el
.x

1.0 2.0 3.0

1.0

el
.x

1.0 2.0 3.0

1.0

el
.x

Figure A.12 Illustration of animation commands applying edits to a parameter timeline. The
red dotted line indicates the position of the time cursor. The left side shows the results of six
different indiviual commands, each applied to the initial state shown in the top row. The right side
shows how multiple commands build up a complex timeline, by showing the state of the parameter
timeline after each command in a script.

173

� wave(parameter, [min = min], [max = max], [mean = mean],
[amplitude = amplitude], [duration = duration],
[period = period], [cycles = cycles])

The wave() function sinusoidally varies a parameter value (which must be of an interpolatable

type). Only certain combinations of the optional arguments listed are allowed. The first restriction

is that exactly two of min, max, mean, and amplitude must be given—this is sufficient to specify the

range of the variation.

The last three arguments are used to specify the waving motion’s duration, period (in cycles

per second), and/or number of complete cycles respectively. If exactly two of these are given, then

the motion has a finite duration. Alternatively, if only the period argument is given, the edit is

considered to have zero duration. The waving motion is written into the timeline starting at the

position of the time cursor and continuing indefinitely. Both applications of wave() are illustrated

in Figure A.12.

Currently there is no control over the phase of the motion; it always starts at the beginning of a

whole cycle.

� parallel()

� serial([delay = 0.0])

� end()

These functions are used to group together the basic editing commands (such as linear(),

set(), etc.) into composite edits. All the edits contained in a serial(). . .end() block are

concatenated in sequence, so they happen one after the other. The duration of the composite edit is

the sum of the individual durations.

A parallel(). . .end()block is used to overlap edits. All the edits contained in one of these

blocks begin simultaneously; the duration of the whole block is the maximum of the components’

durations.

These two types of blocks can be nested to produce complex overlap patterns. A few examples

are shown in Figure A.13. The optional argument to serial() is used to shorten the common

idiom of serial() immediately followed by wait(); the following two blocks are equivalent:

174

a cb d

a

c
b

d

a
cb

d

a c
b d

0 s 4 s 8 s

0 s 4 s 8 s

parallel()
a()
b()
c()
d()
end()

a()
b()
c()
d()

parallel()
a()
serial()
b()

c()
end()
end()
d()

parallel()
a()
serial(2.0)
b()
end()

end()
parallel()
c()
d()
end()

Figure A.13 Using parallel() and serial() to overlap animation functions. a, b, c, and d
represent animation edits with durations of 4, 3, 2, and 1 seconds, respectively.

serial() serial(5.0)
wait(5.0)

Each animation script begins in “serial mode,” as if the whole script were contained in a se-

rial(). . .end() block.

� enter([element1], [element2], [. . .])
� exit([element1], [element2], [. . .])

These two functions add elements to and remove elements from the animation, at the position

of the time cursor. This is a zero-duration edit. When elements are added, they are placed at the top

of the stacking order, in the order they are listed in the call to enter().

175

If an element is going to be invisible for a significant length of time (by being positioned off-

camera or having its alpha set to zero), then it is more efficient to remove it from the animation, with

exit(), and bring it back with enter() when it is needed again.

� lift([element1], [element2], [. . .], [above = None])
� lower([element1], [element2], [. . .], [below = None])

lift() raises elements in the stacking order. If an above argument is given then it should be

another element in the animation; the moving elements are restacked so that they end up just above

the above element.1 If above is None, then the elements are moved to the top of the stacking order.

In all cases, the relative stacking order of the moved elements is preserved.

lower() functions analagously, moving a set of elements down in the stacking order, either to

the bottom of the stack or to just below a given element. Both functions are zero-duration edits.

There are a few more functions available in the library that are purely informational—they do

not affect the animation being defined but may be useful in writing scripts.

� get(parameter, [t = None])

get() samples a parameter’s timeline and returns the value at a point in time. The time may

be specified explicitly via the second argument. A time of None, the default if no t argument is

supplied, samples at the position of the time cursor.

� current_time()

This function returns the current position of the time cursor (a real-valued number).

� defining_animation()

This function returns a true value if and only if it is called while an animation is being defined

(that is, between calls to start_animation() and end_animation()).

A.6.3 The animation camera

Similar to parameterized diagrams, an animation is comprised of elements laid out on a virtual

canvas. A camera rectangle is used to determine which part of this canvas appears in the animation’s

1Note that this usage can actually result in some elements being moved down. If the initial stacking order (from top
to bottom) is �a, b, c, d�, then lift(a,above=d) results in the order �b, c, a, d�—that is, element a is moved down
so that it is just above element d.

176

viewport. By default this is the rectangle from (0, 0) to (400, 300), though this can be changed via

the optional camera parameter to start_animation().

start_animation() also returns a camera object that can be used to animate the camera

rectangle itself during the animation. This camera object functions very much like an ordinary

element with a single parameter called rect. This parameter’s timeline can be manipulated just

like any other element:

cam = start_animation(...)
...
smooth(3.0, cam.rect, Rect(...)) # smoothly move camera
...
set(cam.rect, Rect(...)) # instantly move camera
...
end_animation()

A.6.4 Transition and undulation objects

While linear() and smooth() behave much like functions in animation scripts, they are ac-

tually objects of the class Transition. Transition objects are used to represent the style of

interpolation between two values. linear() and smooth() are defined in the SLITHY library

like this:

linear = Transition(style = ’linear’)
smooth = Transition(style = ’smooth’)

These are the only two styles currently implemented, but the smooth style in particular has optional

arguments s and e that control the shape of the interpolation. s and e raise or lower the tangent

of the curve at the start and end of the interpolation, respectively. These arguments can be used in

creating a new transition object:

other = Transition(style = ’smooth’, s = -0.5, e = 0.5)

Once other is created, it can be used within animation scripts anywhere that linear() and

smooth() can. When called as a function, it takes the same arguments as linear() and

177

linear smooth smooth
e = -0.5

smooth
s = -0.5
e = 0.5

smooth
s = 1.5
e = 1.5

Figure A.14 Various transition styles available in SLITHY.

sin tri sawup sawdown

Figure A.15 Various undulation styles available in SLITHY. Two complete cycles of each style are shown.

smooth() (see page 171). Figure A.14 shows examples of various transition styles.2

Similarly, wave() is not a true function but an example of an undulation object. Undulation

objects can be created much like transition objects:

wave = Undulation(style = ’sin’) # predefined in Slithy library
sawtooth = Undulation(style = ’sawup’)

After executing the second line, the object sawtooth can be used just like the predefined object

wave can (see page 173 for details of its arguments). Where wave produces a sinusoidally-varying

pattern, though, sawtooth will produce a sawtooth pattern. Figure A.15 illustrates the four undu-

lation styles implemented in SLITHY.

2The transition mechanism is designed to be extensible; look in transition.py for how styles are implemented.
To add a new style, create a new subclass of TransitionStyle, then add it to the Transition.styles
dictionary.

178

A.7 Interactive objects

Interactive objects are implemented by deriving a class from the SLITHY class Controller. In-

teractive objects work much like animation scripts, in that they describe a set of animation elements

and time-varying values for each element’s parameters. The difference is that an animation script is

executed as a single unit, while the code for an interactive object is broken up into different methods

that are executed at different times by the SLITHY runtime system.

This section describes the methods that interactive object authors may provide in order to im-

plement their object’s behavior.

� create_objects(self)

Most interactive objects will have a create_objects() method. This method is called

whenever a new instance of the class is created in order to create the initial set of elements. All

the element types of Section A.6.1 are available. Just as animation scripts typically store element

references in local variables, interactive objects must keep references in instance variables so that

they can be used from within other methods.

This method should return a tuple of elements that should initially appear on the canvas. (This

is the equivalent to passing the elements to start_animation() in animation scripts.) If only

a single element is to appear, the element itself may be returned rather than a singleton tuple.

Here is the initial section of a simple interactive object, which uses a single diagram element

that draws a clock:

class SampleInteractive(Controller):
def create_objects(self):

self.d = Drawable(get_camera(), clock)
return self.d

An analogous animation script would look like this:

def sample_animation():
d = Drawable(get_camera(), clock)
start_animation(d)

Just as in animation scripts, the set of elements on the canvas may be changed during the anima-

179

tion, via the enter() and exit() functions.

� start(self)

All the remaining methods in this section, including start(), are used to edit the animation

timelines in response to certain user events. All of the commands available in animation scripts

work within these methods as well: changing parameter values, wait(), parallel and serial modes,

as well as adding, removing, and restacking elements.

If it is defined, start() is called once when the object is first displayed; a common use is to

make the object fade in rather than appearing abruptly. Adding this functionality to the previous

example would look like this:

class SampleInteractive(Controller):

. . .

def start(self):
set(self.d._alpha, 0)
fade_in(0.5, self.d)

� key(self, key, mousex, mousey, mod)

This method, if defined, is called when the user presses a letter or number key. (These are the

only keys that are passed to interactive objects; all others are reserved for SLITHY’s use.) Every

interactive object present on the screen receives every input event, so a single keystroke will invoke

the key() methods of all visible interactive objects.

� The key argument will be the key that was pressed. This will always be a digit or lowercase

letter.

� mousex and mousey are the coordinates of the mouse pointer, in screen coordinates, at the time

of the keypress. The next section describes ways to make use of these values.

� mod is a tuple that describes which modifier keys were pressed along with the key. It will

contain the strings “shift” and/or “control” to indicate the presence of those modifiers.

180

In this example, the key() method produces one animated change when the ‘B’ key is pressed,

and a different change when Control-A is pressed:

def key(self, key, x, y, mod):
if key == ’b’:

linear(1.0, self.d.hours, 5)
elif key == ’a’ and ’control’ in mod:

smooth(0.5, self.d.minutes, 0)

All other keystrokes are ignored.

� mousedown(self, mousex, mousey, mod)

� mousemove(self, mousex, mousey, mod)

� mouseup(self, mousex, mousey, mod)

These methods are used to report mouse events to the interactive object. Mouse events are re-

ported to all interactive objects on the screen, regardless of the location of the mouse pointer. The

screen coordinates of the mouse pointer and the list of active modifier keys is reported, just as with

the key() method. Only the primary mouse button (the left button, in most cases) can be used to

manipulate interactive objects; other mouse buttons are reserved for SLITHY’s use. The mouse-

move() method is only called when the mouse button is down. There is no way for interactive

objects to track the mouse when the button is not pressed.

A.7.1 Using cursor coordinates

There are two main ways of making use of the mouse cursor coordinates within event handler

methods. The first is to use SLITHY’s object buffer to record object ID’s while a diagram is being

drawn, then query those coordinates in the event handler. This query is done using the query_

id() function.

� query_id(x1, y1, [. . .])

This function takes one or more pairs of screen coordinates and looks up those locations in the

object ID buffer. The resulting IDs are returned as a tuple of integers.

Here are a sample diagram and interactive controller that illustrate this idea:

181

def diagram():
. . .
id(1)
color(green)
rectangle(0, 0, 10, 10)
. . .
id(2)
color(red)
dot(2, 0, 0)
. . .

class Interactive(Controller):
def create_objects(self):

self.d = Drawable(get_camera(), diagram)
return self.d

def mousedown(self, x, y, m):
id, = query_id(x, y)
if id == 1:

clicked on the green rectangle
. . .

elif id == 2:
clicked on the red dot
. . .

Note how the mousedown() method uses query_id() to determine what object is underneath

the location of the mouse. Of course, the parameterized diagram and the interactive object driving

it must be designed together so that they agree on the meanings of the different ID values.

The second technique for using mouse coordinates is to use the mark() and unproject()

functions to transform the coordinates from screen space to the canvas space of the diagram, where

it is usually easier to use them in calculations. The next example illustrates setting the clock using

the mouse:

def clock(hour = (INTEGER, 0, 23, 0),
minute = (INTEGER, 0, 60, 0),
label = (STRING, ’’),
controller = (OBJECT, None),
):

. . . # draw the clock here

if controller:
controller.coords = mark()

182

class InteractiveClock(Controller):
def create_objects(self):

self.d = Drawable(get_camera(), clock, controller = self)
return self.d

def mousedown(self, x, y, m):
px, py = unproject(x, y, self.coords)

theta = atan2(py, px) * 180 / pi
minutes = (90-theta) / 6
if minutes < 0: minutes += 60

smooth(0.5, self.d.minutes, minutes)

Only one change is required to the clock diagram itself: it now has a parameter called con-

troller. If an object other than None is passed in to this argument, the diagram function will

save its coordinate system (obtained using the mark() function from page 156) in the object.

The interactive object, when it creates a Drawablewith an instance of the clock, sets the value

of this controller parameter to be the interactive object itself. Thus, whenever this instance of

the clock is drawn, the coordinate system will be stored in the interactive object.

The mousedown()method uses unproject() to transform the mouse coordinates into the

stored diagram coordinate system. This example computes the nearest value for the minutes

parameter; the net result is that the time on the clock changes so that the minute hand points toward

the location of the mouse click. This calculation is relatively simple due to the fact that the center

of the clock is at the origin in the diagram coordinate system. Because the calculation is being done

in diagram coordinates, it will work no matter where the clock is placed on the slide or how it is

oriented.

A.8 Presentation scripts

The commands covered so far allow the creation of parameterized diagrams, animation objects, and

interactive objects. All of these different types of objects can be defined within a single Python file if

desired. To define a presentation that makes use of these objects, a separate file called a presentation

script must be created. This script defines the order in which the top-level animation objects are to

183

be shown and adds some navigation features for use while presenting.

We’ll begin with an example. Assume that the files intro.py and related.py have been

created, and each contains animation objects slide1, slide2, and slide3. Here is a simple

script that assembles these into a presentation:

from slithy.presentation import *

import intro
import related

bookmark(’Introduction’)
play(intro.slide1)
play(intro.slide2)
play(intro.slide3)
bookmark(’Related Work’)
play(related.slide1)
play(related.slide2)
play(related.slide3)

run_presentation()

The first line initializes this script as a SLITHY presentation script. Note that we do not import

“slithy.library”; that is for scripts defining diagrams, animations, and interactive objects.

Next we import the files containing the animation objects we want to show, using the Python import

mechanism as described in Section A.1. Once we’ve imported all the resources needed for the

presentation, we can begin laying out the presentation itself.

� bookmark(name)

The bookmark() function gives a name to the current point in the presentation. While present-

ing, right-clicking the SLITHY window will bring up a menu of bookmarks that allow skipping to

those points in the talk. In this example we set up bookmarks that allow us to jump to the beginning

of each section.

� play([anim1], [anim2], [. . .], [pause_between = 1],
[pause_after = 0])

This function plays a sequence of one or more animation objects. Each of the anim arguments

may be a single animation object or a list of animation objects. The anim arguments are flattened

and concatenated to form the list of objects to play. The optional arguments control whether SLITHY

184

Table A.3 Keystroke commands used to control SLITHY during presentations.

key effect
space end pause (continue presentation)

�, comma skip backwards (to previous pause point)
�, period skip forwards (to next pause point)
ctrl-pgup jump to presentation start
ctrl-pgdn jump to presentation end

tab toggle fullscreen mode
= save screenshot of SLITHY window

escape quit SLITHY

inserts a pause between each pair of objects or not, and whether a pause is inserted after the final

animation is played. At a pause, the presentation runtime waits for the user to press the spacebar to

continue.

� pause()

This function manually inserts a pause (waiting for the user) at the current point in the presenta-

tion.

� run_presentation()

A call to this function should always be the final line of the script. The previous functions all

build up an internal description of the presentation. Inside run_presentation() is where this

description is used to actually display the presentation.

During the presentation, SLITHY is controlled primarily from the keyboard. Table A.3 summa-

rizes the keystroke commands available during presentations.

185

Appendix B

A COMPLETE EXAMPLE

In this appendix we will show a complete example of a nontrivial interactive object and anima-

tion in SLITHY. We will construct an interactive applet illustrating the de Casteljau algorithm for

Bézier curve construction (see Figure 5.13 on page 105). There are two components to this applet:

a parameterized diagram to draw the figure, and an interactive controller to allow manipulation of

the parameters. The resulting applet starts as a blank canvas, and allows the following interactions:

� Clicking on the blank canvas adds a control point.

� Clicking on the control polygon sets the subdivision fraction u.

� Control points can be dragged with the mouse to arbitrary places on the canvas.

� The outermost construction points can be dragged along the control polygon to change the

subdivision fraction.

� Keystrokes can be used to advance through the steps of the de Casteljau construction, turn

display of the resulting curve on or off, and reset the diagram.

B.1 Preliminaries

The file begins with some standard SLITHY headers: importing the SLITHY library and defining

some color objects that will be used in the drawing. The parameterized diagram will also need a

font for printing the current value of u as part of the figure. In this project, we have defined a file

called resources.py (not shown) that loads all the fonts needed throughout the presentation.

186

Here, we import that file and select the font object we need. This structure simplifies using fonts

consistently throughout a presentation.

from slithy.library import *

darkblue = Color(0, 0, 0.6)
lightblue = Color(0.3, 0.6, 0.8)
darkred = Color(0.8, 0, 0)
bgcolor = Color(0.407, 0.580, 0.709)

from resources import fonts
thefont = fonts[’mono’]

Next we will define some helper functions useful in illustrating the de Casteljau algorithm:

def reduce(p, u):
if len(p) < 2:

return p
return [(x1*(1-u)+x2*u, y1*(1-u)+y2*u)

for (x1,y1),(x2,y2) in zip(p[:-1], p[1:])]

The reduce() function takes a list of n points (p1, p2, � � � , pn) and a fraction u, and returns a

list of n� 1 interpolated points

((1 � u)p1 + up2, (1� u)p2 + up3, � � � , (1� u)pn�1 + upn).

Each point is represented as a 2-tuple (x, y). This computation corresponds to one step of the de

Casteljau algorithm.

def map_to_line(x, y, (px,py), (qx,qy)):
u = ((x-px) * (qx-px) + (y-py) * (qy-py)) /

((qx-px) * (qx-px) + (qy-py) * (qy-py))
if u < 0:

return 0
if u > 1:

return 1
return u

The map_to_line() function projects the point (x, y) onto the closest point lying on the line

segment PQ. The projected point is returned as a value u � [0, 1] representing a fraction of the

187

distance from P to Q. We will make use of this function when the user clicks on the control polygon

to set the subdivision fraction.

The parameterized diagram that draws this figure is going to expect a parameter called info that

contains the coordinates of the control points. Normally this object will be the interactive controller

object, but for testing we will create a “fake” object that has a fixed set of control points. Using this

object will allow us to test the parameterized diagram independently of the interactive controller.

To create this test info object, we use the common Python idiom of a class with no methods.

We create one instance of this class – the rough Python equivalent of a C struct – and place a set

of control points for testing. The curve_dirty flag signals when the set of control points has

changed, so that the curve can be recomputed only when necessary.

class Blank:
pass

test_info = Blank()
test_info.controls = [(10,10), (10,90), (90,90), (60,40)]
test_info.curve_dirty = 1

The next helper function will actually compute the Bézier curve from the control points. We will

use the naı̈ve algorithm of simply sampling the curve at equally-spaced values of u and applying the

de Casteljau algorithm, using the reduce() function defined above. This method of computing

the curve is relatively slow, but it is simple to implement and sufficient for the purposes of this

applet.

This function has a single argument, which should be an object possessing controls and

curve_dirty attributes, such as the test_info object defined above. The computed curve is

stored in the curve attribute of the argument object.

def compute_curve(info):
if len(info.controls) == 0:

info.curve_dirty = 0
return None

first point is the first control point
p = [(0,)+info.controls[0]]

188

compute intermediate points
for i in range(1,100):

u = i / 100.0
start with the control points, reduce until
only one point is left
q = info.controls
while len(q) > 1:

q = reduce(q, u)
p.append((u,)+q[0])

last point is the last control point
p.append((1,)+info.controls[-1])

store the curve in the info object
info.curve = p
info.curve_dirty = 0

B.2 The parameterized diagram

Now we are ready to begin defining the parameterized diagram itself.

def bezier(info = (OBJECT, test_info),
u = (SCALAR, 0, 1),
show_const = (BOOLEAN, 0),
show_curve = (BOOLEAN, 0),
const_reveal = (SCALAR, 0, 10),
):

The diagram has five parameters: info, as described above, is an object that contains the control

points; u sets the subdivision fraction to be displayed; show_const controls whether or not the

construction lines and points are displayed; and show_curve controls whether or not the final

curve itself is displayed. Figure B.1 shows the appearance of the diagram as the different parts of

the figure are drawn.

The fifth parameter, const_reveal, controls how much of the construction is shown. For

a curve with n control points, we illustrate the de Casteljau algorithm in 2n � 3 steps: n � 1 sets

of construction points are drawn, alternating with n � 2 sets of construction lines. The final set

of construction points is always just a single point, which lies on the output curve. As const_

reveal increases from zero to 2n � 3, more and more of the steps will be drawn. This process is

189

(a) (b)

(c) (d)

(e) (f)

Figure B.1 Different parts of a diagram for illustrating construction of a Bézier curve. The control
polygon (part (a)) is drawn first. Part (b) adds the construction lines and points, and part (c) adds
a portion of final curve. The control points are drawn in part (d), and part (e) shows the final
figure, with the subdivision fraction u displayed underneath. Part (f) illustrates the effect of the
const_reveal parameter, which causes only some steps of the construction to be drawn. Here
only the first set of construction points and half of the first set of lines are shown.

190

illustrated for a curve with four control points in Figure B.2.

set_camera(Rect(0,0,100,100))
clear(white)

if show_curve and info.curve_dirty:
compute_curve(info)

The function begins by setting the camera and clearing the canvas. Then, if the curve needs to

be displayed and the control points have changed since the last time the curve was recomputed, the

curve is recomputed.

if len(info.controls) > 1:
i = 1000
push()
for (x1,y1),(x2,y2) in zip(info.controls[:-1],

info.controls[1:]):
draw a wide, invisible band for clicking on
id(i)
thickness(3)
color(invisible)
line(x1, y1, x2, y2)

then draw the visible line, which is narrower
thickness(0.5)
color(0.7)
line(x1, y1, x2, y2)
i += 1

pop()

The first thing to be drawn is the control polygon – the set of lines connecting successive control

points – which is always visible. Each line is assigned a unique ID number. The line from pi to

pi+1 is given id (i + 1000). These IDs will be used in the interactive controller to determine which

edge of the control polygon was clicked. Because the visible gray line is fairly narrow, clicking on

it exactly is difficult. To make it easier to click on the polygon, a wider, invisible line is drawn along

each visible line using the same ID number. The user must only hit somewhere in this wider region

in order to click “on the line.”

The next block of code is the most complex part of the diagram: drawing the construction lines.

Here is the top of the loop:

191

(a) (b)

(c) (d)

(e) (f)

Figure B.2 For curves with n control points, the applet illustrates the de Casteljau algorithm in
2n � 3 steps. Here the case n = 4 is shown. Part (a) shows the initial state of the diagram before
the subdivision fraction u is specified. Each successive image adds one set of construction points
or construction lines in an animated fashion. Each step corresponds to increasing the const_
reveal parameter by one.

192

if show_const:
p = info.controls
levels = len(p)-2
i = 0
while len(p) > 1:

if levels > 1:
thecolor = darkblue.interp(lightblue,

float(i)/(levels-1))
else:

thecolor = darkblue

if const_reveal < i*2:
thecolor = invisible

elif const_reveal < i*2+1:
thecolor = Color(thecolor, const_reveal - i*2)

if const_reveal < i*2+1:
linefrac = 0

elif const_reveal < i*2+2:
linefrac = const_reveal - (i*2+1)

else:
linefrac = 1

Each pass through the while loop will draw one set of construction points and one set of con-

struction lines. At the top of the loop we determine the color of the construction points. The first set

is drawn in dark blue, and following sets get progressively lighter in color. We also use the const_

reveal parameter to determine what fraction of the lines should be drawn and how opaque are the

points (so that each step of the construction is drawn in gradually as const_reveal is increased.

p = reduce(p, u)
if len(p) > 1:

draw the lines
color(0.8)
thickness(0.5)
for (x1,y1),(x2,y2) in zip(p[:-1], p[1:]):

x2 = x2 * linefrac + x1 * (1-linefrac)
y2 = y2 * linefrac + y1 * (1-linefrac)
line(x1, y1, x2, y2)

draw the points
color(thecolor)
if i == 0:

outermost set of points
j = 3000

193

for x, y in p:
id(j)
dot(1.5, x, y)
j += 1

id(-1)
else:

all other sets of points
for x, y in p:

dot(1.5, x, y)
i += 1

The bottom half of the loop computes the new set of points using reduce, then draws in the

points and the lines connecting them. Construction points in the outermost set are drawn with IDs

starting at 3000 so that the interactive controller can determine when they are clicked.

if levels*2 <= const_reveal < levels*2+1:
color(darkred, const_reveal - levels*2)
dot(2, p[0][0], p[0][1])

elif levels*2+1 <= const_reveal:
color(darkred)
dot(2, p[0][0], p[0][1])

Outside the while loop, the final point – the point on the curve – is drawn in red. This point’s

opacity is also controlled by the const_reveal parameter.

if show_curve and info.curve:
v = info.curve
p = Path().moveto(v[0][1], v[0][2])
for vu,x,y in v[1:]:

if vu > u:
break

p.lineto(x, y)
color(darkred)
widestroke(p, 1)

After the construction elements are drawn, the curve itself is drawn (if the show_curve pa-

rameter is true) by building a path object for the [0, u] interval of the curve and stroking the path in

red.

Next the control points are drawn in. They are given IDs starting with 2000 so that mouse clicks

on them can be easily detected.

194

i = 2000
push()
color(green)
for x, y in info.controls:

id(i)
dot(2, x, y)
i += 1

pop()

The last thing to be drawn is the string of text that displays the u parameter. The visibility of

this string is also controlled by the const_reveal parameter; it fades in along with the first set

of construction points.

The final line of the diagram function stores the current coordinate system in the info object, so

that the interactive controller can map mouse coordinates from screen space back into the drawing

coordinate system of the diagram.

if show_const:
if const_reveal < 1:

color(black, const_reveal)
else:

color(black)
text(50, 5, ’u = %.2f’ % (u,), thefont,

size = 5, anchor = ’fc’)

info.last_coords = mark()

B.3 The interactive controller

Once we have an appropriately parameterized diagram function, constructing an interactive con-

troller to manipulate the parameters is relatively straightforward. The first method is quite simple:

class BezierDemo(Controller):
def create_objects(self):

self.last_coords = None
self.drag = None
self.controls = []
self.curve_dirty = 1
self.steps = 0

195

self.d = Drawable(None, bezier, info = self)
return self.d

The create_objects() method creates the animation elements that will be controlled in-

teractively. In this case we create just a single instance of the Bézier-drawing diagram. Note that

the value of the info parameter is the interactive controller instance self, rather than the test_

info object we used for testing the diagram by itself. We also use this method to initialize some of

the instance variables used in the controller’s methods.

The next set of methods are used to handle mouse events.

def mousedown(self, x, y, m):
what, = query_id(x, y)

if 2000 <= what < 3000:
user presses button over one of the control points
self.drag = what

elif 3000 <= what < 4000:
user presses button over one of the outermost
construction points
self.drag = what
what -= 3000
x, y = unproject(x, y, self.last_coords)
u = map_to_line(x, y, self.controls[what],

self.controls[what+1])
set(self.d.u, u)

The mousedown() handler is used to detect the start of dragging interactions. (For detecting

individual clicks, the mouseup() method is preferred, so that the action happens when the user

releases the button, rather than when he or she presses it.) The handler uses the query_id()

function to determine the object ID present at the pixel location of the button press. The object

IDs returned are those set using the id() function within the parameterized diagram. In this case,

an ID between 2000 and 2999 indicates one of the control points—the handler simply sets the

self.drag variable to remember which control point was selected, so that it can be moved within

the mousemove() handler.

An ID in the range 3000–3999 indicates one of the outermost construction points. Each of these

points can be dragged back and forth along its control polygon edge to set the subdivision fraction

196

u. This handler first converts the location of the button press into diagram coordinates, then projects

that point onto the control polygon edge to determine the u value. The animation command set()

is then used to set the diagram’s u parameter to that computed value.

def mousemove(self, x, y, m):
d = self.drag
if d is None:

return

if 2000 <= d < 3000:
move a control point
self.controls[d-2000] = unproject(x, y, self.last_coords)
self.curve_dirty = 1

elif 3000 <= d < 4000:
drag a construction point along the control
polygon edge
what = d - 3000
x, y = unproject(x, y, self.last_coords)
u = map_to_line(x, y, self.controls[what],

self.controls[what+1])
set(self.d.u, u)

The mousemove() handler is called each time the mouse moves with the button pressed down.

It looks at the self.drag variable, which contains the object ID of the pixel originally clicked

on, and uses that to determine how to change the diagram. Object IDs 2000–2999 represent con-

trol points—the handler simply changes the coordinates of the dragged control point and tells the

diagram to recompute the curve. Dragging of the construction points is slightly more complicated,

since each must be constrained to remain on its edge of the control polygon. The handler projects

the position of the mouse onto the control polygon edge in order to determine the value for the

diagram’s u parameter.

def mouseup(self, x, y, m):
what, = query_id(x, y)
x, y = unproject(x, y, self.last_coords)

if what == 0 and self.drag is None:
clicked in the background; add a control point
self.controls.append((x, y))
self.curve_dirty = 1

197

elif 1000 <= what < 2000:
clicked a control polygon line
what -= 1000
u = map_to_line(x, y, self.controls[what],

self.controls[what+1])
set(self.d.show_const, 1)
set(self.d.u, u)
smooth(1.0, self.d.const_reveal, 0, 1)
self.steps = 1

self.drag = None

The final mouse-related handler, mouseup(), is primarily for producing actions by clicking

(as opposed to dragging). There are two click actions in this applet: clicking any point of the back-

ground (object ID 0) adds a new control point. Clicking on any control polygon edge (object IDs

1000–1999) sets the subdivision fraction u and shows the first step of the de Casteljau construction.

Subsequent steps are added with keystrokes, implemented in the next handler.

def key(self, k, x, y, m):
if k == ’a’:

self.steps += 1
smooth(1.0, self.d.const_reveal, self.steps)

elif k == ’g’:
if len(self.controls) > 1:

set(self.d.show_const, 1)
set(self.d.show_curve, 1)
set(self.d.u, 0.0)
smooth(0.5, self.d.const_reveal,

len(self.controls)*2-3)
smooth(5.0, self.d.u, 1.0)

smooth(0.5, self.d.const_reveal, 0)
set(self.d.show_const, 0)
self.steps = 0

elif k == ’c’:
set(self.d.show_const, 0)
set(self.d.const_reveal, 0)

elif k == ’v’:
set(self.d.show_curve, 0)

elif k == ’d’:
if len(self.controls) > 0:

self.controls.pop()
self.curve_dirty = 1

198

This handler implements actions for five different keystrokes. The ‘a’ key advances the de

Casteljau algorithm one step by incrementing the const_reveal parameter by one, using a

smooth interpolation. The ‘g’ key shows the whole process in one animation: all of the construc-

tions are made visible, then the u parameter is smoothly advanced from zero to one, tracing out a

visible curve as it goes. When the curve is complete the construction lines disappear, leaving only

the curve and the original control polygon. The remaining three keys perform comparatively simple

actions: ‘c’ turns off display of the construction lines, ‘v’ turns off display of the curve, and ‘d’

removes the last control point. All of these actions are implemented by using ordinary animation

commands to manipulate the parameters of the diagram function.

B.4 A simple animation

To use this interactive object within a presentation, it must be included as an element in an animation.

Here we will describe a simple animation script that begins with the interactive object occupying

the whole screen, then shrinks it down to make room for a list of information about Bézier curves.

def bezier_anim():
c = get_camera().left(0.5).inset(0.05)
bg = Fill(color = bgcolor)
tx = Text(c.top(0.1).move_right(0.1),

font = fonts[’sansb’],
text = ’Bzier curves’,
color = yellow,
size = 24,
_alpha = 0.0)

bl = BulletedList(c.bottom(0.85).move_right(0.1),
font = fonts[’sans’],
color = white,
size = 18,
bullet = [fonts[’ding’],’w’])

Besides the interactive object, the animation has three elements: a background fill, a text object

for the “slide title” and a bulleted list object. We start by creating these objects and positioning them

on the animation canvas.

vi = viewport.interp(get_camera().inset(0.03),

199

get_camera().right(0.5).inset(0.05))
i = Interactive(vi, controller = BezierDemo, _alpha = 0.0)

Because the interactive object will change position over the course of the animation, its position

is given not as a static rectangle but as the pseudoelement vi, which interpolates between two

rectangles.

start_animation(bg, i)
fade_in(0.5, i)
pause()

The animation begins very simply: initially only the background and the interactive object are

on the screen. The interactive object fades in and the animation pauses. While the animation is

paused, the presenter can interact with the diagram using the mouse and keyboard.

smooth(1.0, vi.x, 1)
enter(tx, bl)
fade_in(0.5, tx)
pause()

When the presenter hits the spacebar, the animation of this script continues. First the interactive

diagram shrinks down to fill just the right side of the display (note how this is done by changing

the x parameter of the pseudoelement controlling the interactive object’s position). After the object

has shrunk down to make room, the title and bulleted list are added to the slide. The title is initially

totally transparent; it is made visible with a fade. There is no need to fade in the bulleted list as it is

initially empty.

bl.add_item(0, ’de Casteljau construction’, 0.5)
pause()

bl.add_item(0, ’infinitely differentiable’, 0.5)
pause()

bl.add_item(0, ’global control’, 0.5)
pause()

bl.add_item(0, ’non-interpolating’, 0.5)

200

Each time the presenter presses the spacebar, another item is added to the bulleted list using a

half-second fade. The interactive object can be manipulated throughout this whole process.

return end_animation()
bezier_anim = bezier_anim()

The animation ends after the last bullet point is added. The last line calls the animation script

just defined, and assigns the animation object it returns to the variable bezier_anim. All three

objects – the diagram, the interactive object, and the animation object – can be passed to the test_

objects() function to be tested interactively:

test_objects(bezier, BezierDemo, bezier_anim)

Figure B.3 shows each of these objects running inside the tester.

201

(a) (b)

(c) (d)

Figure B.3 The three SLITHY objects created for the interactive Bézier applet. Part (a) shows the
parameterized diagram. The control point locations are taken from the test_info object. Part
(b) shows the interactive object, with control points specified using the mouse. Part (c) shows an
animation that includes the interactive object along with other animation elements like text and
a bulleted list. In the tester, interactive objects inside animations are not active, so the interac-
tive object is blank. When shown in a presentation, as in part (d), the object is fully interactive
throughout the animation.

202

BIBLIOGRAPHY

[1] Adobe. Adobe Illustrator. Computer software.

[2] Alias�Wavefront. Maya 1.0. Computer software.

[3] Brett Allen, Brian Curless, and Zoran Popović. Articulated body deformation from range scan

data. ACM Transactions on Graphics, 21(3):612–619, July 2002.

[4] Benjamin B. Bederson, James D. Hollan, Ken Perlin, Jonathon Meyer, David Bacon, and

George Furnas. Pad++: A zoomable graphical sketchpad for exploring alternative interface

physics. Journal of Visual Languages and Computing, 7:3–31, 1996.

[5] Mary Helen Briscoe. Preparing Scientific Illustrations. Springer-Verlag, New York, 1995.

[6] Marc H. Brown. Algorithm Animation. PhD thesis, Brown University, 1987.

[7] Marc H. Brown. Exploring algorithms using BALSA-II. IEEE Computer, 21(5):14–36, May

1988.

[8] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. Interactive

skeleton-driven dynamic deformations. ACM Transactions on Graphics, 21(3):586–593, July

2002.

203

[9] J. Caraballo. The Effect of Various Visual Display Modes of Selected Educational Objectives.

PhD thesis, The Pennsylvania State University, 1985.

[10] Lewis Carroll. The Annotated Alice. W. W. Norton & Company, 2000.

[11] Lih-Juan ChanLin. Animation to teach students of different knowledge levels. Journal of

Instructional Psychology, 25:166–175, 1998.

[12] Michael Chmilar and Brian Wyvill. A software architecture for integrated modeling and an-

imation. In R. A. Earnshaw and B. Wyvill, editors, New Advances in Computer Graphics:

Proceedings of CG International ’89, pages 257–276. Springer-Verlag, 1989.

[13] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin, and Richard Szeliski.

Video matting of complex scenes. ACM Transactions on Graphics, 21(3):243–248, July 2002.

[14] Yung-Yu Chuang, Douglas E. Zongker, Joel Hindorff, Brian Curless, David H. Salesin, and

Richard Szeliski. Environment matting extensions: Towards higher accuracy and real-time

capture. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual

Conference Series, pages 121–130, July 2000.

[15] Matthew J. Conway. Alice: Easy-to-Learn 3D Scripting for Novices. PhD thesis, University

of Virginia, 1997.

[16] Matthew J. Conway and Tommy Burnett et al. Alice: 3D interactive graphics programming

made easy. 9th Annual ACM Symposium on User-Interface Software and Technology, Novem-

ber 1996.

204

[17] Andrew Dillon, Cliff McKnight, and John Richardson. Space — the final chapter, or,

why physical representations are not semantic intentions. In C. McKnight, A. Dillon, and

J. Richardson, editors, Hypertext: A Psychological Perspective, chapter 8. Ellis Horwood,

1993.

[18] Francis M. Dwyer. Adapting visual illustrations for effective learning. Harvard Educational

Review, 37:250–263, 1967.

[19] Francis M. Dwyer. Effect of visual stimuli on varied learning objectives. Perceptual and Motor

Skills, 27:1067–1070, 1968.

[20] Francis M. Dwyer. The effect of stimulus variability on immediate and delayed retention. The

Journal of Experimental Education, 38:30–37, 1969.

[21] Francis M. Dwyer. Visual learning: An analysis by sex and grade. California Journal of

Educational Research, 22:170–176, 1971.

[22] S. Feiner, D. Salesin, and T. Banchoff. Dial: A diagramatic animation language. IEEE Com-

puter Graphics & Applications, 2:43–54, September 1982.

[23] E. L. Ferguson and Mary Hegarty. Learning with real machines of diagrams: Application of

knowledge to real-world problems. Cognition and Instruction, 13:129–160, 1995.

[24] Free Software Foundation. GNU Emacs. Computer software.

[25] Python Software Foundation. Python 2.2. http://www.python.org/.

205

[26] Robert Mills Gagné. The Conditions of Learning and Theory of Instruction. Holt, Rinehart,

and Winston, New York, 1985.

[27] Lance Good and Benjamin B. Bederson. Zoomable user interfaces as a medium for slide show

presentations. Information Visualization, 1(1):35–49, March 2002.

[28] Ronald J. Hackathorn. Anima II: a 3-D color animation system. In Computer Graphics (Pro-

ceedings of SIGGRAPH 77), volume 11, pages 54–64, San Jose, California, July 1977.

[29] Pat Hanrahan and David Sturman. Interactive animation of parametric models. The Visual

Computer, 1(4):260–266, December 1985.

[30] Edward Hodnett. Effective Presentations: How to Present Facts, Figures, and Ideas Success-

fully. Parker Publishing, New York, 1967.

[31] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-study of algorithm

visualization effectiveness. Journal of Visual Languages and Computing, 2002 (in press).

[32] John Lasseter. Principles of traditional animation applied to 3D computer animation. In Com-

puter Graphics (Proceedings of SIGGRAPH 87), volume 21, pages 35–44, July 1987.

[33] C. Karen Liu and Zoran Popović. Synthesis of complex dynamic character motion from simple

animations. ACM Transactions on Graphics, 21(3):408–416, July 2002.

[34] Macromedia. Flash MX. Commercial software package.

206

[35] Richard E. Mayer and Richard B. Anderson. Animations need narration: An experimental test

of a dual-coding hypothesis. Journal of Educational Psychology, 83(4):484–490, 1991.

[36] Richard E. Mayer and Richard B. Anderson. The instructive animation: Helping students

build connections between words and pictures in multimedia learning. Journal of Educational

Psychology, 84(4):444–452, 1992.

[37] Microsoft. PowerPoint 2000. Computer software.

[38] Microsoft. PowerPoint XP. Computer software.

[39] Julie Bauer Morrison, Barbara Tversky, and Mireille Betrancourt. Animation: Does it facilitate

learning? In Smart Graphics: Papers from the 2000 AAAI Symposium, pages 53–60, 2000.

[40] Walter Murch. In the Blink of an Eye: A Perspective on Film Editing. Silman-James Press,

Los Angeles, 1995.

[41] Tom Ngo, Doug Cutrell, Jenny Dana, Bruce Donald, Lorie Loeb, and Shunhui Zhu. Accessible

animation and customizable graphics via simplicial configuration modeling. In Proceedings

of SIGGRAPH 2000, pages 403–410, 2000.

[42] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[43] Allan Paivio. Mental Representations: A Dual Coding Approach. Oxford University Press,

New York, 1990.

207

[44] Ok-choon Park and Stuart S. Gittelman. Selective use of animation and feedback in computer-

based instruction. Educational Technology Research & Development, 40(4):27–38, 1992.

[45] Ok-choon Park and R. Hopkins. Instructional conditions for using visual displays: A review.

Instructional Science, 21:427–449, 1993.

[46] Ian Parker. Absolute PowerPoint: Can a software package edit our thoughts? The New Yorker,

2001.

[47] Ken Perlin and David Fox. Pad: An alternative approach to the computer interface. In Pro-

ceedings of SIGGRAPH 93, 1993.

[48] H. J. Peters and K. C. Daiker. Graphics and animation as instructional tools: A case study.

Pipeline, 7:11–13, 1982.

[49] S. K. Reed. Effects of computer graphics on improving estimates to algebra word problems.

JEP, 77:285–298, 1985.

[50] William T. Reeves, Eben F. Ostby, and Samuel J. Leffler. The Menv modelling and animation

environment. Journal of Visualization and Computer Animation, 1(1):33–40, August 1990.

[51] Craig W. Reynolds. Computer animation with scripts and actors. In Proc. SIGGRAPH 82,

pages 289–296, July 1982.

[52] Lloyd P. Rieber. The effects of visual grouping of textual and animated presentations on

intentional and incidental learning. Unpublished raw data.

208

[53] Lloyd P. Rieber. The effects of computer animated elaboration strategies and practice on

factual and application learning in an elementary science lesson. Journal of Educational Com-

puting, 5:431–444, 1989.

[54] Lloyd P. Rieber. Animation in computer-based instruction. Educational Technology Research

& Development, 38(1):77–86, 1990.

[55] Lloyd P. Rieber. Using computer animated graphics in science instruction with children. Jour-

nal of Educational Psychology, 82:135–140, 1990.

[56] John T. Stasko. Tango: A framework and system for algorithm animation. IEEE Computer,

23(9):27–39, September 1990.

[57] Paul S. Strauss. BAGS: The Brown Animation Generation System. PhD thesis, Brown Univer-

sity, May 1988. TR No. CS-88-22.

[58] S. V. Thompson and R. J. Riding. The effect of animated diagrams on the understanding of

a mathematical demonstration in 11- to 14-year-old pupils. British Journal of Educational

Psychology, 60:93–98, 1990.

[59] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,

Connecticut, 1983.

[60] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, Connecticut, 1990.

[61] Edward R. Tufte. Visual Explanations: Images and Quantites, Evidence and Narrative. Graph-

ics Press, Cheshire, Connecticut, 1997.

209

[62] Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancount. Animation: Can it facili-

tate? International Journal of Human Computer Studies, 57(4):247–262, October 2002.

[63] D. Eric Walters and Gale Climenson Walters. Scientists Must Speak: Bringing Presentations

to Life. Taylor & Francis, London, 2002.

[64] Douglas E. Zongker, Geraldine Wade, and David H. Salesin. Example-based hinting of true-

type fonts. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-

nual Conference Series, pages 411–416, July 2000.

[65] Douglas E. Zongker, Dawn M. Werner, Brian Curless, and David H. Salesin. Environment

matting and compositing. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings,

Annual Conference Series, pages 205–214, August 1999.

210

VITA

Douglas Earl Zongker was born in 1976 in Olathe, Kansas, where he grew up. He spent four

years at Michigan State University in East Lansing, Michigan, obtaining a BS degree in computer

science in 1996. He moved to Seattle, Washington, to spend seven years at the University of Wash-

ington, receiving an MS degree in computer science in 1998 followed by a PhD in 2003. He will be

heading to Mountain View, California, to join the engineering staff at Google.

