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Abstract

Scene Reconstruction and Visualization from Internet Photo Collections

Keith N. Snavely

Chair of the Supervisory Committee:
Professor Steven M. Seitz

Computer Science & Engineering

The Internet is becoming an unprecedented source of visual information, with billions of images

instantly accessible through image search engines such as Google Images and Flickr. These include

thousands of photographs of virtually every famous place, taken from a multitude of viewpoints, at

many different times of day, and under a variety of weather conditions. This thesis addresses the

problem of leveraging such photos to create new 3D interfaces for virtually exploring our world.

One key challenge is that recreating 3D scenes from photo collections requires knowing where

each photo was taken. This thesis introduces new computer vision techniques that robustly recover

such information from photo collections without requiring GPS or other instrumentation. These

methods are the first to be demonstrated on Internet imagery, and show that 3D reconstruction

techniques can be successfully applied to this rich, largely untapped resource. For this problem

scale is a particular concern, as Internet collections can be extremely large. I introduce an efficient

reconstruction algorithm that selects a small skeletal set of images as a preprocess. This approach

can reduce reconstruction time by an order of magnitude with little or no loss in completeness or

accuracy.

A second challenge is to build interfaces that take these reconstructions and provide effective

scene visualizations. Towards this end, I describe two new 3D user interfaces. Photo Tourism is a

3D photo browser with new geometric controls for moving between photos. These include zooming

in to find details, zooming out for more context, and selecting an image region to find photos of an

object. The second interface, Pathfinder, takes advantage of the fact that people tend to take photos





of interesting views and along interesting paths. Pathfinder creates navigation controls tailored to

each location by analyzing the distribution of photos to discover such characteristic views and paths.

These controls make it easy to find and explore the important parts of each scene.

Together these techniques enable the automatic creation of 3D experiences for famous sites. A

user simply enters relevant keywords and the system automatically downloads images, reconstructs

the site, derives navigation controls, and provides an immersive interface.
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Chapter 1

INTRODUCTION

A photograph is a window into the world. A good photo can depict a place or an event in

vivid richness and detail, and can give the viewer a taste of being there. However, a single photo

has a fixed boundary in space and time, and, unlike with a real window, we cannot simply adjust

our perspective to see what is beyond the frame. Part of the art of photography is working within

these limitations to create works of beauty, by capturing just the right moment with just the right

composition. But photographs are taken for all sorts of reasons in addition to purely artistic ones.

Photos can document and communicate information about people, places, and things in our world,

and are widely used in commercial advertising, classified advertisements, and tourism. At a more

personal level, photos are used to capture moments in our lives, so that we can later relive memories

and share stories with others. For these kinds of applications, where the aim is to capture and convey

information, the limitations of a photograph are more significant. For instance, it can be difficult or

impossible to give a complete understanding of a large, complex space—a house, Trafalgar Square,

the Louvre, the Grand Canyon, the entire city of Rome—or to document your own visit to one of

these places, with a single photo.

Of course, there is no reason to limit oneself to a single photo. This may have been the case in

the early days of photography, when taking a photo involved unwieldy equipment and a painstaking

development process, but the invention of film, pioneered by George Eastman in the last decades of

the 19th century, led to cheap, easy-to-use cameras and the advent of the snapshot. The past fifteen

years have seen another revolution in photography, as digital cameras have steadily replaced film,

making it easy and inexpensive for a single person to take thousands of photos at a time. The digital

age has also radically changed the way in which we store, view, and share photos. Where we once

stuffed shoeboxes and photo albums with hundreds of photos, we can now store tens of thousands of

photos on a hard drive, and organize them on a computer with tools like Picasa [111] and iPhoto [71].

During the same time, the growth of the Internet has taken this trend even further. We can now store
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Figure 1.1: The first two pages of results of a Flickr search for “Trafalgar Square.”

virtually unlimited numbers of photos online on sites such as Flickr [47], SmugMug [135], Picasa

Web Albums [112], and Facebook [43]. Not only do these sites give us access to our photos from

anywhere, but they also give us access to everyone’s photos, compounding the number of photos we

have at our fingertips many times over.

Thus, if we are selling our house and decide to advertise it online, we need not use just a single

photo—why not take a hundred? Similarly, if we want to understand what it is like to experience

a famous place like Trafalgar Square, we can go to Flickr, search for “Trafalgar Square,” and find

tens of thousands of photos captured from every imaginable viewpoint, by thousands of different

people, under many different weather conditions, at many times of day and night, and during all

times of the year. We can also find photos of the Square during different events: protests (search

for “Trafalgar Square protest”), a visit by the Sultan’s Elephant (“Trafalgar Square elephant”), or

Christmas celebrations (“Trafalgar Square Christmas”). We can find similarly rich collections of

photos for almost every famous world site. The Internet, with its billions and billions of photos,
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represents an unprecedented visual record of our world.

How can we use these vast, rich photo collections to effectively communicate the experience

of being at a place—to give someone the ability to virtually move around and explore a famous

landmark, to see what it looks like at sunrise and sunset or at night, to revisit different events; in

short, to convey a real understanding of the scene? Unfortunately, the availability of vast image

collections and the ability to capture them are alone not enough to create these kinds of experiences.

In fact, with current tools, the more photos there are, the harder it often is to make sense of them.

Most photo browsing tools treat photos as independent views of events or scenes, perhaps grouped

together or labeled in meaningful ways, but otherwise visually disconnected. Such tools do not

attempt to exploit or convey the rich common structure that exists among photos. For instance, the

Trafalgar Square photos from Flickr shown in Figure 1.1 are arranged in a grid of thumbnails, the

default way of presenting search results in Flickr, and a nearly ubiquitous display idiom in photo

browsing software. This kind of presentation does not facilitate the understanding of the space as a

whole. Nor does it really even scale well as a way of simply displaying photos. Only about twenty-

five thumbnails are shown on a page, so to see all the photos we would have to view hundreds of

pages of results. Finally, the fact that these photos are submitted by many different people is a source

of richness and variety, but also a source of disorder. The photos are largely unstructured, and not

presented in a particularly meaningful order. Certain tasks, such as finding a specific viewpoint or a

detail of a particular object, can be quite difficult.

In contrast, several commercial software applications have started to present large photo collec-

tions of urban cityscapes organized in a much more structured way, making it much easier to explore

the underlying scene [58, 159, 41]. For instance, Google Street View simulates the experience of

walking down the streets of major cities by displaying omnidirectional photos taken at intervals

along every city street, as shown in Figure 1.2. Such web applications, combining the high visual

fidelity of photos with simplified 3D navigation controls, are useful for recreating the experience of,

say, walking around the Haight Ashbury district of San Francisco. However, capturing these expe-

riences typically requires special camera hardware, careful attention to the photo capture process,

and time-consuming post-processing and quality control [154], hence they are not easy for casual

photographers to create (in fact, Everyscape, a company with a related application, recommends

special training courses and equipment to people who want to create their own content [42]). Part
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Figure 1.2: Screenshot from Google’s Street View, showing an intersection in downtown San Fran-
cisco. By clicking on the arrows, a user can virtually move through the city streets.

of the difficulty arises from the need for accurate location information for every photo to put each

in its proper context.

Is it possible to apply these kinds of 3D scene visualization tools to personal or Internet photo

collections? If so, we could not only create 3D experiences for all the world’s sites from existing im-

agery, but we could also potentially create much more powerful tools for browsing photos of places.

Unfortunately, the vast majority of these casually acquired collections lack location information, a

prerequisite for assembling the photos into a coherent whole.

My solution to this problem is to turn to automatic computer vision techniques. Researchers

in the field of multi-view geometry have made great progress towards automatic recovery of fine-

grained 3D location information for photo collections through the analysis of the photos them-

selves [68]. However, most previous systems have focused on reconstructing controlled image col-

lections: sequences that are well-ordered in time (such as video) and which consist of images taken

under similar conditions and with the same camera. Applying computer vision techniques to the

large, fundamentally unordered collections typical of the Internet—taken by many different people,

under diverse conditions, and with myriad cameras—raises many new challenges.
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Furthermore, adding location information to photo collections is by itself insufficient for scene

visualization: we also need intuitive, interactive interfaces for exploring these scenes. There are

several challenges faced in the design of such interfaces. First, unlike with Google Street View,

where photos are taken at regular intervals, personal or Internet collections are typically an un-

structured soup of photos. Nevertheless, the navigation controls should still be intuitive and exhibit

regularity. Second, such controls should make it easy to find and explore the interesting parts of a

scene, particularly for tourist sites.

1.1 Contributions

There are two fundamental research challenges identified above: (1) the computer vision challenge

of reconstructing 3D information from Internet photo collections, and (2) the computer graphics

challenge of using this 3D information to enable new ways to visualize and explore famous sites.

In this thesis, I present a range of new algorithms and techniques in both vision and graphics that

address each of these challenges.

Reconstruction of Internet photo collections. To address the computer vision challenge, I have

developed new 3D reconstruction algorithms that operate on large, diverse image collections. These

algorithms recover both camera pose and scene geometry and demonstrate, for the first time, that

3D geometry can be reliably recovered from photos downloaded from the Internet using keyword

search. Hence, they enable reconstruction of the world’s famous sites from existing imagery on the

web. A few example reconstructions are shown in Figure 1.3, and many more appear in Chapters 3

and 4.

Two major issues faced in handling Internet photo collections are robustness and scale. We

desire computer vision techniques that work reliably across a wide variety of scenes and photo

collections, and on collections with large numbers of photos. Robustness is a concern because

there are often ambiguities and degeneracies that crop up in multi-view geometry, and because

there is no perfect algorithm for finding correspondences between images. These problems are

heightened when handling unstructured collections, which lack prior information on the structure

of the image sequence. Chapter 3 describes a robust reconstruction pipeline that recovers scene and

camera geometry incrementally, carefully building a reconstruction a few images at a time. The
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Figure 1.3: 3D reconstructions from Internet photo collections. My computer vision system takes
large collections of photos from the Internet (sample images shown at top) and automatically recon-
structs 3D geometry (bottom). The geometry includes camera information—where each photo was
taken and which direction it was looking—as well as a point cloud of the scene. In these images of
reconstructions the recovered cameras are shown as black wireframe pyramids, and the scene is ren-
dered as a point cloud. From left to right: the Statue of Liberty (reconstructed from 388 photos from
Flickr), Half Dome in Yosemite National Park (reconstructed from 678 photos), and the Colosseum
in Rome (reconstructed from 1,135 photos).

pipeline starts with a pair of images that exhibit strong geometry, giving the reconstruction a solid

foundation, then conservatively adds new information until the entire scene model is reconstructed. I

demonstrate this pipeline on a number of different photo collections, including urban environments,

mountains, and indoor scenes. This system has been used to reconstruct well over one hundred

photo collections, by myself and other researchers. In addition, Photosynth [109], a commercial

photo reconstruction system released by Microsoft and based largely on the work described here,

has been applied to thousands of different photo collections by many users.

Chapter 4 addresses the issue of scalability by introducing skeletal sets, an approach for im-

proving the efficiency of reconstruction by reducing the amount of redundant information. This

technique represents the information present in a photo collection as a graph, and computes a much

sparser skeletal subgraph that preserves the overall structure of the graph and bounds the amount
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Figure 1.4: Photo Tourism. A screenshot from the Photo Tourism interface, showing a reconstruc-
tion of the Trevi Fountain. Information about the currently displayed photo, as well as geometric
search tools for finding related photos, appear in panes on the left and bottom of the screen.

of information lost. The hard computational effort of scene reconstruction is then applied only to

the skeletal subgraph; the remaining images can be added in later using simple pose estimation

techniques. The skeletal sets algorithm reconstructs scenes using many fewer images and reduces

reconstruction time by an order of magnitude for large image collections, with little or no loss in

reconstruction quality.

Visualization of 3D photo collections and scenes. This thesis also describes computer graphics

and interaction techniques for taking these reconstructed scenes and creating new ways to browse

photo collections and to visualize the world. For this problem, two primary concerns are (1) how

to provide the user with effective navigation controls for exploring scenes and (2) how to display or

render scenes using the imagery available in large photo collections. I have designed two interfaces

that address these challenges in different ways.

Chapter 5 describes Photo Tourism, an immersive 3D photo browser. Photo Tourism situates the

user in the 3D scene among the photo collection, as shown in Figure 1.4. The interface provides

new geometric controls for moving through the collection: users can zoom in and find details of

a given photo, zoom out to see more context, select a region of an image to find a good photo of

a specific object, and move in different directions (e.g., to the left or right) to view more images.
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(a) (b) (c)

Figure 1.5: Finding paths through a photo collection. (a) Several Flickr images of the Statue of
Liberty from a collection of 388 input photos. (b) Reconstructed camera viewpoints for this collec-
tion, revealing two clear orbits, shown superimposed on a satellite view. (c) A screenshot from the
Pathfinder user interface. The two orbits are shown to the user as thumbnails at the bottom of the
screen. Clicking on a thumbnail moves the user on an automatic path to the selected control.

The interface also provides powerful annotation features. A user can label an object in one photo

and have that label propagate to all other images in the collection. On the rendering side, I intro-

duce new techniques for creating attractive 3D transitions between photos and generating stabilized

slideshows that make it easier to see how a scene changes over time.

Chapter 6 describes the second system, Pathfinder. While Photo Tourism considers the prob-

lem of photo browsing, Pathfinder takes advantage of large Internet photo collections to create an

enhanced interface for exploring the scenes themselves. These photo collections, captured by many

people, are an extremely valuable source of information for determining good controls for navigat-

ing through a scene, as they represent samples of how people actually experienced the scene, where

they stood, and what views they found interesting. For instance, Figure 1.5(b) shows a reconstructed

collection of Flickr photos of the Statue of Liberty. Even if we knew nothing about the structure or

content of this scene, the photos are a powerful indicator of the presence of an interesting object,

as they are almost all trained on a single focal point (the center of the statue), and are organized

into orbits around that point. These orbits are natural controls for exploring the scene. Pathfinder

analyzes the distribution of reconstructed photos to derive such controls, and presents them to the

user in a fluid, game-like navigation interface, shown in Figure 1.5(c). Pathfinder also introduces a

new rendering technique that continuously selects and warps input photos as the user moves through

a scene.
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Taken as a whole system, my work allows a user to simply specify a search term (“Trevi Foun-

tain,” “Notre Dame Cathedral”) and get back an immersive 3D experience of that place. The system

automatically downloads related photos from sites like Flickr, creates a 3D reconstruction, computes

a set of custom navigation controls, and provides these controls to the user in an interactive scene

browser.

This thesis is divided into two main parts. Part I describes the new computer vision algorithms

required to reconstruct 3D geometry from large Internet photo collections. Part II describes the

computer graphics, 3D navigation, and user interface innovations that enable new ways to explore

photo collections and scenes in 3D. Chapter 7 discusses several directions for future work. Before

describing the new algorithms and techniques, I first review related work in computer vision and

computer graphics in Chapter 2.
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Chapter 2

RELATED WORK

The work described in this thesis ultimately has two intertwined goals: (1) to make it easier

to browse and explore large collections of photos related by place, and (2) to create new ways

of virtually exploring real-world scenes through image collections, a version of the image-based

rendering problem. Both of these goals rely on the ability to reconstruct geometry automatically

from large, unstructured image collections. In this chapter, I review related work on each of these

problems: 3D reconstruction from multiple images (Section 2.1), photo browsing (Section 2.2), and

image-based rendering (Section 2.3).

2.1 Reconstructing 3D geometry from multiple images

Multi-view geometry, or the recovery of 3D information from multiple images of a scene, has long

been an active research area in computer vision and graphics, and has inspired a wide variety of

different approaches and algorithms. In computer graphics, the aim is often to acquire geome-

try suitable for high-quality rendering in a traditional graphics pipeline, i.e. closed, polygonal 3D

models, such as those shown in Figure 2.1, with detailed appearance information (texture maps,

bi-directional reflectance distribution functions, etc.). This problem is known as image-based mod-

eling. Image-based modeling techniques tend to be manual or semi-automatic, as graphics appli-

cations often demand a level of photorealism that requires fine control over the quality of the 3D

models.

In contrast, I show that sparse scene geometry, recovered completely automatically from a photo

collection, is often sufficient to produce attractive and comprehensible scene renderings and tran-

sitions between photographs. In my approach, the key problem is to robustly and efficiently—

and completely automatically—recover camera and sparse scene geometry from large, unorganized

photo collections.
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(a) (b) (c)

Figure 2.1: Traditional image-based modeling. Images from Façade, a semi-automatic image-based
modeling system [32]. (a) Images are annotated with lines indicating geometric structures, and
(b) these annotations are used to recover a polygonal 3D model. (c) The model (and associated
appearance information) can then be used to render new views of the scene.

2.1.1 Structure from motion

The precursor to modern multi-view geometry techniques is the field of photogrammetry—the sci-

ence of taking 3D measurements of the world through photographs—which began to develop soon

after the advent of photography.1 The key problem in photogrammetry is to determine the 3D lo-

cation of a point in a scene from multiple photographs taken from different vantage points. This

problem can be solved using triangulation if the pose (the position and orientation in the world) of

each photo is known. Conversely, if we have a set of points with known 3D coordinates, the pose

of photos that observe those points can be determined using a process known as resectioning2 or

camera pose estimation. But what if we know neither the camera poses nor the point coordinates?

Estimating both at once seems like a chicken-and-egg problem. The traditional photogrammetric

1Although an important technique in photogrammetry, triangulation, has been known since antiquity.

2The word “resection” is by analogy with computing the “intersection” of rays. To triangulate a 3D point, we can
observe it from two or more known locations, and intersect the appropriate rays. Conversely, another way to find the
coordinates of a 3D point is to stand at that point and observe two or more points with known coordinates. We then
resect the rays to the known points to find our location. This is a simplified form of camera pose estimation.
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solution to this problem is to place a set of reference fiducial markers at known 3D positions in

the scene, manually identify them in each image, and use these to recover the poses of the cam-

eras through resectioning. Once the camera poses are known, additional unknown points can be

identified in each image and triangulated.

Over time, the requirements of this traditional approach have steadily been relaxed, due to ad-

vances in both computer vision and photogrammetry. Correspondences between image points can

often be computed completely automatically without the need for fiducials, and algorithms have

been developed for computing camera pose and scene structure simultaneously, without requiring

either to be known a priori. This is known in computer vision as the structure from motion (SfM)

problem.

The simplest version of the SfM problem, involving just two images, has been extensively stud-

ied. Nearly one hundred years ago, Kruppa proved that for two views with five point correspon-

dences, the camera poses and 3D point locations can be determined (up to a similarity transform)

[81], and based on this result several five-point algorithms for estimating two-view geometry have

recently been developed [102, 86]. The mathematical and algorithmic aspects of the three-view

problem have also received a great deal of attention [68]. For larger numbers of images, however,

the problem becomes more difficult. For some specific scenarios the multi-image SfM problem can

be solved exactly, but for the general case no such closed-form solutions exist, and a wide variety of

different algorithms have been proposed.

One common multi-image scenario is that the images are given in a particular sequence, such

as the frames of a video or images captured by a robot moving through a building. Assuming

that one can match corresponding points between consecutive images, a simple way to reconstruct

such a sequence is to use the five-point algorithm to recover the poses of the first two frames and

triangulate their common points, then resection the next frame, triangulate any new points, and

repeat: a form of visual dead reckoning. With well-calibrated cameras, this technique can perform

well, particularly on short image sequences [102]. However, the main problem with this approach is

that errors in pose estimates will accumulate over time. Better results can be obtained by propagating

information forwards and backwards within a window of frames, e.g., through Kalman filtering and

smoothing [94].

These local techniques are very efficient, and work well for camera trajectories that are simple,
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i.e., that do not double-back or form loops. For complex paths, much more accurate geometry can be

obtained by using global optimization to solve for all the camera poses and point positions at once.

In certain specific cases, this can be done in closed form using factorization. Originally proposed by

Tomasi and Kanade [148], factorization methods are based on the observation that for orthographic

cameras, the 2n×m observation matrixW , formed by stacking rows of zero-mean observations for

each camera, can be factored into the product of a 2n × 3 matrix R whose rows represent camera

rotations, and a 3 ×m matrix S whose columns are the 3D positions of the points. The factoriza-

tion W = RS can be computed using singular-value decomposition. Factorization methods have

been extended to more general camera models, such as paraperspective [114] and perspective cam-

eras [141, 23], but have a number of drawbacks. First, for perspective camera models, factorization

methods minimize an algebraic error function with no direct geometric interpretation. Second, in or-

der to directly factor the observation matrix W , all of its entries must be known, i.e., all points must

be visible in all images. In most real-world situations, some—indeed, most—of the observations

are unknown, due to occlusions or missing correspondences. When there is missing data, no known

closed-form solution to factorization exists, although several iterative schemes have been proposed

[148, 67]. Finally, it is difficult to incorporate priors and robust error functions into factorization

methods [16], extensions which can be critical for handling noisy correspondences contaminated

with outliers.

Bundle adjustment [150] is an alternative to factorization that can easily handle missing data

and accommodate priors and robust objective functions. Bundle adjustment3 seeks to minimize a

geometric cost function (e.g., the sum of squared reprojection errors) by jointly optimizing both the

camera and point parameters using non-linear least squares [143]. Given a known measurement

noise distribution, bundle adjustment is the statistically correct way to find the parameters, and is

regarded as the gold standard for performing optimal 3D reconstruction [68]. However, bundle

adjustment has no direct solution and involves minimizing a non-linear cost function with poten-

tially many local minima. Therefore, bundle adjustment requires careful initialization, which can be

difficult to obtain.

Another disadvantage to bundle adjustment is that it can be quite slow for scenes with large num-

3The name “bundle adjustment” stems from the idea of adjusting “bundles” of light rays from scene points to camera
centers to align them with the observations.
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bers of cameras and points. While bundle adjustment problems have a particular form that makes

them amenable to sparse matrix techniques [143], even approaches that take advantage of sparsity

(e.g., [15] and [89]) can become very slow when the number of cameras is large. Triggs et al.found

empirically that sparse bundle adjustment methods can have approximately cubic complexity in the

number of cameras [150].

Faster SfM methods based on bundle adjustment have been designed for ordered image se-

quences, such as video, where several simplifying assumptions can be made. For instance, a com-

mon assumption is that the information gained by adding a new video frame only affects a small

number of frames immediately preceding the new frame. As a result, only a constant number of

camera parameters, and the points they observe, must be adjusted whenever a new frame is added.

This assumption is the basis for several real-time systems for SfM from video [116, 103, 25, 115].

Engels et al. [39] analyzed the inherent tradeoff between speed and accuracy for this type of ap-

proach when considering how many frames to optimize, and Steedly and Essa proposed a more

principled algorithm that considers the flow of new information in a system when determining the

set of parameters to update [140].

Other bottom-up systems improve performance using a divide-and-conquer approach. In the

work of Fitzgibbon and Zisserman [46], a video is divided into small, three frame subsequences,

which are reconstructed independently, then merged into progressively larger reconstructions. Nistér

[101] generalized this approach to partition the video into contiguous subsequences of irregular

length, resulting in better-conditioned reconstructions. Steedly et al. [139] proposed a technique

for refining an initial reconstruction by segmenting it into clusters using spectral partitioning, then

treating each cluster as a single rigid body during optimization, dramatically decreasing the number

of parameters to estimate. Ni et al., also use segmentation to enable a fast, out-of-core bundle

adjustment technique [100].

These bottom-up techniques are effective because of the spatial continuity of video; dividing

a video into contiguous subsequences is a reasonable way to partition the frames. Unfortunately,

photo collections, especially those found through Internet search, often have much less structure

than video sequences. Typically, search results are presented in order of relevance, or other criteria,

such as date, which have little to do with spatial continuity. It can therefore be difficult to apply fast

SfM methods designed for video to these kinds of collections. Recently, a few researchers, including
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Schaffalizky and Zisserman [124], Brown and Lowe [15], and Vergauwen and Van Gool [153] have

considered the problem of applying SfM to such unordered photo collections. Martinec et al. [91],

presented a way to use estimates of relative pose between pairs of cameras to robustly estimate a

set of globally consistent camera poses. However, these techniques have largely been demonstrated

on relatively small and controlled sequences of photos captured by a single person. Internet photo

collections can be orders of magnitude larger than collections that have been considered previously,

and have fundamentally different properties due to the distributed nature of their capture. In my

work, I demonstrate new algorithms that can robustly reconstruct Internet photo collections of up to

several thousand images.

2.2 Photo browsing and visualization

Over the past few years, many researchers have sought better computational tools for organizing,

visualizing, and searching through large collections of digital photos. Most have focused on large

personal photo collections, but others have considered the problem of Internet collections. In this

section, I survey previous work in the area of photo browsing and visualization.

Large-scale collections of media can be very challenging to interact with and to visualize. A

person can easy accumulate thousands of photos, far more than can be viewed in a comprehensible

way all at once. As the volume of media increases, tasks such as getting an overview of a collection,

organizing or structuring a collection, finding a specific photo, or finding a set of photos with certain

characteristics become more difficult and require more sophisticated tools. Many proposed tools in

the photo browsing literature can be decomposed into two components: (1) a method to filter or

sort the images and (2) a method to display and interact with the results of the sorting and filtering

operations. Many of these sorting and display techniques have found their way into commercial

photo browsers, such as Google’s Picasa [111] and Apple’s iPhoto [71].

Sorting and filtering photos. Many approaches to sorting and filtering focus on either (a) making

it easy to organize the photos into meaningful structures or (b) creating better tools for photo search.

For many people, the default method for organizing photos is to use the file system to arrange the

photos in a directory tree, where photos in each node can be sorted by attributes such as time. Some

tools, such as the PhotoTOC system [113], attempt to automatically create a meaningful hierarchy
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by clustering photos into events based on time stamps. Girgensohn et al. [53] also cluster photos

into events, but provide multiple, parallel hierarchies based on the people and places featured in the

images.

Other work addresses the problem of organization through search. The PhotoFinder system [75]

represents the photo set as a database and presents an intuitive interface for formulating complex

database queries (involving attributes such as time, people, location, and rating). Tagging, or anno-

tating photos with text, has also emerged as a useful tool for managing personal photo collections

[82]. Tags are a flexible way to organize photos in a way that makes sense to a particular user,

without enforcing a strict hierarchical structure; tags are also easily searchable. Several researchers

have sought easy ways to apply tags to large numbers of personal photos, for instance through

drag-and-drop interfaces [129], automatic tagging based on contextual information [29], or efficient

selection mechanisms [37]. Others have addressed the problem of tagging Internet photos, through

collaborative tools such as LabelMe [123] or games such as the ESP Game [155]. Tagging is also

an important capability of many Internet photo-sharing sites, including Flickr [47] and Picasa Web

Albums [112].

Displaying photos. Other research has focused on the display of large photo collections. Most

photo browsing software displays photos using grids of thumbnails or slideshows, which do not

always scale well. Several other 2D display techniques have been proposed, such as calendar and

scatter plot views [75], alternative thumbnail layouts [9], and zoomable browsers including Pho-

toMesa [9] and Seadragon [127]. The MediaBrowser [37] also has a timeline mode where photos

are displayed in 3D stacks.

Using image content. Another line of research has looked at using the content of photos to im-

prove the search and display of image collections. While a complete survey of content-based search

tools is outside the scope of this thesis, one particularly relevant project is the Video Google system

[133], which enables a user to find all the frames of a video in which a certain object appears by

selecting it in a single frame.
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Using location information. More relevant to my research is work that uses location information

to assist in organizing, querying, and displaying photo collections. In most previous work, absolute

location, obtained through GPS or manual tagging, is assumed to be provided in advance for each

photo; such photos are referred to as being geo-referenced or geo-tagged. Some approaches have

used location to aid in clustering photos in a personal collection. For instance, Naaman et al. [98]

recognize that an event (such as a birthday party) has an extent in both space and time, and present

a system, Photocompas, that uses time and location to compute better event clusterings.

In the LOCALE project [97], Naaman et al. explore how location can be used to enable au-

tomatic tagging of photos. LOCALE uses a database of tagged, geo-referenced photos to transfer

tags to new geo-referenced photos based on proximity. Large Internet photo collections have also

been used to infer semantic information about scenes. For instance, several researchers have used

clustering to segment collections of tagged photos into separate places (e.g., “Coit Tower” and

“Transamerica Building”), and then infer tags describing each place, using location information

alone [72], visual content [130, 73], or both [77, 118]. These systems also select a set of summary

images useful for getting a quick overview of a collection.

Others have integrated maps into tools for interacting with geo-tagged photos. One such project

is GTWeb [138], which produces a webpage summary of a trip by merging time-stamped photos

with information from a GPS track, a digital map, and a landmark database. In the domain of Internet

photo collections, the World-Wide Media eXchange (WWMX) [149] allows users to share geo-

referenced photos and search for and view photos on a map. Large-scale commercial applications,

such as Flickr [47] and Google Earth [57], have recently adopted similar interfaces for visualizing

geo-referenced photos. Screenshots from WWMX and Flickr Maps are shown in Figure 2.2.

Relatively little work has been done on immersive photo browsing tools, where photos are situ-

ated directly in a 3D environment. This is perhaps partly because in order for such tools to be most

effective, each photo should be localized well enough to be visually aligned with its subject to within

a few pixels (i.e., pixel-accurate camera pose is needed), which requires more positional accuracy

than can be reliably obtained from GPS or manual methods. (In addition, such applications require

accurate orientation information, requiring an electronic compass or similar device.) Nevertheless,

a few projects have taken steps towards immersion. Realityflythrough [93] is a method for browsing

a live scene using a set of location-aware video cameras. A user can move around the scene by
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Figure 2.2: Two 2D interfaces for browsing photos with location. Left: the World-Wide Media
eXchange (WWMX); right: Flickr Maps

selecting different videos, and smooth transitions provide context when moving from one video to

another. While Realityflythrough allows a user to explore the scene by selecting among video feeds,

the work of Kadobayashi and Tanaka [74] enables the opposite functionality: a user moves a virtual

camera through a 3D model of a real scene (such as a archaelogical site), then queries an image

database to find photos taken near the current virtual camera position.

Another tool, PhotoWalker [146], allows a user to create a walkthrough of a scene from a col-

lection of photos by manually linking and specifying morphs between pairs of photos. When a

user is viewing the collection, links are displayed as highlighted regions superimposed on an image;

clicking on one of these regions activates a morph to the next photo. This tool can give the illusion

of a 3D world, although only 2D morphs are used. Similarly, Sivic et al. use 2D morphs between

images unrelated by a specific place (for instance, generic city images) to create the illusion of a

large virtual space [132]. Other projects have made more explicit use of 3D information, including

the 4D Cities project [125], which has the goal of creating an interactive 4D model of the city of

Atlanta from a collection of historical and modern photographs; and Photosynth [109], a web-based

tool for creating and exploring 3D photo collections, which is based on the Photo Tourism project

described in Chapter 5.

These immersive 3D (or pseudo-3D) photo browsers use aspects of 3D navigation, but arguably

do so with the aim of making it easier to browse a photo or media collection. There is also a large
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Figure 2.3: Comparison of a computer-generated rendering with a photograph. Right: a photograph
of the Paris Las Vegas casino. Left: a screenshot from Microsoft’s Virtual Earth 3D from roughly
the same viewpoint. While these views show (mostly) the same objects, the photograph is more
vivid and lifelike, capturing the ripples and reflections in the water, sharper detail in the buildings,
and realistic shadows and other lighting effects. There are other, more subtle differences as well.
For instance, in the photograph, the color of the sky at the horizon is different from the color closer
to the zenith.

body of work that starts from the opposite direction, where the goal is to recreate virtual 3D versions

of real-world scenes using collections of images or video. This approach to capturing and displaying

the world is known as image-based rendering.

2.3 Image-based rendering

A primary goal of computer graphics is to recreate the experience of being there, giving a user a

sense of being in another place, whether it be a real-world location (such as the Taj Mahal), or a

fictional world (Middle Earth). Two critical aspects of this problem are (a) rendering, or visually

depicting the scene, and (b) navigation, or the mechanisms by which the user moves around in and

explores the scene.

Approaches to rendering and navigation depend fundamentally on the way in which the virtual

scene is created and represented. The traditional computer graphics approach to scene representa-
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tion, dominant in 3D computer animation and games, is to explicitly model the 3D geometry and

appearance of the scene in full detail. However, creating good 3D models often requires difficult,

time-consuming manual effort, despite the progress in automatic and semi-automatic modeling de-

scribed in Section 2.1. Furthermore, there can be a lack of verisimilitude in renderings produced

using 3D models, especially in real-time applications. Figure 2.3 shows a Virtual Earth [88] ren-

dering of the Paris Las Vegas casino juxtaposed with a photograph taken from the same viewpoint.

While the rendering is quite good, and similar in many respects to the photo, it is still possible to

tell the two apart.

Another very promising approach to creating the experience of “being there” involves capturing

the appearance of the desired scene through photos or video, then replaying or resampling the cap-

tured images in an interactive viewer. This approach is known as image-based rendering (IBR) and

has inspired a large body of research over the past fifteen years. This section reviews prior work in

IBR and related fields.

Moviemaps. A forerunner to the field of image-based rendering was Andrew Lippman’s seminal

Aspen Moviemap project from the late 1970’s [87]. The Aspen Moviemap used a set of images taken

throughout the town of Aspen, Colorado and stored on laserdisc to create an interactive “surrogate

travel” application. The goal of the project was, in the words of Lippman, “to create so immersive

and realistic a ‘first visit’ that newcomers would literally feel at home, or that they had been there

before.” [99]

To capture the town on laserdisc, a crew drove a car mounted with cameras through every street

in town, taking photos every ten feet. The cameras were arranged so as to capture views in all

directions. The resulting data was then processed by hand to turn it into an immersive, interactive

travel experience, where a user could virtually drive down the streets of Aspen. The interface was

relatively simple yet intuitive: controls for moving forward and turning were shown on a touchscreen

display (see Figure 2.4). The moviemap was not only an effective new medium in itself but was also

“conceived of as a backbone on which a comprehensive audio-visual survey of Aspen could be

spatially organized.” [99] Various other media, including still images of every building in town

(shot in both summer and winter), historical photos, documentary video, and sound, were accessible

through hyperlinks from relevant parts of the moviemap.
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Figure 2.4: Screenshots from the Aspen Moviemap. Left: the interface for virtually driving through
the city. Right: a few still photographs from different seasons hyperlinked to the moviemap.

Although the Aspen Moviemap was an effective means of virtual travel, it required a substantial

amount of time to capture and process—more than a year of effort by a “small squadron” of at least

a dozen people [99]. Only recently have companies, such as Microsoft and Google, begun to create

such surrogate travel applications on a large scale. Though some advances, such as GPS, have made

the process easier, the preparation, time, and resources required to create such experiences is still

significant.

The Aspen Moviemap simply plays back existing video frames based on a user’s actions, re-

sulting in an experience where the user moves discretely between views. Much of the more recent

work in image-based rendering has focused on generating a continuum of new views from a discrete

database of existing images. These techniques have been applied to different scenarios of varying

complexity. The QuickTime VR system [21] renders new views of a scene from a fixed position, but

where the camera can rotate and zoom freely; recent work has extended this idea to video panora-

mas [3], multi-viewpoint panoramas [2], and gigapixel images [79]. Approaches based on explicit

sampling of a 4D light field [84, 59], allow for free motion of a camera within a volume of view-

points. When per-pixel scene geometry or correspondence is known, methods based on warping

and combining images can be used to generate in-between views [20, 95]. An alternative approach,

which also uses scene geometry, is view-dependent texture mapping [32], in which polygons in the

scene are texture mapped with several weighted textures derived from a set of captured images. The
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weights are based on how close the current viewpoint is to each captured view. Finally, unstructured

lumigraph rendering [17] generalizes many of these previous methods with a framework that can

handle a variety of arrangements of image samples, with or without known geometry.

Researchers have also developed techniques for creating walkthroughs of large, complex spaces.

Arbeeny and Silver [6] created a system for registering video of a scene walkthrough with a 3D

model, allowing for spatial navigation of the video stream. Plenoptic stitching [4] is a method

for generating novel views of a large-scale scene by resampling frames of omnidirectional video

captured on a rough 2D grid throughout the space, allowing a user to walk anywhere within the

captured scene. Other approaches, including Taylor’s VideoPlus project [147] and Google’s Street

View [58], have revisited the moviemap’s “nearest neighbor” approach for resampling images, but

use omnidirectional images to allow for continuous panning and tilting of the camera. Uyttendaele,

et al. [152] propose a similar system using omnidirectional video, and augment their walkthroughs

with additional information, including overhead maps, explicit branching points where the video

stream crosses itself in space, and other media such as video textures.

These recent systems bring us around nearly full circle to the end of Section 2.2, which described

photo browsers that incorporate elements of 3D navigation. Here we have a number of systems for

3D walkthroughs that are constructed from photos or video. While researchers have explored a wide

variety of different design points in image-based rendering (and 3D photo browsing), most IBR sys-

tems are created using carefully captured imagery taken along planned paths through a space. In this

thesis, I focus on large Internet photo collections, which are captured in a highly distributed manner

by uncoordinated individuals, and are thus fundamentally unplanned and unstructured. In Part II of

this thesis, I address the open question of creating effective renderings and navigation controls—

and tying these together into a understandable experience of a scene—for such unstructured photo

collections.
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Part I

RECONSTRUCTION OF UNORDERED PHOTO COLLECTIONS

The ultimate goal of my work is to take a collection of photos related by place, and create an

immersive 3D experience where a user explores the photo collection and the underlying 3D scene.

As a prerequisite to creating this kind of experience, we first need to recreate a 3D version of

the scene and localize the cameras within that scene. In particular, we need to know where each

photograph was taken and in which direction the camera was pointed, as well as internal camera

settings, such as zoom, which affect how incoming light is projected onto the film or sensor plane.

I will refer to photos for which such information has been determined as being registered.

How can we register our photos? One solution is to use special hardware. We could equip

our cameras with a Global Positioning System (GPS) device and electronic compass, and use them

to stamp each photo with a position and orientation. Unfortunately, the vast majority of existing

photographs were taken without this kind of specialized hardware, and most digital cameras still

lack such intrumentation.4 Moreover, the visualization techniques I have developed require pixel-

accurate registration, meaning that if the photograph were retaken from the recorded position and

orientation, the original and new photo should be in alignment within a few pixels. The accuracy of

GPS depends on a number of factors (atmospheric effects, the presence of nearby walls, etc.), but

many manufacturers of GPS receivers report a typical accuracy of around 3-5 meters [1]. Localiza-

tion errors on the order of several meters are much too large to guarantee pixel-accurate registration.

Furthermore, GPS works poorly indoors.

What about internal camera parameters such as zoom? These can be determined by calibrating

a camera, which usually involves taking several photos of a known pattern such as a checkerboard,

as with the calibration systems of Zhang [160] and Bouguet [13]. Again, however, most existing

photographs have been taken with cameras that have not been calibrated, and by people who may

4A few camera models with built-in GPS, such as the Ricoh 500SE, the Apple iPhone 3G, and the Nikon P6000, are
beginning to appear.
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not be willing to invest time in calibration.

Because most existing photos lack the necessary metadata for registration, in my work I do not

rely on the camera or any other piece of equipment to provide location information, nor do I assume

that calibration information is available for each image. Instead, I develop a set of algorithms that

derive camera geometry directly from the images themselves using computer vision techniques. In

addition to camera geometry, my system also recovers scene geometry in the form of a sparse set

of 3D points, or “point cloud.” In this thesis, I refer to the camera and scene geometry recovered

from a photo collection as a reconstruction. Example reconstructions are shown throughout the

next two chapters. The computer vision techniques I use only recover relative camera positions

and scene geometry which are not grounded in an absolute coordinate system (e.g., latitude and

longitude)—the system can register all the cameras with respect to each other, but cannot determine

where in the world the reconstruction sits, unlike with GPS.5 However, this relative pose information

is sufficient for most of the visualization techniques described in Part II. Chapter 3 also describes

several methods for obtaining absolute coordinates.

In the next two chapters, I describe the computer vision algorithms I have developed for re-

constructing camera and scene geometry from unordered photo collections. Chapter 3 gives an

overview of my basic reconstruction pipeline, and presents results on eleven Internet and personal

photo collections. The basic algorithm can operate on collections of up to about a thousand images,

but does not scale well beyond that. To address the scalability problem, Chapter 4 introduces the

idea of the skeletal graph, a concept which can be used to dramatically prune the number of im-

ages required for reconstruction while maintaining guarantees on completeness and accuracy. This

technique allows for much more efficient reconstruction of large photo collections.

5These reconstructions satisfy a slightly different definition of “pixel-accurate” than the one described above: recon-
structed 3D points, when projected into a reconstructed camera, lie close to where that 3D point actually appears in the
image.
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Chapter 3

A SCENE RECONSTRUCTION PIPELINE

My reconstruction pipeline takes an unordered collection of images (acquired, for instance, from

Internet search or a personal photo collection), and produces 3D camera and scene geometry. In

particular, for each input photo, the pipeline determines the location from which the photo was

taken and direction in which the camera was pointed, and recovers the 3D coordinates of a sparse

set of points in the scene (a “point cloud”). While the problem of 3D reconstruction from images

has been well-studied, previous work has mainly focused on ordered sequences, such as video.

Reconstruction of Internet photo collections poses a particular challenge, as the images are given in

more or less random order, are taken with many different cameras, exhibit significant variation in

lighting and weather, and can be extremely large in number. Thus, my pipeline is carefully designed

to robustly handle these kinds of uncontrolled input collections.

The basic principles behind recovering geometry from a set of images are fairly simple. Humans

and other animals implicitly use multi-view geometry to sense depth with binocular vision. If we

see the same point in the world (the corner of a window, say) in both eyes, we can implicitly

“triangulate” that point to determine its rough distance.1 This form of depth perception depends on

two key faculties: (1) identifying parts of the images seen in the left and right eyes that correspond

to the same point in the world, and (2) knowing where the eyes are roughly located relative to each

other (to enable triangulation of corresponding points).2 The human visual system

Similarly, given two photographs of the same (motionless) scene, a list of pixels in image A

and their corresponding pixels in image B, and the relative poses (i.e., the position and orientation)

of the cameras used to capture the images, one can calculate the 3D position of the point in the

world associated with each pair of matching pixels. To do so, we shoot a 3D ray from each camera

1Binocular vision is only one of a number of cues we can use to estimate depth. Others include focus, parallax induced
by motion of the head, and the apparent size of objects.

2Hence, by optically increasing this interocular distance, e.g., through a carefully engineered system of mirrors [26],
our perception of distance can be altered.
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location through each respective matched pixel, and find where the two rays intersect. If there is any

noise in the correspondences or the camera poses, the two rays may not intersect exactly, but we can

compute the point with the smallest distance to the two rays. The same procedure can be extended

to any number of images, as long as we know the pose for each camera, and as long as each point

we wish to triangulate is identified in at least two images.

Now suppose we want to automate this process. We first take our digital camera and walk

around an object (a priceless Peruvian idol, say) shooting photos from different angles. Our goal is

to create a rough 3D model of the object, and so we upload the photos to a computer to go through the

calculations described above. However, we run into a problem: where do we get the list of matching

points, and how do we know the vantage point from which each image was taken? Unlike the human

brain, the computer does not have an innate ability to match points between different images, nor

does it know the poses of the cameras used to take the photos. These are two fundamental problems

in computer vision.

The first problem, that of matching 2D points between images, is known as the correspondence

problem. There are many automatic techniques for finding correspondences between two images,

but most work on the principle that the same 3D point in the world (the left eye of the idol, for

instance) will have a similar appearance in different images, particularly if those images are taken

close together.

Considering the case of two photos for a moment, suppose we can solve the correspondence

problem and identify correct pixel matches between two photos. How can we determine the poses

of the cameras? As it turns out, the correspondences place constraints on the physical configuration

of the two camera.3 For instance, the two cameras must have been situated in such a way that rays

through corresponding pixels actually intersect (or nearly intersect, given noise in the system). This

is a powerful constraint, as two 3D rays chosen at random are very unlikely to pass close to one an-

other. Thus, given enough point matches between two images, the geometry of the system becomes

constrained enough that we can determine the two camera poses (up to a similarity transforma-

tion) [81], after which we can estimate the 3D point positions using triangulation. The problem

of using pixel correspondences to determine camera and point geometry in this manner is known

3I refer to each image as being taken by a different “camera,” meaning a specific 3D pose and set of camera parameters,
even if the same physical device is used from photo to photo.
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as structure from motion (SfM). In general, SfM methods take an arbitrary number of images and

an arbitrary number of correspondences, and estimate camera and point geometry simultaneously.

Such methods typically work by finding the configuration of cameras and 3D points which, when

related through the equations of perspective projection, best agree with the correspondences.

This chapter describes an SfM pipeline specially designed to handle diverse collections of photos

resulting from Internet search, and consists of two main stages, corresponding to the correspondence

and SfM problems. First, a set of pixel correspondences among all images is determined through

feature detection and matching. Second, an incremental SfM algorithm uses the correspondences

to estimate where the images were taken and the positions of a sparse set of 3D scene points. The

pipeline is shown as a block diagram in Figure 3.1.

The remainder of this chapter is organized as follows. Section 3.1 describes the correspondence

estimation stage, and 3.2 describes the incremental SfM algorithm. Section 3.3 discusses the time

and space complexity of these stages. Section 3.4 describes how reconstructions can be aligned to

a geocentric coordinate system, and Section 3.5 describes how recovered geometry is processed to

prepare it for viewing. Finally, Section 3.6 shows results for eleven data sets, Section 3.7 discusses

the limitations and breaking points of the system, and Section 3.8 offers concluding remarks.

3.1 Finding correspondence

The input to the correspondence estimation stage is the collection of raw images. The goal of this

stage is to find sets of matching 2D pixel positions among the input images. Each set of matching

pixels across multiple images should correspond to a single point in 3D, i.e., each individual pixel

in a matched set should be the projection of the same 3D point. I will refer to such a corresponding

set of pixels as a point track. The name “track” is in analogy to tracking features across a video

sequence. Unlike with video tracking, however, where tracks are computed across sequences of

consecutive frames, tracks in the unordered setting may contain points in images widely distributed

throughout the input set.

The basic approach for finding correspondences is to identify features in different images which

have a similar appearance; two image patches that look very similar likely correspond to the same

3D point in the world. The correspondence estimation stage has three main steps: (1) find distinctive
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Figure 3.1: Block diagram of the structure from motion pipeline.
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Figure 3.2: Difference of Gaussians image filter. Left: a 1D profile of the DoG filter, which is
defined as the difference between a Gaussian function and another Gaussian with somewhat smaller
width. Left: a 2D version of the filter applicable to images.

feature points in each image, (2) match features between pairs of images, and (3) link up pairwise

matches to form point tracks across multiple images.

3.1.1 Feature detection

For the feature detection step, I use the Scale-Invariant Feature Transform (SIFT) feature detec-

tor [90]. SIFT is well-suited to matching images in Internet collections due to its repeatability and

invariance to certain geometric and photometric image transformations. The SIFT detector works

by applying a differences of Gaussian (DoG) filter to the input image, then finding all local maxima

and minima of this filtered image; each (x, y) position of an extremum is kept as the location of a

feature. The DoG filter, shown in Figure 3.2, attains a maximum or minimum (or is said to “fire”)

at the center of “blob”-shaped regions (e.g., the center of a dark circle on a light background, or a

light circle on a dark background). The DoG filter also fires on other types of features as well, such

as corners where two thick edges meet.

However, the DoG filter only fires at the center of image features whose size is roughly the

width of the filter. One of the innovations of SIFT is that it detects features at multiple scales in

the image, that is, it detects blobs of varying sizes. The result is that even if an object appears at

different scales in two images—e.g., if the Colosseum is 200 pixels wide in one image, and 400

pixels wide in another—SIFT has the ability to match features between the two images (hence, the
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Figure 3.3: Example set of detected SIFT features. Each detected SIFT feature is displayed as a
black box centered on the detect feature location. SIFT detects a canonical scale and orientation for
each feature, depicted by scaling and rotating each box.

“scale-invariant” in the name). SIFT achieves such invariance by, in essence, applying DoG filters

of varying widths to the input image, thus creating a stack of filtered images, then finding points

in this image stack that are extrema in both image space and scale space.4 The scale (DoG radius)

at which the feature was detected is that feature’s canonical scale. Figure 3.3 shows detected SIFT

features in a sample image, showing each feature’s location and canonical scale. SIFT also detects

a canonical orientation for each feature by estimating a dominant local gradient direction.

In addition to detecting a set of feature positions, SIFT also computes a descriptor for each

feature, or a vector describing the local image appearance around the location of that feature (com-

puted at the feature’s canonical scale). One simple example of a descriptor is a window of color

(or grayscale) values around the detected point. The descriptor used by SIFT considers image gra-

dients, rather than intensity values, as image derivatives are invariant to adding a constant value to

the intensity of each pixel. In fact, SIFT looks at the directions of these gradients, rather than their

4The implementation of SIFT generates the scale space stack somewhat differently, applying a Gaussian filter to an
input image multiple times, downsampling when possible, then subtracting consecutive filtered images to create a
scale-space pyramid.
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raw magnitude, as gradient directions are even more invariant to variations in brightness and con-

trast across images. In particular, SIFT computes histograms of local image gradient directions. It

creates a 4 × 4 grid of histograms around a feature point, where each histogram contains eight bins

for gradient directions, resulting in a 4 × 4 × 8 = 128-dimensional descriptor. Thus, each feature

f consists of a 2D location (fx, fy), and a descriptor vector fd. The canonical scale and orientation

of a feature are not used in the remainder of the pipeline. The number of SIFT features detected

in an image depends on the resolution and content of the image, but a typical 2-megapixel (e.g.,

1600 × 1200) image contains several thousand SIFT features.

Many other feature detectors have been developed, and some, such as MSER [92] or SURF [8]

are also designed to be invariant to common image transformations. These could also be used in an

SfM system designed for unordered collections.

3.1.2 Feature matching.

Once features have been detected in each image, the system matches features between each pair

of images. Let F (I) denote the set of features found in image I . For every pair of images I and

J , the system considers each feature f ∈ F (I) and finds its nearest neighbor (in descriptor space)

fnn ∈ F (J):

fnn = arg min
f ′∈F (J)

||fd − f ′d||2.

In practice, for efficiency I find an approximate nearest neighbor using the approximate nearest

neighbors library of Arya and Mount [7], which uses a kd-tree data structure to efficiently compute

nearest neighbors. We now have a candidate pair of matching features (f, fnn). Let d1 be the

distance between their descriptors. This candidate match is classified as a true or false match using

the ratio test described by Lowe [90]: the matching algorithm finds the second nearest neighbor,

fnn2 ∈ F (J), to f (with distance d2), and accepts the match if d1
d2

, the ratio of the distances to the

two nearest neighbors, is less than a threshold (I use 0.6 in practice).

After matching features in I to J , each feature f ∈ F (I) will be paired with at most one feature

in F (J). However, each feature in F (J) may be paired with many features in F (I), as a single

feature in F (J) may be closest to multiple features in F (I). The true correspondence must be one-

to-one, however, so some of these matches must be spurious. Rather than trying to reason about



32

which are correct, all such multiple matches are removed. If, after this pruning step, an image pair

has fewer than a minimum number of matches (I use sixteen), the images are deemed not to match,

and all of their feature matches are removed.

We now have a set of putative matching image pairs (I, J), and, for each matching image pair,

a set of individual feature matches. Because the matching procedure is imperfect many of these

matches—both image matches and individual feature matches—will often be spurious. Fortunately,

it is possible to eliminate many spurious matches using a geometric consistency test. This test

is based on the fact that, assuming a stationary scene, not all sets of matching features between

two images are physically realizable, no matter what the actual shape of the scene is. There is a

fundamental constraint between two perspective images of a static scene defined by the possible

configurations of the two cameras and their corresponding epipolar geometry.5 The epipolar geom-

etry of a given image pair can be expressed with a 3 × 3, rank-2 matrix F, called the fundamental

matrix (or F-matrix), defined by the relative positions and orientations of the two cameras, as well as

internal camera settings such as zoom. Each pair of corresponding points (x, y) → (x′, y′) between

two images must satisfy the epipolar constraint:

[
x′ y′ 1

]
F

⎡
⎢⎢⎢⎣
x

y

1

⎤
⎥⎥⎥⎦ = 0 (3.1)

Thus, for a given image pair, only sets of matching features which all satisfy the epipolar con-

straint for some (initially unknown) fundamental matrix F are admissible. We can use this fact to try

to separate the true features matches from the spurious ones: the true matches will all be explained

by the same F-matrix, while spurious matches are likely to disagree with this F-matrix (and with

each other as to what the correct F is, assuming all the false matches are independent). Finding

such an F (and a corresponding set of inliers to this F) is essentially a model-fitting problem with

noisy data, a problem that can be solved using an algorithm called RANSAC (or RANdom SAmple

Consensus) [45]. RANSAC finds an F-matrix consistent with the largest number of matches by gen-

erating many different hypothesis F-matrices from random subsets of the data, counting the number

5This constraint is very much related to the constraint between image pairs described earlier, that rays through corre-
sponding pixels must intersect.
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of matches in agreement with each hypothesis, and keeping the best hypothesis, i.e., the one with

the most matches in agreement.6

I run RANSAC on each potential matching image pair (I, J), using the eight-point algorithm [68]

to generate each RANSAC hypothesis, and normalizing the problem to improve robustness to noise

[66]. For each hypothesized F-matrix, I use an outlier threshold of 0.6% of the maximum of the

image width and height (roughly six pixels in a 1024 × 768 image) to decide if each individual

feature match is consistent with that F-matrix. I then remove all outliers to the best hypothesis F-

matrix from the list of matches. If the number of remaining feature matches is less than sixteen,

I remove all of the feature matches between I and J from consideration, and deem (I, J) to be a

non-matching image pair.

Once all
(n
2

)
image pairs have been matched, I organize the matches into point tracks by finding

connected sets of matching features across multiple images. For instance, if feature f1 ∈ F (I1)

matches feature f2 ∈ F (I2), and f2 matches feature f3 ∈ F (I3), these features will be grouped into

a track {f1, f2, f3}. Tracks are found by examining each feature f in each image and performing

a breadth-first search of the set of features in other images that match f until an entire connected

component of features has been explored. These features are then grouped together into a track, and

the next unvisited feature is considered, until all features have been visited. Because of spurious

matches, inconsistencies can arise in tracks; in particular, a track can contain multiple features from

the same image, which violates the assumption that a track corresponds to a single 3D point. For

instance, if feature f3 ∈ F (I3) in the example above matches a different feature f ′1 �= f1 ∈ F (I1),

then image I1 will observe the track in two different locations (corresponding to features f1 and f ′1).

Such tracks are identified as inconsistent, and any image that observes a track multiple times has all

of their features removed from that track.

Once correspondences have been found, I construct an image connectivity graph, which contains

a node for each image, and an edge between any pair of images with shared tracks. A visualization

of the connectivity graph for the Trevi data set (a collection of Internet photos of the Trevi Fountain)

is shown in Figure 3.4. To create this visualization, the graph was embedded in the plane using the

neato tool in the Graphviz graph visualization toolkit [60]. Neato works by modeling the graph as a

6RANSAC is not specific to F-matrices, but can be used to fit many other types of models to noisy data as well. Later
in this chapter RANSAC is used to fit homographies and projection matrices.
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Figure 3.4: Image connectivity graph for the Trevi Fountain. This graph contains a node (red dot)
for each image in a set of photos of the Trevi Fountain, and an edge between each pair of photos
with shared tracks. The size of a node is proportional to its degree. There are two dominant clusters
corresponding to daytime photos (e.g. image (a)) and nighttime photos (image (d)). Similar views
of the facade are clustered together in the center of the graph, while nodes in the periphery, e.g., (b)
and (c), are more unusual (often close-up) views. An interactive version of this graph can be found
at http://phototour.cs.washington.edu/imagegraphs/Trevi/.

mass-spring system and solving for an embedding whose energy is a local minimum.

The image connectivity graph for this particular collection has several distinct features. There

is a large, dense cluster in the center of the graph which consists of photos that are all fairly wide-

angle, frontal, well-lit shots of the fountain (such as image (a)). Other images, including the “leaf”

nodes (such as (b) and (c)) corresponding to tightly-cropped details, and nighttime images (such as

(d)), are more loosely connected to this core set. Other connectivity graphs are shown in Figures

3.10, 3.11, and 3.12, and their structure is discussed in more detail in Section 3.6.1.

3.2 Structure from motion

The second stage of the pipeline takes the set of point tracks found in the first stage and estimates

the 3D camera and scene geometry, by finding the configuration of cameras and 3D points which,

when related through the equations of perspective projection, best agrees with the detected tracks.

This the structure from motion (SfM) problem.
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First, let us establish some notation. The scene geometry consists of a 3D point Xj for each

point track j. A camera can be described by its pose (position and orientation, also known as the

extrinsic parameters), and parameters modeling the internal image formation process (the intrinsic

camera parameters). I represent the extrinsic parameters of camera i with a 3-vector, ci, describing

the camera center, and a 3 × 3 rotation matrix Ri describing the camera orientation (I will also

sometimes refer to the camera translation, ti, where ti = −Rici). Camera intrinsics are often

represented with an upper-diagonal 3 × 3 matrix Ki mapping 3D rays to homogeneous 2D image

positions. In this thesis, however, I assume that this linear mapping can be modeled with a single

parameter fi, the focal length, and that Ki = diag(fi, fi, 1). In general, the off-diagonal terms of the

K matrix model skew (the amount by which the angle between the image x-axis and y-axis deviates

from 90◦) and the principal point (the point where the camera’s optical axis intersects the image

plane), and the first two diagonal entries need not be equal (the aspect ratio between the width and

height of each pixel need not be one). However, for most digital cameras, the skew is close to zero,

the principal point is near the image center, and the aspect ratio is close to one, thus the assumption

that Ki = diag(fi, fi, 1) is reasonable [122]. While this is not an essential assumption, it reduces

the number of parameters that need to be estimated, and increases the stability of the system, as

certain parameters, especially the principal point, tend to be severely ill-conditioned. However,

certain images, such as images created by cropping a non-centered region of a large image, do not

fit this model.

On the other hand, while the K matrix models a linear mapping, most consumer cameras have

noticeable non-linear lens distortion. I model this distortion with a polynomial in ρ, the distance

from the center of the image, using a quartic polynomial

κ1ρ
2 + κ2ρ

4 (3.2)

with two distortion parameters, κ1 and κ2, for each image. I refer to the collection of camera pa-

rameters for a single camera as Ci = {ci,Ri, fi, κ1i, κ2i}. This set of parameters can be described

by nine numbers: three for the camera center ci, three for the rotation, as explained in Section 3.2.3,

and the three intrinsic parameters fi, κ1i and κ2i. Together, the camera parameters Ci specify how a

3D point Xj = (Xjx,Xjy,Xjz) is projected to a 2D point x in image i (via the projection equation
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Figure 3.5: Reprojection error. A 3D point Xj is projected into camera Ci. The reprojection error
is the distance between the projected image point, P (Ci,Xj) and the observed image point qij .

P (Ci,Xj) defined below).

The point tracks found in the correspondence estimation stage can be thought of as noisy mea-

surements of the scene. In particular, each track (ideally) contains measurements of the projected

positions of a single 3D point in certain viewpoints. I denote the measured position of track j in

image i as qij ; note that many qij are typically unknown, as not all images see all tracks. Structure

from motion is the problem of taking these measurements and jointly solving for the camera and

scene parameters that predict these measurements as well as possible. This problem is usually posed

as an optimization over the collective set of camera and scene parameters C = {C1, C2, . . . , Cn}
and X = {X1,X2, . . . ,Xm}, where an objective function measures the discrepancy between the

measured 2D point positions and those predicted by the projection equation P . For n views and m

tracks, the objective function g can be written as:

g(C,X) =
n∑

i=1

m∑
j=1

wij ||qij − P (Ci,Xj)||2 (3.3)

where wij is an indicator variable: wij = 1 if camera i observes track j, and wij = 0 otherwise.

The expression ||qij −P (Ci,Xj)|| in the interior of this summation is called the reprojection error

of track j in camera i. Reprojection error is illustrated in Figure 3.5. Thus, the objective function

g is the sum of squared reprojection errors, weighted by the indicator variable. The goal of SfM

is to find the camera and scene parameters that minimize this objective function. In my pipeline,
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g is minimized using non-linear least squares optimization, a process known as bundle adjustment

[150].

The projection equation. The projection equation P (Ci,Xj) is defined as follows. First, the

point Xj is converted to the camera’s coordinate system through a rigid transformation:

X′ =

⎡
⎢⎢⎢⎣

X′
x

X′
y

X′
z

⎤
⎥⎥⎥⎦ = Ri(Xj − ci).

Next, the perspective division is performed, and the result is scaled by the focal length:

x′ =

⎡
⎣ fiX′

x/X
′
z

fiX′
y/X

′
z

⎤
⎦ .

x′ =
[
x′

x,x
′
y

]T
is now a 2D point in the image. Finally, radial distortion is applied to this point:

ρ2 =
(

x′
x

fi

)2

+
(

x′
y

fi

)2

α = κ1iρ
2 + κ2iρ

4

x = αx′,

x is then the computed projection.

Another common way to write the projection equation is to group the camera parameters Ci

(excluding the distortion parameters) into a 3 × 4 projection matrix Πi:

Πi = Ki[Ri|ti]

which maps homogeneous 3D points to homogeneous 2D image positions. The distortion and per-

spective division can then by applied after the projection matrix:

P (Ci,Xj) = r(zdiv(ΠXj))
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where zdiv performs the perspective division and r applies the radial distortion.

Because of the rotation, perspective division, and radial distortion, P is a non-linear function,

and therefore bundle adjustment is a non-linear least squares problem. Algorithms for non-linear

least squares, such as Levenberg-Marquardt, are only guaranteed to find local minima, and large-

scale SfM problems are particularly prone to getting stuck in bad local minima. Therefore it is

important to provide good initial estimates of the parameters. Rather than trying to initialize the

parameters for all cameras and points at once, I take an incremental approach. I start with two

cameras, find their optimal parameters, and those of the points they observe, then iteratively add one

camera at a time to the optimization.

Reconstructing the initial pair. I begin by estimating the parameters for a single pair of cameras.

This first step is critical: if the reconstruction of the initial pair gets stuck in the wrong local mini-

mum, the optimization is unlikely to ever recover. The initial pair must therefore be chosen carefully.

The images should have a large number of matches, but also have a large baseline (distance between

camera centers), so that the initial two-frame reconstruction can be robustly estimated. I there-

fore choose the pair of images that has the largest number of matches, subject to the condition that

their matches cannot be well-modeled by a homography. A homography models the transformation

between two images of a single plane, or two images taken at the same location (but possibly with

cameras looking in different directions). Thus, if a homography cannot be fit to the correspondences

between two images, it indicates that the cameras have some distance between them, and that there

is interesting 3D structure visible. These criteria are important for robust estimation of camera pose.

In particular, I estimate a homography between each pair of matching images using RANSAC

with an outlier threshold of 0.4% of max(image width, image height), and store the percentage of

feature matches that are inliers to the estimated homography. I select the initial two images to be

the pair with the lowest percentage of inliers, but which have at least 100 matches.

The system estimates the extrinsic parameters for this initial pair using Nistér’s implementation

of the five point algorithm [102],7 and the tracks visible in the two images are triangulated, giving an

initial set of 3D points. I then perform a two-frame bundle adjustment starting from this initializa-

7I only choose the initial pair among pairs for which a focal length estimate is available for both cameras, and therefore
a calibrated relative pose algorithm can be used.
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Figure 3.6: Incremental structure from motion. My incremental structure from motion approach
reconstructs the scene a few cameras at a time. This sequence of images shows the Trevi data set at
three different stages during incremental reconstruction. Left: the initial two-frame reconstruction.
Middle: an intermediate stage, after fifteen images have been added. Right: the final reconstruction
with 360 photos.

tion. To perform bundle adjustment, I use the sparse bundle adjustment (SBA) package of Lourakis

and Argyros [89]. SBA is described in Section 3.2.4.

Adding new cameras and points. Next, I add another camera to the optimization. I select the

camera that observes the largest number of tracks whose 3D locations have already been estimated.

To initialize the pose of the new camera, I first estimate its projection matrix Π using the direct

linear transform (DLT) technique [68] inside a RANSAC procedure. For this RANSAC step, I use

an outlier threshold of 0.4% of max(image width, image height).

Recall that the projection matrix has the form

Π = K [R|t] = [KR|Kt] ,

therefore the left 3 × 3 submatrix of Π (denoted Π3) is the product of an upper-triangular matrix

K and a rotation matrix R. K and R can therefore be computed as the RQ decomposition of Π3.8

8Note that, in order for it to be a valid intrinsic matrix, the upper triangular matrix K should have positive entries
along the diagonal. A unique RQ decomposition with this property is guaranteed as long as Π3 is non-singular. Π3

will be non-singular if the 3D points used to solve for Π are non-coplanar, and the corresponding 2D points are non-
colinear, which almost always is the case. Note, however, that the 3D points are often nearly co-planar, which can
cause instability in the estimation of K. In my experience, most scenes have sufficient non-planar 3D structure to avoid
this problem.
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The translation t is then the last column of K−1Π.

I use the rotation R and translation t estimated using the above procedure as the initial pose

for the new camera. In addition, I use the estimated K to either initialize the focal length of the

new camera, or verify an existing focal length estimate (see “Recovering focal lengths” later in this

section). Starting from this set of initial parameters, I do a round of bundle adjustment, allowing

only the new camera to change; the rest of the model is held fixed.

Next, I add points observed by the new camera into the optimization. A point is added if it is

observed by at least two cameras, and if triangulating the point gives a well-conditioned estimate

of its location. I estimate the conditioning by considering all pairs of rays that could be used to

triangulate the new point, and finding the pair with the maximum angle of separation θmax. If θmax

is larger than a threshold of 2◦, then the point is triangulated and added to the optimization.9 Once

the new points have been added, bundle adjustment is performed on the entire model.

This procedure of initializing a camera, triangulating points, and running bundle adjustment is

repeated, one camera at a time, until no remaining camera observes a sufficient number of points

(at least twenty in my implementation). Figure 3.6 illustrates this process for the Trevi data set. In

general only a subset of the images will be reconstructed. This subset is not selected beforehand,

but is determined by the algorithm as it adds images until no more can reliably be added.

3.2.1 Improvements to the algorithm

For increased robustness and speed, I make a few modifications to the basic SfM procedure outlined

above. The first modification deals with robustness to mismatches in the set of point tracks. Spurious

matches can have a dramatic effect on the reconstruction, pulling the recovered structure far away

from the correct solution. It is therefore critical to handle such outliers in a robust way. After

each run of bundle adjustment I detect outliers by identifying tracks that contain at least one feature

with a high reprojection error. These tracks are then removed from the optimization. The outlier

threshold for a given image adapts to the current distribution of reprojection errors for that image.

For an image I , I compute d80, the 80th percentile of the reprojection errors for that image, and use

9This test tends to reject points at infinity; while points at infinity can be very useful for estimating accurate camera
rotations, I have observed that they can sometimes result in problems, as using noisy camera parameters to triangulate
points at infinity can result in points at erroneous, finite 3D locations. See Section 3.7, “Cascading errors.”
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clamp(2.4d80, 4, 16) as the outlier threshold (where clamp(x, a, b) clamps x to the range [a, b]).

The effect of this clamping function is that all points with a reprojection error of more than 16

pixels in any image will be rejected as outliers, and all points with a reprojection error of less than

4 pixels will be kept as inliers; the exact threshold is adaptive, and lies between these two values.

After rejecting outliers, I rerun bundle adjustment and repeat until no more outliers are detected.

The second modification is that, rather than adding a single camera at a time into the optimiza-

tion, I add multiple cameras. To select which cameras to add, I first find the camera with the greatest

number of matches, M , to existing 3D points, then add any camera with at least 0.75M matches

to existing 3D points. Adding multiple cameras at once results in many fewer overall iterations of

bundle adjustment and thus improved efficiency.

3.2.2 Recovering focal lengths

Most digital cameras embed metadata into JPEG images in the form of Exchangeable image file

format (Exif) tags. These tags often include information on the camera make and model, the date and

time a photo was taken, and camera settings such as aperture, shutter speed, and focal length. When

an image has a focal length estimate available, it can be very helpful as initialization for the focal

length parameter of that camera in the optimization, as it can be difficult to reliably estimate focal

lengths without any calibration, particularly for planar or near-planar scenes. Exif tags invariably

provide focal length estimates in millimeters. To be useful, these estimates must be converted to

pixel units, as described in Appendix A.

I have found that most focal length estimates obtained from Exif tags are accurate enough to use

for initialization, as demonstrated in Figure 3.7; the median absolute difference between the focal

lengths calculated from Exif tags and those derived from SfM for the Trevi data set is just 3.5%.

However, the occasional image will be tagged with a wildly inaccurate focal length. Therefore,

when estimating the pose of a new camera, I check its focal length estimate against the independent

estimate obtained through the DLT procedure. Recall that the DLT procedure results in an estimate
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Figure 3.7: Accuracy of Exif focal lengths. These scatter plots compare focal length estimates
obtained from the Exif tags of the image files (x-axis) with those recovered using the structure from
motion pipeline (y-axis) for two data sets (Trevi and Hagia Sophia); the line y = x is plotted for
comparison. The Exif tags were completely ignored for this experiment; initial values for focal
lengths were set using fdlt, and no soft constraints were used during bundle adjustment. For Trevi,
the recovered focal lengths tend to be slightly larger than those obtained from the Exif tags (by about
2.4% on average), while the average absolute difference is about 12%. However, this difference is
skewed by the presence of outliers; the median absolute difference is just 3.5%. For Hagia Sophia,
the average difference is about 0.9%, with an average absolute difference of 7.8% and a median
absolute difference of 3.1%. While in general Exif tags are accurate enough to obtain a useful
prior, the two focal length estimates occasionally vary significantly, hence the outliers in the plot.
The reason for the estimated focal length being slightly longer may be due to a systematic source
of error. For instance, perhaps cameras use a slightly smaller region of the image sensor than the
dimensions listed in camera specifications, or perhaps cameras usually round the focal length down
to the nearest discrete setting when preparing Exif tags.

of the upper-triangular intrinsic matrix K:

K =

⎡
⎢⎢⎢⎣
k11 k12 k13

0 k22 k23

0 0 1

⎤
⎥⎥⎥⎦

Let fdlt = 1
2(k11 + k22) be the DLT estimate of the focal length, and let fExif be the focal length

calculated from the Exif tags of an image. I prefer to use fExif or initialization when it exists, but

I first test whether fExif disagrees with the DLT estimate by a large factor; a large discrepancy can

indicate that fExif is erroneous. In particular, I check that 0.7fdlt < fExif < 1.4fdlt. If this test
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fails, I use fdlt as the initial value for the focal length. Otherwise, I use fExif . In addition, when

fExif exists and is in agreement with fdlt, I add a soft constraint to the optimization to encourage

the focal length parameter f for the camera to stay close to this initial value, by adding the term

γ(f − fExif)2 to the objective function g (using a value γ = 1 × 10−4 in all experiments). No such

constraint is used if fdlt is used for initialization.

3.2.3 Parameterization of rotations

During bundle adjustment, I parameterize the camera rotation with a 3-vector ω representing an

incremental rotation. ω is equal to a rotation axis (represented as a unit 3-vector n̂) times the angle

of rotation θ:

ω = θn̂

and the incremental rotation matrix R(θ, n̂) is defined as:

R(θ, n̂) = I + sin θ [n̂]× + (1 − cos θ) [n̂]2× ,

where

[n̂]× =

⎡
⎢⎢⎢⎣

0 −n̂z n̂y

n̂z 0 −n̂x

−n̂y n̂x 0

⎤
⎥⎥⎥⎦ .

The incremental rotation matrix R(θ, n̂) is pre-multiplied by the initial rotation matrix to compute

the current rotation inside the global optimization. For small incremental rotations, R(θ, n̂) is nearly

linear in ω.

3.2.4 Sparse bundle adjustment

To optimize the objective function g, my system uses the sparse bundle adjustment (SBA) pack-

age [89]. SBA is a non-linear optimization package that takes advantage of the special sparse struc-

ture of SfM problems to provide an algorithm with reduced time and memory complexity. At the

heart of SBA is an implementation of the Levenberg-Marquart algorithm [105], which, like many

non-linear solvers, takes as input an initial guess at the solution and finds a nearby local minimum
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by solving a series of linear systems Hx = b (called normal equations) that locally approximate

the objective function. The matrix H is an approximation to the Hessian of the objective function at

a given point, where the Hessian is a square, symmetric matrix describing the shape of a quadratic

function.

H has a row and column for each variable in the optimization. For n cameras and m point

tracks, H is a (9n + 3m) × (9n + 3m) matrix; thus, H can be quite large. For 1,000 cameras

and 100,000 points (a typical problem size), H has 300,900 rows and columns, and nearly a billion

entries, requiring a hefty 3.6GB of memory to store as an upper-diagonal matrix of double precision

floating point numbers. The time complexity of directly solving a dense linear system is cubic in

the number of variables, also quite high.

Fortunately, however, most of the entries of H are zeroes, and the matrix has a particular sparsity

pattern. Each entry hij is non-zero if (and only if) the two variables with index i and j directly

interact (i.e., they appear together in any single reprojection error computation in the interior of g).

Hence, all nine parameters of any single camera interact, as do the three parameters of any single

point. If a given camera sees a given point, the parameters of the camera and the point interact.

However, any two distinct cameras do not directly interact, nor do any pair of distinct points; in

addition, if a camera does not observe a point, the camera and the points do not interact.

If we order the variables so that the camera parameters (grouped by camera) come first, followed

by the point parameters (grouped by point), the sparsity pattern of H takes a form similar to that

shown in Figure 3.8. This matrix can be broken into four parts:

H =

⎡
⎣ A B

BT C

⎤
⎦ (3.4)

where A is the camera sub-matrix, C is the point sub-matrix, and B represents the interactions

between the cameras and points.

We can take advantage of this sparsity pattern to save memory by representing the matrix in a

sparse storage format. SBA does so, but also uses a technique called the Schur complement [150]

to improve efficiency. This technique factors out the point parameters to produce a reduced camera

system whose size is the the number of camera parameters; the particular sparsity pattern of SfM
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Figure 3.8: Sparsity pattern of the Hessian matrix for a structure from motion problem. In this im-
age, each row and column corresponds to a variable in a structure from motion problem containing
six cameras and about one hundred points. The camera parameters appear first, followed by the
point parameters. Non-zero entries in this matrix are colored black, while zeros are colored white.

makes this reduction particularly efficient. SBA applies a direct linear solver to the reduced camera

system to obtain the new camera parameters, then back-substitutes for the new point parameters.

For large numbers of cameras and points, the bottleneck in this procedure becomes the solution of

the reduced camera system, which has cubic complexity in the number of cameras.

3.3 Algorithmic complexity

There are several parts of the SfM pipeline that require significant computational resources: SIFT

feature detection, pairwise feature matching and F-matrix estimation, linking matches into tracks,

and incremental SfM . This section analyzes the time and space complexity of each of these steps.

I will mainly analyze time and space complexity as a function of the number of input images n.

In practice, this analysis also depends on the number of features detected in each image, which in

turns depends on factors such as image resolution and how textured each image is. However, image

resolution, and hence number of features, is bounded (each image containing a few thousand features

on average), so I treat the number of features as roughly constant per image, thereby factoring them

out of the analysis.
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SIFT. The feature detection step is linear in the number of input images (O(n)). Running SIFT

on an individual image, however, can take a significant amount of time and use a large amount of

memory, especially for high-resolution images with complex textures. For instance, in the Hagia

Sofia data set (described in Section 3.6) the maximum number of SIFT features detected in an image

was over 120,000. SIFT ran for 1.25 minutes on that image, and used 2.7 GB of memory, on a test

machine with a 3.80 GHz Intel Xeon processor. (The minimum number of features detected was

31; SIFT ran for 4 seconds on that image.) SIFT spent an average time of 12 seconds processing

each image in this collection (and about 5.2 hours of CPU time in total). Because SIFT runs on

each image independently, it is very easy to parallelize by assigning different sets of images to

different processors. Thus, despite being relatively time-consuming for some images, the low overall

complexity of the feature matching step, combined with its easy parallelization, means that it takes

a small percentage of the overall computation time.

Feature matching and F-matrix estimation. The feature matching step, on the other hand, does

take a significant percentage of the total processing time. This is mostly due to its relatively high

complexity. Since each pair of images is considered, it has quadratic time complexity in the number

of input images (O(n2)). For the Hagia Sofia data set, each individual image match took an average

of 0.8 seconds; in total, it took 11.7 days of CPU time to match the entire collection. Fortunately,

matching is also very easy to parallelize, as each pair of images can be processed independently.

Parallelization can compensate for the high complexity to a point, and for several example scenes

in Section 3.6, the matching stage took much more CPU time, but somewhat less wall clock time,

than the SfM stage.

Because F-matrix estimation is only run on the pairs of images that successfully match, it tends

to take a much smaller amount of time than the matching itself. Though this step is O(n2) in the

worst case (if all images match), for Internet collections, the percentage of image pairs that match

is usually fairly small. For instance, for the Hagia Sofia collection, only 33,637 out of a possible

1,226,961 image pairs (2.7%) made it to the F-matrix estimation stage. Estimating an F-matrix for

each pair took about one hour, and 11,784 of the 33,637 pairs survived this step. This step is also

easily parallelized.
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Linking up matches to form tracks. To implement this step, I perform a breadth-first search on

the graph of feature matches, marking each feature as it is visited. Each feature in each image is

visited once (i.e., O(n) features are visited), and each individual feature match is also visited once

(in the worst case, O(n2) matches are visited). However, the graph of feature matches also tends

to be quite sparse. For the Hagia Sofia collection, there were 1,149,369 individual feature matches

left after the F-matrix estimation step, about 100 per matching image. Grouping matches into tracks

took a total of just six minutes for this collection.

Structure from motion. The main computational bottleneck in the incremental structure from

motion algorithm is the bundle adjustment stage computed using SBA.10 As described in Sec-

tion 3.2.4, SBA uses the Levenberg-Marquardt (LM) algorithm to find a local minimum of the

objective function. Each iteration of LM involves solving a linear system; in SBA’s implementation

this is done using a dense, direct method such as LU factorization. Solving the reduced camera

system using such methods takes time cubic (Θ(t3)) in the number of cameras t in the current re-

construction [56]. Each call to SBA is capped at a maximum number of iterations, thus the total run

time of each call to SBA is still Θ(t3). During the course of the SfM stage, SBA is called repeatedly

with more and more images as the reconstruction grows. The total running time of SfM thus de-

pends on how many times SBA is called, and on how many images are added to the reconstruction

during each iteration of SfM.

If all the images are added immediately after the initial two-frame reconstruction, there will be a

single call to SBA with all n images, and the total running time for SfM will be Θ(n3). This Θ(n3)

complexity will also hold if SBA is called a constant k number of times, e.g., if on average some

proportion n
k of the input images are added during each iteration of SfM (see Appendix B for the

details of this analysis). If, on the other hand, a roughly constant number of images � are added per

iteration, independent of n, then the total running time will be Θ(n4). Roughly speaking, each call

to SBA with t images does work in proportion to t3, so when � images are added per iteration, the

10Time is also spent in SBA triangulating new points and estimating the pose of new cameras, but the running times of
these steps are dominated by bundle adjustment.
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total amount of work done by SBA over the course of SfM grows roughly as:

n/�∑
i=1

(i · �)3 = �3
n/�∑
i=1

i3 = �3

[(
n
�

) (
n
� + 1

)
2

]2

= O(n4)

Appendix B presents a more detailed analysis showing that the running time of this scenario is

Θ(n4).

The total running time depends on the properties of the collection. If all the photos are very

similar, they may be added in large batches, and the running time may be close to Θ(n3). If, on

the other hand, the images are taken with a roughly uniform sampling along some path, it is likely

that a constant number of images will be added at each iteration (on average), resulting in a total

running time of Θ(n4). In my experience, Internet photo collections behave more like the latter

case, resulting in run times closer to Θ(n4).11 In the future, analyzing the behavior of the algorithm

on a larger collection of image sets will allow for better characterization of the (empirical) run time.

In addition to the high complexity of the SfM stage, out of all the stages described in this section,

SfM is the most difficult to parallelize. Doing so would require either a parallel implementation of

a linear system solver, or a way to subdivide the images into independent groups. Despite these

difficulties, in practice the time required for SfM is often less than the time spent matching images.

For instance, SfM took only 5.5 hours for the Hagia Sofia data set, compared to more than one

day (of wall clock time) for matching. There may be several reasons for this. First, typically only

a subset of the images in a collection are ultimately registered. For instance, in the Hagia Sofia

collection, 446 of the 1567 input images (28%) were registered. Second, I use the highly optimized

Intel Math Kernel Library (MKL) linear solver [70]. For an example 600 image data set, MKL

solves the reduced camera system in about 27 seconds. This is a significant amount of time, but for

collections of 1,000 photos or less this typically leads to running times on the order of days (rather

than weeks). Nevertheless, for truly massive, well-connected collections, SfM would likely dwarf

the amount of time spent in the rest of the pipeline.

SBA uses O(nm) amount of memory (for n cameras and m points) to store the matrix of binary

indicator variableswij defining which points are visible in which views, andO(n2) memory to store

11This despite the fact that only a subset of images are ultimately registered, and SfM is only run on that subset. The
size of this subset tends to grow in proportion to the total number of images, however.
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the reduced camera matrix. In practice, the matrix of indicator variables is quite sparse, so a more

memory-efficient sparse matrix representation could be used. The reduced camera matrix is also of-

ten sparse (an entry corresponding to two cameras is only non-zero if the cameras have shared point

tracks), and thus could also be potentially more storage-efficient in practice. In addition, reordering

techniques [150] could be used to reduce fill-in while factoring the reduced camera matrix.

3.4 Geo-registration

The SfM procedure above estimates relative camera locations, reconstructing geometry up to an

unknown similarity transformation. These relative camera locations are sufficient for many tasks,

including most of the scene visualization applications described in Part II, which do not absolutely

require knowing where in the world a scene exists, or how large the scene is. However, other appli-

cations require more information. For instance, if we want to measure distances in the reconstructed

scene in meaningful units, we need to know the scale of the reconstruction. If we want to display

the reconstruction on a site such as Google Maps, we need to know the latitude and longitude of

each camera. For these tasks, I describe techniques for aligning the recovered model with a geo-

referenced image or map (such as a satellite image, floor plan, or digital elevation map) so as to

determine the absolute geocentric coordinates of each camera.

Given a perfectly accurate reconstruction, the estimated camera locations are related to the ab-

solute locations by a similarity transform (global translation, 3D rotation, and uniform scale). My

system provides a simple manual interface for determining the alignment of a model to a geolocated

map or overhead image; the user interactively rotates, translates, and scales the model until it is in

agreement with a provided map. To assist the user, I first estimate the “up” or gravity vector, as

described in Section 3.5. The 3D points and camera locations are then rendered superimposed on

the alignment image, using an orthographic projection with the camera positioned above the scene,

pointed downward. If the up vector was estimated correctly, the user needs only to rotate the model

in 2D, rather than 3D. In my experience, it is usually fairly easy, especially in urban scenes, to per-

form this alignment by matching the recovered points to features, such as building façades, visible

in the image. Figure 3.9 shows a screenshot of such an alignment.

In some cases the recovered scene cannot be well-aligned to a geo-referenced coordinate system
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Figure 3.9: Example registration of cameras to an overhead map. Here, the cameras and recovered
line segments from the Prague data set are shown superimposed on an aerial image. (Aerial image
shown here and in Figure 5.1 courtesy of Gefos, a.s. [51] and Atlas.cz.)

using a similarity transform. This can happen because errors accumulated during reconstruction

can cause low-frequency drift in the recovered point and camera locations. Drift does not have a

significant effect on the visualization tools described in Part II, as the error is not usually locally

noticeable, but is problematic when an accurate model is desired.

One way to “straighten out” the recovered scene is to pin down a sparse set of ground control

points or cameras to known 3D locations (acquired, for instance, from GPS tags attached to a few

images) by adding constraints to the SfM optimization. Alternatively, a user can manually specify

correspondences between points or cameras and locations in an image or map, as in the work of

Robertson and Cipolla [120].

3.4.1 Aligning to Digital Elevation Maps

For landscapes and other very large scale scenes, we can take advantage of Digital Elevation Maps

(DEMs), used for example in Google Earth [57] and with coverage of most of the United States

available through the U.S. Geological Survey [151]. To align point cloud reconstructions to DEMs,

I manually specify a few correspondences between the point cloud and the DEM, and estimate a 3D

similarity transform to determine an initial alignment. I then re-run the SfM optimization with an ad-
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ditional objective term to fit the specified DEM points. In the future, as more geo-referenced ground-

based imagery becomes available (e.g., through websites like WWMX [149], Photosynth [109], or

Flickr), this manual step will no longer be necessary.

3.5 Processing the recovered scene

The output of the reconstruction pipeline is organized into a scene description with the following

elements:

• A set of points P = {p1, p2, . . . , pn}. Each point pj has a 3D location, Xj , and a color,

Color(pj), obtained by projecting the point into one of the images that observes it and sam-

pling the color at that image point.

• A set of cameras parameters, C = {C1, C2, . . . , Ck}.

• A visibility mapping, Points(), between cameras and the points they observe. Points(C) is

the subset of P containing the points observed by camera C. Points(C) is derived from the

set of point tracks created in the correspondence estimation stage, and not from an analysis

of occlusions (which would require dense geometry). Therefore, the visibility mapping is

approximate. A point p ∈ Points(C) is very likely to be visible to camera C, whereas a

point q /∈ Points(C) is possibly visible to C. q may be outside the field of view or occluded

(and thus correctly excluded from Points(C)), or it may have not been correctly detected and

matched (and incorrectly excluded).

After a scene is reconstructed, a few additional processing steps are required to clean the geom-

etry and prepare the reconstructed scene description for viewing. These steps are:

1. Remove low-confidence points and cameras.

2. Remove radial distortion from the photos.

3. Estimate the up vector for the reconstruction.

4. Compute a set of proxy planes for use in scene rendering.

5. Optionally, detect 3D line segments.
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Removing low-confidence points and cameras. Occasionally, due to bad matches or weak ge-

ometry, spurious points and misregistered cameras can appear in a reconstruction. The first pro-

cessing step attempts to automatically detect and remove these undesirable points and cameras by

identifying low-confidence geometry. A point p is deemed low-confidence if:

1. p is seen by fewer than three cameras; a point seen by only two views is much more likely to

be spurious than one seen in three or more views, as the likelihood of finding a spurious point

that is geometrically consistent with k views dramatically decreases as k grows.

2. The maximum angle over all pairs of rays that see p is less than a threshold θmax (points

which are seen by views which are too close together can have very high uncertainty). I use

θmax = 1.5◦.

Points which meet either of these criteria are pruned from the point set P . After points have been

pruned, images which now see fewer than sixteen points are removed as low-confidence views. This

processing step often cleans up the geometry considerably.

Estimating the up vector. As described earlier, SfM can only recover geometry up to an unknown

similarity transform, and thus the recovered scene can be in an arbitrary orientation; in particular,

there is no natural up direction (often called the up vector in computer graphics). Thus, to make

sure the scene is properly oriented, I estimate the up vector using the method of Szeliski [144]. This

method uses the observation that most photos are taken without significant twist (rotation about the

camera’s viewing direction), and computes the up vector which minimizes the amount of residual

twist over all cameras. This observation is largely correct, with the exception that cameras are

sometimes rotated by ±90◦ (for portrait shots); such photos can appear sideways in image viewing

software if the camera fails to properly orient them at the time they are taken. While such images can

skew the up vector computation, they are also usually easy to identify, because in most collections

the majority of photos are property oriented, and the remainder appear as outliers.

Removing radial distortion. For each registered photo Ij , a new, undistorted, image is created

by applying the inverse distortion transform to Ij . It is not straightforward to compute the inverse

transform in closed form from the distortion parameters κ1j and κ2j , so I compute an approximate
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inverse transform by fitting a degree-4 polynomial to sampled pairs of distorted and undistorted

points.

Computing proxy planes for rendering. The visualization tools described in Part II set up virtual

projection planes in the scene onto which images are projected for rendering. These planes should

match the actual scene geometry (e.g., coincide with the sides of buildings) as well as possible.

The tools in Part II require a projection plane for each camera (for scene rendering), as well as a

projection plane for each pair of cameras (for creating transitions between two images):

• For each camera Ci, I compute a 3D plane, Plane(Ci), by using RANSAC to robustly fit a

plane to Points(Ci).

• For each pair of neighboring cameras Ci and Cj (cameras which view at least three points in

common), I compute a 3D plane, CommonPlane(Ci, Cj) by using RANSAC to fit a plane to

Points(Ci) ∩ Points(Cj).

Many planar surfaces which occur in the world are vertical (walls) or horizontal (ground and ceiling

planes). However, few images are taken looking directly at the ground or other horizontal surfaces,

so I normally constrain Plane(Ci) and CommonPlane(Ci, Cj) to be vertical. This constraint often

helps produce better renderings in the visualization tools. To enforce this constraint, I project all the

points onto the ground plane, and fit a 2D line, rather than a 3D plane, to the projected points.

Detecting line segments. Finally, I detect 3D line segments using a method similar to that of

Schmid and Zisserman [126]. This technique is described in Appendix C.

The scene representation, originally consisting of the point set P , the camera set C, and the

visibility mapping, Points, is now augmented with:

• A set of 3D line segments L = {l1, l2, . . . , lm} and a mapping, Lines, between cameras and

sets of visible lines.

• The set of computed planes, Plane(Ci) and CommonPlane(Ci, Cj).
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3.6 Results

I have applied my system to many different input photo collections, including uncontrolled Internet

sets consisting of images downloaded from Flickr, and collections captured by a single person. In

each case, my system detected and matched features on the entire set of photos and automatically

identified and registered a subset corresponding to one connected component of the scene. This

section gives results for several different scenes, including eight Flickr collections:

1. Trevi Fountain, a set of photos of the Trevi Fountain in Rome.

2. St. Basil’s, photos of Saint Basil’s Cathedral in Moscow.

3. Mount Rushmore, photos of Mount Rushmore National Monument, South Dakota.

4. Sphinx, photos of the Great Sphinx of Giza, Egypt.

5. Hagia Sophia, photos of the Hagia Sophia in Istanbul.

6. Yosemite, photos of Half Dome in Yosemite National Park.

7. Colosseum, photos of the Colosseum in Rome.

8. Notre Dame, photos of the Notre Dame Cathedral in Paris.

Three other sets were taken in more controlled settings (i.e., a single person with a single camera

and lens):

1. Great Wall, a set of photos taken along the Great Wall of China.

2. Prague, photos of the Old Town Square in Prague.

3. Annecy, photos of a street in Annecy, France.

More information about these data sets (including the number of input photos, number of regis-

tered photos, CPU time, and average reprojection error), is shown in Table 3.1. The running times

reported in this table were generated by running the complete pipeline on a 3.80GHz Intel Xeon

machine with 4GB of core memory. While total CPU time is reported in Table 3.1, in practice,

the keypoint detection and matching phases were run in parallel on ten such machines. Table 3.2

contains information on how much time was spent in each stage of the reconstruction pipeline for

each data set. While the majority of CPU cycles were spent on image matching, this phase is much
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Table 3.1: Data sets and running times. Each row lists information about each data set used: Collec-
tion, the name of the set; Search term, the Flickr search term used to gather the images; # photos,
the number of photos in the input set; # reg. the number of photos registered; # points, the number
of points in the final reconstruction; CPU time, the total CPU time for reconstruction; error, the
mean reprojection error, in pixels, after optimization. The first eight data sets were gathered from
the Internet, and the last three were each captured by a single person. In each subset, the rows are
sorted by number of input views.

Collection Search term # images # reg. # points CPU time error
Trevi Fountain trevi ∧ rome 466 370 114742 2.8 days 0.698
St. Basil’s basil ∧ red square 627 197 25782 3.8 days 0.816
Mt. Rushmore mount rushmore 1000 437 131908 10.2 days 0.444
Sphinx sphinx ∧ egypt 1000 511 130182 10.2 days 0.418
Hagia Sophia hagia sophia 1567 446 82880 12.2 days 0.395
Yosemite halfdome ∧ yosemite 1882 678 264743 23.8 days 0.757
Colosseum colosseum ∧ (rome ∨ roma) 1994 964 425828 23.3 days 1.360
Notre Dame notredame ∧ paris 2635 598 305535 36.7 days 0.616

Great Wall N/A 120 81 24225 0.3 days 0.707
Prague N/A 197 171 38921 0.5 days 0.731
Annecy N/A 462 420 196443 3.5 days 0.810

Table 3.2: Running times for each stage of the structure from motion pipeline. This table breaks out
the total CPU time into time spent (a) detecting features in each image (Feat. extract), (b) matching
features between each pair of images (Matching), and (c) structure from motion (SfM). The SfM
stage was run on a single machine with a 3.8GHz Intel Xeon processor, and the feature detection
and matching stages were run in parallel on ten such machines. The overall wall clock time spent
during reconstruction is shown in the last column.

Collection # images # reg. Feat. extract Matching SfM Total CPU Total wall
Trevi Fountain 466 370 1.6 hrs 2.0 days 15.6 hrs 2.8 days 20.7 hrs
St. Basil’s 627 197 2.1 hrs 3.7 days 1.2 hrs 3.8 days 10.3 hrs
Mt. Rushmore 1000 437 3.4 hrs 9.4 days 15.4 hrs 10.2 days 1.6 days
Sphinx 1000 511 3.4 hrs 9.4 days 15.7 hrs 10.2 days 1.6 days
Hagia Sophia 1567 446 5.2 hrs 11.7 days 6.6 hrs 12.2 days 1.5 days
Yosemite 1882 678 6.4 hrs 19.4 days 4.1 days 23.8 days 6.3 days
Colosseum 1994 964 6.8 hrs 18.9 days 4.1 days 23.3 days 6.3 days
Notre Dame 2635 598 9.0 hrs 33.1 days 3.2 days 36.7 days 12.7 days

Great Wall 120 81 0.3 hrs 3.2 hrs 2.5 hrs 0.3 days 2.8 hrs
Prague 197 171 0.4 hrs 8.7 hrs 2.2 hrs 0.5 days 3.1 hrs
Annecy 462 420 1.6 hrs 1.7 days 1.8 days 3.5 days 1.9 days
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easier to parallelize than SfM, and in practice matching (on 10 machines) often took less wall clock

time than SfM. Visualizations of these data sets are shown in Figures 3.10, 3.11, and 3.12.

These results demonstrate that the reconstruction system can robustly handle a variety of scenes:

indoor scenes such as the Hagia Sofia, natural scenes such as Half Dome and Mount Rushmore, and

urban scenes such as Annecy. However, these are just a small sample of the more than one hundred

collections that have been successfully reconstructed with my system. My system has also been

used by other researchers. Examples of reconstructions used in other systems, and the applications

they have helped enable, can be found in [2], [10], and [55]. The system has also been used to aid

in reconstruction of over twenty different scenes in Florence, Italy, for an installation by the artist

Marnix de Nijs [31], and is the original basis for Microsoft’s Photosynth [109], a online system for

reconstructing and viewing scenes that has been applied to thousands of photo collections.

3.6.1 Discussion

The image connectivity graphs shown in the third column of Figures 3.10-3.12 suggest that there is

a common pattern among Internet photo collections: they consist of several large clusters of photos,

a small number of connections spanning clusters, and a sparse set of leaves loosely connected to the

main clusters. The large clusters usually correspond to sets of photos from similar viewpoints. For

instance, the large cluster that dominates the Mount Rushmore connectivity graph are all images

taken from the observation terrace or the trails around it, and the two large clusters on the right side

of the Colosseum connectivity graph correspond to the inside and the outside of the Colosseum.

Sometimes clusters correspond not to viewpoint but to different lighting conditions, as in the case

of the Trevi Fountain collection (see Figure 3.4), where there is a “daytime” cluster, a “nighttime”

cluster, and a sparser set of links connecting the two.

The neato mass-spring system, used to embed the graph into the plane, acts in a way similar

to multidimensional scaling: similar images will tend to be pulled together, and dissimilar images

are pushed apart. This behavior can result in photos being laid out along intuitive dimensions. For

instance, in the large daytime cluster at the top of the connectivity graph for the Trevi dataset, as

well as the sparser cluster on the bottom, the x-axis roughly corresponds to the angle from which

the fountain is viewed.
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sample image reconstruction graph (matches) graph (reconstructed)

Figure 3.10: Sample reconstructed Internet photo collections. From top to bottom: Trevi, St.
Basil’s, Rushmore, and Sphinx. The first column shows a sample image, and the second col-
umn shows a view of the reconstruction. The third and fourth columns show photo connectivity
graphs, in which each image in the set is a node and an edge links each pair of images with feature
matches. The third column shows the photo connectivity graph for the full image set, and the fourth
for the subset of photos that were ultimately reconstructed.
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sample image reconstruction graph (matches) graph (reconstructed)

Figure 3.11: More sample reconstructed Internet photo collections. From top to bottom: Hagia
Sofia, Yosemite, Colosseum, and Notre Dame.
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Figure 3.12: Sample reconstructed personal photo collections. From top to bottom: Great Wall,
Prague, and Annecy. Each of these three photo collections were taken by a single person.
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While the graphs in the third column of Figures 3.10-3.12 represent the connectivity of entire

photo sets, the fourth column shows the subgraph the SfM algorithm was able to reconstruct. As

described in Section 3.2, the algorithm does not, in general, reconstruct all input photos, because

the input set may form separate connected components, or clusters that are too weakly connected

to be reliable reconstructed together. These subgraphs suggest that for unstructured datasets, the

reconstruction algorithm tends to register most of one of the main clusters, and can sometimes

bridge gaps between clusters with enough connections between them. For instance, in the Sphinx

collection, the SfM algorithm reconstructed two prominent clusters, one on the right side of the

graph, and one on the bottom. These clusters correspond to two sides of the Sphinx (the front and the

right side) which are commonly photographed; a few photos were taken from intermediate angles,

allowing the the two clusters to be connected. Similarly, in the Colosseum collection, two weakly

connected clusters corresponding to the inside and outside of the Colosseum were reconstructed. In

general, the more connected the image graph, the greater the number of images that can successfully

be registered.

For the controlled datasets (Annecy, Prague, and Great Wall), the photos were captured with

the intention of generating a reconstruction from them, and thus the images are more uniformly

sampled; as a result, the connectivity graphs are less clustered. In the Prague photo set, for instance,

most of the photos were taken all around the Old Town Square, looking outward at the buildings. A

few were taken looking across the square, so a few longer range connections between parts of the

graph are evident. The SfM algorithm was able to register most of the photos in these datasets.

3.7 Failure modes

While a large percentage of the time the SfM algorithm produces qualitatively good reconstructions,

it sometimes fails, resulting in bad, or no, geometry. I have observed four main failure modes:

1. Insufficient overlap or texture. The input images are simply too sparse, or too textureless,

for the system to find sufficient correspondences between the images.

2. Ambiguous, repeating textures. Many scenes, especially urban environments, exhibit repet-

itive textures or symmetry. While my algorithm does well on such scenes surprisingly often,

there are times when two parts of a scene are simply too similar, and are confused as identical
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objects.

3. Bad initialization. As described in Section 3.2, the reconstruction of the initial image pair is

critical; a bad start is almost impossible to recover from.

4. Cascading errors. Occasionally, the algorithm will make a mistake in the placement of a

camera. Such errors can propagate and be compounded further along the pipeline as points

and other images that depend on that view are added, leading to misestimation of large sec-

tions of a reconstruction.

I now discuss each of these failure modes, in turn.

Insufficient overlap or texture. To ensure enough overlap for reconstruction, a general rule of

thumb is that every point in the scene must be visible, and must be matched, in at least three images

(the “rule of three” [110]). Consider, for instance, a sequence of photos I1, I2, . . . , In of a row of

flat building facades, taken by a person walking down a city street. The rule of three implies that

pairs of images taken two apart, such as I1 and I3, must have some overlap, otherwise no point

would be visible in more than two images. Thus, each pair of neighboring images, such as I1 and

I2 must have more than 50% overlap.

Even when points are visible in enough images, they may not be linked up correctly due to

limitations in feature detection and matching. For instance, my algorithm cannot reconstruct a

complete scene from the images in the nskulla multi-view stereo data set, shown in Figure 3.13.12

Three representative neighboring images (labeled A,B, and C) are shown in the figure; feature

matches were found between A and B, as well as between B and C, but none were found between

A and C. These two images are taken too far apart; their rotation angle about the skull is too

large. Hence, there is no feature that was seen by A, B, and C at once—the rule of three is not

satisfied. This is true of many triplets in the collection, and this collection could not be reconstructed.

Interestingly, some multi-view stereo algorithms do well on this collection [54, 49].

Ambiguous, repeating textures. Many buildings exhibit a regularity that can confuse SfM. For

instance, the Florence Duomo, shown in Figure 3.14, has an overall shape which is largely symmet-

12The nskulla set is available at Yasutaka Furukawa’s collection of data sets at http://www-cvr.ai.uiuc.
edu/ponce_grp/data/mview/.
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Image A Image B Image C

Figure 3.13: Three neighboring images from the nskulla data set. The structure from motion algo-
rithm fails on this data set due to too little overlap between views. Images A and B have sufficient
matches, as do B and C, but A and C have too few. Having matches between triplets of views is a
requirement for the SfM algorithm.

Figure 3.14: Incorrect interpretation of the Florence Duomo. Left: an overhead view of the Florence
Duomo. Right: a reconstruction of the Florence Duomo from a collection of 460 images. The
Duomo is mistakenly “unwrapped,” with the north and south sides of the cathedral joined together
on the south side. That is, the north wall is erroneously reconstructed as an extension of the south
wall, and the west wall appears again on the east side of the reconstruction; these problem areas are
highlighted in red. This problem occurs because both sides of the dome area look very similar, and
are confused as the same side by the SfM algorithm.
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Figure 3.15: Erroneous matches between images of the Arc de Triomphe. The two images shown
are of opposite sides of the monument (note the differences in the large sculptures on the right side
of the images). Yet many features are extremely similar; lines are drawn between points mistakenly
identified as matches during correspondence estimation. The SfM algorithm merges the two sides
into one.

ric about its east-west axis, a dome which is symmetric about multiple axes, and a uniform striped

texture on all sides. The reconstructed Duomo appears to be nearly twice as long as the real Duomo.

What happened is that the matching algorithm matched images of the north side of the dome with

images of the south side of the dome; thus both sides of the dome become the same side—it is as if

the north side of the Duomo were picked up, rotated 180 degrees about the center of the dome, and

set back down. The north wall then extends out towards the right, and the west wall is mirrored on

the east side of the building.

Another example of erroneous matching is shown in Figure 3.15. As the figure shows, the two

sides of the Arc de Triomphe are quite similar, though not identical, and images of different sides

can occasionally have enough feature matches to be deemed matching images. My SfM algorithm

thus merges the two sides into one.

Bad initialization. Another source of error is erroneous initialization, due to the sensitivity of the

optimization to the reconstruction of the initial pair. There are two common ways the initialization

can fail:

1. Necker reversal. This problem is a generalized version of the well-known Necker cube illu-

sion in which a line drawing of a cube has two possible 3D interpretations. The same ambi-
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Figure 3.16: Example of Necker reversal on the dinosaur sequence. Left: two images from the
data set. Middle: the correct interpretation of the scene. The images are taken above the dinosaur,
looking down. Right: Necker-reversed solution. The images are reconstructed below the dinosaur,
looking up. The Necker-reversed dinosaur is (approximately) a reflection of the correct solution.
[Images used with thanks to Wolfgang Niem, University of Hanover, and the Oxford Visual Geom-
etry Group.]

guity arises in multiple orthographic views of a 3D scene; two different, stable interpretations

of the shape of the scene and positions of the cameras exist, hence there is an ambiguity in

the reconstruction. For perspective images, the symmetry of the two solutions is broken; the

correct interpretation will generally be the global minimum of the SfM objection function, but

the Necker-reversed solution may still be a strong, stable local minimum. If the initial image

pair is reconstructed with the incorrect, Necker-reversed solution, it is exceedingly likely that

the final solution will also be reversed. An example of a Necker-reversed reconstruction (of

the Oxford dinosaur sequence) is shown in Figure 3.16. When Necker reversal occurs, choos-

ing a different starting pair generally solves the problem; alternatively, the user can explicitly

tell the system to reverse the initial solution. Brown presents a different possible solution:

trying out both interpretations for the initial pair and choosing the two-frame reconstruction

with the lower reprojection error [15] to seed the rest of the reconstruction procedure.

2. Insufficient parallax. On occasion, the algorithm can pick a pair of images that have insuffi-

cient baseline to admit a well-conditioned reconstruction. Recall that to estimate the amount

of parallax between an image pair, I fit a homography to the feature matches, and compute the

percentage of points that are outliers. This estimate of parallax can sometimes be inaccurate;
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Figure 3.17: Cascading errors in the Colosseum. This overhead view of a reconstruction of the
Colosseum shows evidence of a large problem. The interior is well-reconstructed, but the outer wall
(the spray of points curving towards the top of the image) is jutting out from the interior at nearly
right angles. This problem occurred because the inside and outside of the Colosseum are very
weakly connected. The reconstruction began from the inside, and proceeded correctly until images
of the outside began being added; at that point a few mistakes occurred and were compounded as
the reconstruction of the outside grew. Interestingly, when the reconstruction is started from images
of the outside of the Colosseum, this problem does not occur (see the reconstruction in Figure 3.11),
suggesting that the order in which the images are added can make a difference.

for example, if a pair of images are taken close together (and therefore should be explained

by a homography), but there are a large number of spurious matches, many of these spurious

matches may be counted as outliers. Again, manually selecting a different starting pair can

often solve this problem.

Cascading errors. When the algorithm makes a mistake in placing a camera, that error can propa-

gate to later stages of the algorithm; points observed by that view can be triangulated wrongly, views

which are in turn initialized by erroneous points will be misestimated, and so on. An example of

this problem is shown in Figure 3.17, in which part of the Colosseum has been reconstructed quite

poorly (part of the outside wall is jutting out from the rest of the Colosseum at nearly right angles).

The most common reasons for this type of problem are twofold:
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1. Bad camera initialization. If a new camera views a relatively small number of 3D points

and enough of them are outliers, then the RANSAC algorithm for finding the initial pose of

the camera can fail, resulting in an initial estimate with significant error.

2. Large uncertainty. Related to the initialization problem is the problem of large uncertainty

in parameter estimates. Under certain circumstances, a camera can be initialized more or less

correctly, but will have large uncertainty. For instance, a new camera which views a set of

existing 3D points all clustered together in a small region of the image may not be estimated

with high certainty. As another example, consider a view whose pose is estimated using only

relatively distant points (on a building 100 meters away, say). Relative to the distance to

that building, the uncertainty in the position of this camera might be low—perhaps one or

two meters—but relative to much closer objects the uncertainty can be quite significant. If

the view is used to triangulate points on an object three meters away, the points may have

significant error (despite having low reprojection error). These problems can potentially be

avoided if the system were extended to model uncertainty in parameter estimates.

Once a problem of this sort occurs, it can result in the reconstruction breaking apart into two irrec-

oncilable pieces, one built before the mistake, and one after, as in the case of Figure 3.17, where the

inner and outer parts of the Colosseum have been reconstructed in seemingly unrelated coordinate

systems.

3.8 Conclusion

This chapter presented a structure from motion pipeline adapted to diverse collections of unordered

images, demonstrated results on several data sets, and discussed common failure modes. The main

contribution is the pipeline itself, the first to be demonstrated on large collections of photos obtained

from Internet search.

Scale is still a primary challenge with structure from motion. Several reconstructions described

in Section 3.6 took several days to compute; the Notre Dame reconstruction took nearly two weeks.

Most of the CPU cycles are concentrated in two parts of the pipeline: the pairwise matching stage

and the incremental SfM stage. Several researchers have investigated linear time methods for image

matching using bag-of-words models [104, 24] to help address the matching problem. To improve
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the efficiency of SfM , several existing techniques could be applied, such as the work of Steedly, et

al., on applying spectral partitioning to SfM to reduce the number of parameters.

However, one significant aspect of the scale problem for Internet photo collections is that such

collections are often highly redundant, with similar images appearing over and over again. Redun-

dant views contribute little additional information to the reconstruction, but weigh the optimization

down with extra parameters. In addition, such views lead to clusters of point tracks that are visi-

ble in many images, increasing the density of the reduced camera system. This increased density

tends to slow down the non-linear optimization engine even further. The next chapter introduces a

technique for reducing the amount of redundancy in a collection by intelligently selecting a subset

of images to reconstruct. This technique can significantly improve the efficiency of SfM on large

photo collections.
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Chapter 4

SKELETAL GRAPHS FOR EFFICIENT STRUCTURE FROM MOTION

The basic structure from motion pipeline presented in the previous chapter demonstrates the

possibility of adapting structure from motion (SfM) methods, originally developed for video, to

operate successfully on unstructured Internet photo collections. The logical final step is to run this

algorithm on the ultimate unstructured collection—all the images on the Internet. Unfortunately, the

reconstruction algorithm of the last chapter—and others in the current generation of unstructured

SfM methods [124, 15, 153]—simply do not scale to the thousands or tens of thousands of images

typical of image search results, let alone the billions of images on the entire Internet. Taking just

one example from Chapter 3, a single building, the Notre Dame cathedral, took nearly two weeks

to reconstruct from 2,600 photos, in an optimization involving over 300,000 points and nearly a

million parameters; a challenging task, and for just one building! While the pairwise matching

stage took a significant fraction of this time, linear-time image matching algorithms, based on ideas

from information retrieval, are beginning to appear [104, 24]. Thus, this chapter will focus on

the SfM stage. While there exist techniques for scalable SfM for video, such as sub-sampling

and hierarchical decomposition [46, 101], these are not directly applicable to Internet collections.

Internet collections have very different properties from video: not only they unordered, but they also

tend to be highly oversampled in some regions of popular viewpoints and undersampled in others,

as can be observed in some of the image connectivity graphs shown in the previous chapter.

Intuitively, however, the difficulty of reconstructing a scene should depend on the complexity

of the scene itself, not the number of images. For large Internet photo collections a much smaller

subset of images may be sufficient to represent most of the information about the scene. If we

could identify such a subset of views, we could focus our reconstruction effort on these images and

produce truly scalable algorithms.

The key technical problem is to identify a subset of views that maximizes the accuracy and com-

pleteness of a reconstruction while minimizing the computation time. This is of course a tradeoff:
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(a) (b) (c)

Figure 4.1: Image graph and skeletal graph for the Stonehenge data set. (a) A few images from the
Stonehenge data set. (b) The image graph G for the full set of images from this data set. The graph
forms a large loop due to the circular shape of Stonehenge, but is more densely sampled in some
regions than others. (c) A skeletal graph for G. This graph retains the same overall topology, but is
much sparser.

the more views we leave out, the faster we can reconstruct the scene, but the less complete and

accurate the reconstruction is likely to be.

Even expressing this tradeoff by translating high-level concepts like accuracy, completeness and

run time into mathematical objectives that can be optimized in the context of SfM is a challenging

problem. However, we can get an intuitive sense of this tradeoff by examining the image connectiv-

ity graphs in Figure 4.1. This figure shows a connectivity graph for a set of images of Stonehenge;

the full graph, not surprisingly, forms a ring, since people photograph Stonehenge from all sides.

This graph is quite dense in some regions (e.g., near the top of the graph), but much less dense in

others (such as the region near five o’clock). Now consider the graph on the right (which I refer

to as a skeletal graph). This graph is much sparser than the full graph, but still retains the overall

circular topology of the full graph and (nearly) spans the entire image collection; in some sense, it

captures most of the information in the full graph, with many fewer edges.

To turn this intuition into a concrete optimization problem, I make two approximations. First, I

optimize uncertainty instead of accuracy, since the former can be computed without knowledge of

ground truth geometry. Second, I use the number of images as a proxy for run time, which enables

an algorithm-independent measure of efficiency. Completeness is ensured via the constraint that the

skeletal set must “span” the full set and enable reconstruction of all the images and 3D points in the
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full set using pose estimation and triangulation.

I formulate this problem by representing the joint uncertainty or covariance of a collection of

images using a weighted version of the image connectivity graph, where each edge encodes the rel-

ative uncertainty in the positions of a pair of images. The distance between two images in this graph

represents an approximate measure of the amount of uncertainty or information content connecting

the images. The problem is then to determine a sparse skeletal subgraph with as many leaf nodes

as possible (i.e., a small set of core interior nodes) that spans the full graph and preserves distances

between images as much as possible. This formulation allows us to achieve a provable bound on the

full covariance of the reduced skeletal reconstruction.

To achieve the desired bound on covariance, for every pair of images, I compare their estimated

relative uncertainty in the original graph to the uncertainty in the skeletal graph, and require that the

latter be no more than a fixed constant t times the former. While this problem is NP-complete, I

develop a fast approach that guarantees this constraint on the covariance and in practice results in a

dramatic reduction in the size of the problem.

My experiments show that this approach increases efficiency for large problems by more than

an order of magnitude, still reconstructs almost all of the recoverable parts of an input scene, and

results in little or no loss of accuracy in the reconstruction.

Related work My approach is closely related to research on intelligent subsampling of video

sequences for SfM to improve robustness and efficiency [46, 101, 119]. The main difference in

my work is that I operate on unordered collections with more complex topology than typical linear

video sequences. Thus, my algorithm reasons about the structure of an image collection as a whole

(represented as a graph), rather than considering subsequences of an input video.

My work is also related to selecting a set of representative canonical views for an image collec-

tion for applications such as robot localization [11] or summarizing large image collections [130].

Also closely related is the work of Krause and Guestrin [80] on using the property of submodularity

to efficiently select a near-optimal subset from a large set of possible observations, where the goal

is to maximize the coverage of the observations for applications such as environmental monitoring.

In contrast to these previous applications, I am optimizing over a more complex set of criteria. I

not only want to maximize coverage, but also the accuracy of the reconstruction. This leads to a
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different set of requirements on the selected observations, described in Section 4.1.

Uncertainty analysis is of critical importance in robotics and other fields where an autonomous

agent is actively taking measurements to learn about its state and the state of its environment (called

active vision when the agent uses cameras). In mapping and exploration applications, a robot must

often keep track of not only its own state (position, orientation, etc.), but also its uncertainty in this

state, and make observations which help to minimize this uncertainty as much as possible. Thus,

researchers in active vision have studied the problem of selecting informative observations in an

online setting, in order to make most efficient use of available information. For instance, in [30],

Davison uses information value as a basis for selecting new measurements in a real-time tracking

application. My overall goal is similar, but I am given a large number of possible measurements

upfront, and select an optimal subset as a pre-process.

This chapter is organized as follows. In Section 4.1, I describe my approach for using uncertainty

as a basis for computing a skeletal graph. In Section 4.2, I discuss how I compute covariances for

image pairs, and in Section 4.3, I describe my algorithm for computing skeletal graphs. Finally, in

Section 4.4 I present results and analysis for several large image sets, and in Section 4.5 I describe

limitations and opportunities for future work.

4.1 Approximate uncertainty analysis using the image graph

Recall that SfM is the problem of building a reconstruction from a set of scene measurements (in

the form of feature correspondences) obtained from a collection of images. The algorithm described

in Chapter 3 uses all available measurements during scene reconstruction; the goal in this chapter

is to reduce the number of measurements as much as possible, while still recovering a high-quality

reconstruction.

How can we measure the quality of a reconstruction? Two desirable properties are completeness

and accuracy; a reconstruction should span all parts of the scene visible in the images and should

reflect the ground-truth scene and camera positions as closely as possible.

If completeness and accuracy were the only considerations, SfM should use all available mea-

surements; the more information, the better.1 However, efficiency is also important. For Internet

1Provided that the information fits our assumptions, e.g., independent measurements corrupted by Gaussian noise.
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image sets, this tradeoff is particularly relevant. Such collections typically contain large numbers

of popular, and therefore redundant, views, along with some rare, but important (for reconstruc-

tion) views. If this small set of important images could be identified, the scene could potentially be

reconstructed much more quickly.

The main question is how to choose the subset of measurements to use. For simplicity, rather

than considering individual measurements, I make decisions at the level of images. For each im-

age I either include or exclude its measurements as a group. I call the set of images selected for

reconstruction the skeletal set and roughly define the problem of selecting a skeletal set as follows:

given an unordered set of images I = {I1, . . . , In}, find a small subset S ⊂ I that yields a recon-

struction with bounded loss of quality compared to the full image set. Such a reconstruction will be

an approximation to the full solution. Moreover, it is likely a good initialization for a final bundle

adjustment, which, when run with all the measurements, will typically restore any lost quality.

To make this problem concrete, I must first define quality. Let us first consider the completeness

of a reconstruction, the property that it spans the entire image collection. A complete reconstruction

contains a camera pose for each image and a 3D point for each observed point track. However, it is

sufficient to consider completeness in terms of cameras only; if all cameras are recovered, it must

be possible to recover any observed point through triangulation. A reconstruction from the skeletal

set cannot by itself be complete, as any camera not in the skeletal set will be missing. However, if a

missing camera has significant overlap with an image in the skeletal set, it can likely be easily added

after reconstructing the skeletal set using simple pose estimation. The graph theoretic concept of

a dominating set (DS) captures this intuition. A dominating set of a graph G(V,E) is a subset of

nodes S ⊆ V such that every node in V is either in S or adjacent to a node in S. An example of a

dominating set is shown in Figure 4.2.

However, it is also important that the skeletal set be connected (assuming the input set is con-

nected), so that it yields a single reconstruction rather than several disconnected reconstructions.

A connected dominating set (CDS), or a dominating set that forms a single connected component,

fits this requirement. Finally, a minimum connected dominating set is a CDS of minimum size. In

this paper, I will use an equivalent definition of a minimum CDS called a maximum leaf spanning

tree (MLST). An MLST of a graph G is the spanning tree T with the largest number of leaves; the

interior nodes of T form a minimum CDS. The concepts of a dominating set, connected dominating
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Figure 4.2: Dominating sets and t-spanners. (a) An unweighted graph G. The nodes colored black
form a minimum dominating set. (b) A maximum leaf spanning tree (MLST) of G. The interior
nodes (colored black) form a minimum connected dominating set. Note that this graph is also a
4-spanner of G. (c) A 3-spanner of G. In this case, the skeletal set (the set of interior nodes, colored
black) has cardinality 5. This graph preserves distances in G more closely than the 4-spanner in (b).

set, and maximum leaf spanning tree are illustrated in Figure 4.2.

One possible way of choosing a skeletal set would thus be to find a MLST of the image connec-

tivity graph, and take the interior nodes as the skeletal set. While this would satisfy the completeness

property, such a skeletal set would not give any guarantees about the accuracy of the reconstruction.

Thus, let us next consider accuracy, i.e., the property that the recovered cameras and points should

be as faithful to the actual scene as possible. Without ground truth, it is impossible to measure

accuracy directly. However, it is possible to estimate the uncertainty of a reconstruction, which is a

statistical estimate of the accuracy.

Uncertainty describes the “looseness” of a system, or how easy it is to perturb the recovered

parameters. A stiff reconstruction, where small perturbations result in a sharp increase in repro-

jection error, has relatively low uncertainty. Many reconstructions, however, suffer from drift. For

instance, when running SfM on a set of images taken along a linear path (e.g., a set of images of

building façades taken while walking down a long city street), the recovered camera path may be

slightly curved rather than perfectly straight. This occurs because information from one end of the

camera path to the other must travel a large distance, and errors in the recovered camera positions

slowly accumulate along the length of the path. Another way to put the problem is that the system

is relatively “loose” along a certain mode of variation—bending the path slightly will not result in a
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large increase in reprojection error—and therefore the uncertainty in the reconstruction is relatively

high. If, on the other hand, the path of images forms a closed loop, rather than a linear chain, there

will tend to be less uncertainty in the reconstruction, as information must travel at most halfway

around the loop to connect any two images.

Uncertainty in a system is often modeled with a covariance matrix for the parameters being

estimated (in this chapter, I will use the terms “uncertainty” and “covariance” interchangeably). For

SfM, the covariance is rank deficient because the scene can only be reconstructed up to an unknown

similarity transform (translation, rotation, and scale). This freedom in choosing the coordinate

system is known as the gauge freedom [150]. Covariance can only be measured in a particular gauge,

which can be fixed by anchoring reference features, e.g., by fixing the location and orientation of

one camera, and constraining the distance to a second camera to be of unit length. Covariance is

highly dependent on the choice of gauge. In the example of the linear chain of images, if the first

camera is fixed, there is no uncertainty in its parameters, but there may be large uncertainty in the last

camera in the chain; conversely, if the last camera were fixed, the uncertainty in the first camera’s

parameters could be quite large. When fixing a given camera I and computing the uncertainty in

another camera J , we are really computing the uncertainty in J’s parameters relative to image I; or,

equivalently, how informative knowledge of the parameters of I is when estimating the parameters

of J .

For this reason, I do not measure uncertainty in a single gauge, but rather fix each camera

in turn and estimate the resulting uncertainty in the rest of the reconstruction; I want the relative

uncertainty between all pairs of cameras to be as small as possible, to preserve the information

flow in the camera network as much as possible. Since reconstructing the scene and measuring the

actual covariance would defeat the purpose of speeding up SfM, I approximate the full covariance

by computing the covariance in reconstructions of pairs of images and encoding this information in

a graph. The global connectivity and “stiffness” of this graph captures information about the global

uncertainty of the SfM system. I also only consider covariance in the cameras, and not in the points,

as the number of cameras is typically much smaller than the number of points, and the accuracy of

the cameras is a good predictor for accuracy in the points.

In particular, I define the image graph GI on a set of images I as the graph with a node for
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Figure 4.3: Modeling covariance with an image graph. (a) Each node represents an image, and each
edge a two-frame reconstruction. Edge (I, J) is weighted with a covariance matrixCIJ representing
the uncertainty in image J relative to I . (b) To estimate the relative uncertainty between two nodes
P and Q, we compute the shortest path between them by chaining up covariances (and taking the
trace at the end). In this graph, the shortest path is shown with arrows, and ellipses represent the
accumulated covariance along the chain. (c) If an edge is removed (in this case, the dashed edge),
the shortest path from P to Q becomes longer, and therefore the estimated covariance grows. (d)
A possible skeletal graph. The solid edges make up the skeletal graph, while the dotted edges
have been removed. The black (interior) nodes form the skeletal set S, and would be reconstructed
first, while the gray (leaf) nodes would be added using pose estimation after S is reconstructed.
In computing the skeletal graph, we try to minimize the number of interior nodes, while bounding
the maximum increase in estimated uncertainty between all pairs of nodes P and Q in the original
graph.

every image and two weighted, directed edges between any pair of images with common features.2

Without loss of generality, I assume that GI is connected (in practice, I operate on its largest con-

nected component). Each edge (I, J) has a matrix weight CIJ , where CIJ is the covariance in the

two-frame reconstruction (I, J) of the parameters of camera J when camera I is held fixed. In

general, CIJ could be a full covariance matrix with entries for both position and orientation. In

my implementation, I model only the positional uncertainty of a camera, so CIJ is a 3 × 3 matrix.

Figure 4.3(a) shows an example image graph with covariance weights.

For any pair of cameras (P,Q), GI can be used to estimate the uncertainty in Q if P is held

fixed, by chaining together covariance matrices along a path between P andQ. To compute the exact

covariance, information would need to be integrated along all paths from P to Q, and accumulated

according to the equations given by Smith and Cheeseman [134]. However, the shortest path from

P to Q gives an upper bound on the true covariance. Figure 4.3(b) illustrates this idea.

For the concept of “shortest path” to be well-defined, path lengths in GI must be scalar-valued,

rather than matrix-valued. I use the trace, tr(C), of the final covariance matrix as the scalar length

of a path. The trace of a matrix is equal to the sum of its eigenvalues, so it expresses the magnitude

2GI is a directed, weighted version of the image connectivity graphs introduced Chapter 3.
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of the uncertainty. It is also a linear operator, i.e. tr(C1 +C2) = tr(C1)+ tr(C2), and is invariant to

rotation. Thus, adding up covariance matrices and taking the trace at the end is equivalent to adding

up the traces of the individual covariances. I can therefore convert the covariance edge weights to

scalar values, wIJ = tr(CIJ).

The goal of the skeletal sets algorithm is to sparsify GI as much as possible. What happens

if we start removing edges from GI? As we remove edges, the lengths of some shortest paths

will increase, as illustrated in Figure 4.3(c). On the other hand, removing edges from GI yields a

skeletal graph GS that is more efficient to reconstruct. I estimate this efficiency by simply counting

the number of interior (i.e., non-leaf) nodes in GS , since once we reconstruct the interior nodes,

the leaves can easily be added in using pose estimation, and the leaves do not affect the overall

connectivity of the graph. The objective is therefore to compute a skeletal graph with as few interior

nodes as possible, but so that the length of any shortest paths (i.e., the estimated uncertainty) does

not grow by too much.

There is an inherent trade-off in this formulation: the greater the number of edges removed

from GI (and the greater the number of leaves created), the faster the reconstruction task, but the

more the estimated uncertainty will grow. I express this trade-off with a parameter, t, called the

stretch factor. For a given value of t, the skeletal graph problem is to find the subgraph GS with

the maximum number of leaf nodes, subject to the constraint that the length of the shortest path

between any pair of cameras (P,Q) in GS is at most t times longer than the length of the shortest

path between P and Q in GI . A subgraph GS with this property is known as a t-spanner [5]; thus,

the problem is to find a maximum leaf t-spanner. My algorithm for solving this problem is described

in Section 4.3. Examples of t-spanners (for an unweighted graph) are shown in Figure 4.2.

A t-spanner subsumes the property of completeness, since if a node in GS were to become

disconnected from the rest of the graph, some shortest path in GS would have infinite length. Fur-

thermore, the skeletal graph will tend to preserve important topological features inGI , such as large

loops, as breaking such structures will dramatically increase the distance between one or more pairs

of nodes.

My approach is based on a simplified probability model. In particular, I consider only positional

uncertainty, and use shortest path covariance as a bound on the full pairwise covariance. I make

these simplifications so that the cost of making decisions is significantly smaller than the time saved
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during reconstruction [30]. These approximations produce skeletal sets that yield remarkably good

reconstructions with dramatic reductions in computation time, as I demonstrate in the experimental

results section.

Modeling higher-level connectivity. One issue with the above problem formulation is that the

image graph GI is not a sufficiently expressive model of image connectivity for SfM. To see why,

consider three images A, B, and C, where A and B overlap, as do B and C, but A and C do not

(violating the “rule of three” described in Section 3.7). These nodes form a connected subgraph

in GI . However, these three images do not form a consistent reconstruction, because the scale

factor between the two-frame reconstructions (A,B) and (B,C) cannot be determined (recall the

problem with the nskulla data set in Section 3.7). In order to determine the scale factor, (A,B) and

(B,C) must see at least one point in common. Therefore, any path passing through nodes A,B,C

in sequence is not a realizable chain of reconstructions; I call such a path infeasible.

To address this problem, I define another graph, the image pair graph GP . GP has nodes for

every reconstructed pair of images, and edges between any two reconstructions that share common

features.3 GP is also augmented with a node for every image, and is constructed so that a path

between two images P and Q has the same weight as the analogous path in GI ; the only difference

is that only feasible paths can be traversed in GP .

More concretely, the vertex set of GP is {(I, J) | (I, J) is an edge in GI} ∪ I. Since GI is

directed, and each connected pair of nodes (I, J) in GI has edges in both directions, GP contains

a node for (I, J) and a node for (J, I). The edge set of GP contains two directed edges between

each pair of reconstructions (I, J) and (J,K) that have common features. The weight on edge

[(I, J), (J,K)] is wIJ . The sequence (I, J), (J,K) represents a path from I to J to K; however,

only wIJ is represented in the edge weight. Thus, I add an extra edge from (J,K) to the special

node K representing a terminal image in a path. Edge [(J,K),K] has weight wJK . There are also

edges from each terminal node I to each reconstruction (I, J); these edges have weight zero. An

example of an image graph and an image pair graph showing this construction is shown in Figure

4.4. To compute a shortest path between two nodes P and Q using GP , I find the shortest path

between the image nodes P and Q. Additionally, I add a constraint that such terminal image nodes

3Note that GP is closely related to the line graph of GI [65].
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can only appear at the ends of the path (i.e., another image node I cannot appear in the path from P

to Q), as otherwise it is possible to find infeasible paths through GP .

This higher-level connectivity imposes an addition constraint on the skeletal graph: it must yield

a single, feasible reconstruction. One way to express this is to define the embedding of a subgraph

GS of GI into GP as the subgraph of GP containing the nodes corresponding to the edges of GS ,

and any edges between these nodes. The embedding of GS into GP must be connected for the

skeletal graph to be feasible.

Overview of the reconstruction algorithm. The basic pipeline of the skeletal sets reconstruction

algorithm is as follows:

1. Compute feature correspondence for the images, as in Section 3.1.

2. Compute a pairwise reconstruction and covariance matrices for each matching image pair,

and create the graphs GI and GP (Section 4.2).

3. Construct a feasible maximum leaf t-spanner for GI (Section 4.3).

4. Identify the skeletal set and reconstruct it using the reconstruction algorithm of Chapter 3.

5. Add in the remaining images using pose estimation.

6. Optionally, run a final bundle adjustment on the full reconstruction.

4.2 Building GI and GP

As in the previous chapter, the first step is to finding correspondences by extracting SIFT features

from each image [90], matching features between each pair of images, and forming connected com-

ponents of matches to produce tracks. The matching step is extremely time-consuming on large

data sets, but researchers are making significant progress on matching [104, 24], and I anticipate

that much faster matching techniques will soon be available.

Once correspondences have been computed for an image collection, the next step of the skeletal

sets approach is to create the image graph GI and the pair graph GP . These graphs become the

input to the skeletal graph algorithm described in the next section. The algorithm computes GI

and GP in three stages: (1) it creates a two-frame reconstruction for every pair (I, J) of matching

images, removing duplicate images as it goes, (2) it computes the relative covariance matrices CIJ
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Figure 4.4: Pair graph construction. (a) An example image graph, with four images, showing the
overlaps between images (1,2), (2,3), (3,4), and (1,4). (b) A possible (simplified) pair graph for (a),
with a node for each pair of images. All pairs of reconstructions overlap, i.e., share some points in
common, except for pairs (2,3) and (3,4). (c) An augmented pair graph with edge weights shown;
the bold edges correspond to the edges in graph (b). This graph is augmented with a node for each
image, and allows for computation of lengths of feasible paths between images, with the constraint
that an image node (shown as a circle) can only appear at the ends of a path—only the bold edges of
this graph can be used in a path, except at the very beginning and very end of the path. For instance,
the only allowable path from image 2 to image 4 is a path through nodes 2,1 and 1,4. A path that
contains image node 1 or 3 is disallowed.

and CJI for each pair, and (3) it checks which pairs of two-frame reconstructions overlap (and are

therefore edges in GP ). These steps are now described in detail.

Two-frame reconstruction and duplicate detection. I first compute a reconstruction for each

matching image pair using the five-point relative pose algorithm of Nistér [102] inside of a RANSAC

loop. The five-point algorithm requires both cameras to be calibrated. Therefore, I only consider

images that have a focal length estimate encoded in their Exif tags (and assume that each camera

has unit aspect ratio, zero skew, and a principal point at the image center, as before). As described

in Section 3.2.2 of the previous chapter, the focal length estimates in Exif tags are typically off by

several percent (and are occasionally completely wrong); however, I have found that they are usually

close enough to give reasonable pairwise reconstructions. After estimating the relative pose for a
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pair, I triangulate matches that are inliers to the recovered two-frame reconstruction and run bundle

adjustment using the Sparse Bundle Adjustment package (SBA) [89]. If the average reprojection

error of a reconstruction is too high (I use a threshold of 0.6 pixels), I discard the reconstruction,

as these have usually been misestimated (due, for instance, to an erroneous focal length, or to other

factors described in Section 3.7, “Bad initialization”).

Once a pair has been reconstructed, I check whether the images are near-duplicates, i.e., whether

they have very similar image content, or if one is subsumed by other. The reason for this check is that

many images in Internet collections are very similar (and occasionally exactly identical), and much

work can be saved by identifying such near-duplicates early on. I consider image J to duplicate

image I if (a) they represent views taken very close together,4 and (b) all the images connected to

J in GI are also connected to I (so that node J can be collapsed into node I without affecting the

connectivity of the graph). If both of these criteria hold, it is likely that nearly all of the geometric

information in image J is also present in image I , and the algorithm removes J from consideration

(it will be added back in at the very end of the reconstruction process).

Without duplicate detection, the total number of pairs processed would be equal to the number

of matching images, which could be as high as O(n2) for n images. With duplicate detection, the

algorithm can often avoid processing many pairs. For instance, in the extreme case where all n

images are the same, I will only process n pairs, rather than n2. In practice, the total number of

pairs processed depends on the order in which they are considered; if many duplicates are removed

early on, fewer pairs will be processed. Therefore, observing that images that are more similar also

tend to have more matching features, I sort the pairs by number of matches, and consider those with

the most matches first. For the Internet collections I tested, typically about a third of the images are

removed as duplicates.

Covariance estimation. Once I have reconstructed a (non-duplicate) pair (I, J), I estimate the

relative covariances CIJ and CJI of the two camera positions. During bundle adjustment, SBA

uses the Schur complement to factor out the 3D point parameters and compute the Hessian HC

of the reduced camera system [150]. To estimate CIJ and CJI , I invert HC and select the blocks

4In particular, if the distance, dc, between the camera centers is small compared to the median distance, dp, between
the cameras and the reconstructed points (I use dc < 0.025dp).
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corresponding to the camera positions of I and J . However, because of the gauge freedom, HC is

a singular matrix, so I first add constraints to fix the gauge and make HC invertible. In particular,

to estimate CIJ , I fix the position and orientation of the reconstruction by constraining camera I

to be at the origin with an identity rotation. I also fix the scale of the reconstruction by adding a

soft constraint on the mean of the 3D points encouraging the mean point to stay at its current depth

with respect to the first camera (the mean is computed after removing very distant points; in my

implementation, I remove all points beyond 1.2 times the 90th percentile distance). An additional

penalty term equal to the difference between the target depth and current depth (weighted by a

constant; I use 2) is added to the objective function to enforce this constraint.5

With these constraints, HC is invertible, and can be used to compute CIJ . CJI is computed

analogously by fixing camera J (in general, the two covariances are not identical, i.e., CIJ �= CJI ).

Constructing the pair graph GP . After computing covariances for every image pair, I construct

the pair graph GP . Recall that every node of GP represents a pairwise reconstruction, and that an

edge connects every pair of overlapping reconstructions (I, J) and (J,K). The main remaining

task is to determine this set of edges, i.e., to compute which pairs of reconstructions are connected

by common points. To do so, I consider each triple of images (I, J,K) where (I, J) and (J,K)

are reconstructions. I find the intersection of the point sets of (I, J) and (J,K), then use absolute

orientation [69], inside a RANSAC loop, to find a similarity transform T between the two pairwise

reconstructions. If there are at least a minimum number of inliers to T (I use 16), the two directed

edges ((I, J), (J,K)), and ((K,J), (J, I)) are added to GP . The scale factors sijk and skji (where

sijkskji = 1) between the two reconstructions are also stored with each edge, so that the algorithm

can properly align the scales of adjacent reconstructions when computing shortest paths in GP , as

described in Section 4.3.4.

Finally, I augment the graph GP with nodes and edges for each image, as described in Section

4.1. Now, with GI and GP in hand, we are ready for the skeletal set algorithm.

5Another approach to fixing the scale is to constrain the distance between the cameras to be of unit length; however,
this will remove any uncertainty in the translation direction, and can therefore bias the covariance. In particular, for
image pairs where the translation is primarily “forward,” i.e. one camera is roughly in front of another, the uncertainty
is typically largest in the translation direction, therefore zeroing out this uncertainty will make such pairs look more
certain than they really are.
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4.3 Computing the skeletal set

As mentioned in Section 4.1, I formulate the problem of computing a skeletal set as that of finding

a (feasible) maximum leaf t-spanner of GI , called the skeletal graph, GS . The feasibility criterion

requires that the embedding of GS in GP must be connected. To ensure that this constraint is satis-

fied, my algorithm maintains data structures for both GS and its embedding in GP when computing

GS . Once GS is found, the skeletal set S is found as the set of interior nodes of GS .

Unfortunately, the problem of computing a minimum t-spanner for general graphs is NP-complete

[18], so it is unlikely that an exact solution to the maximum leaf t-spanner problem can be found

efficiently. To get around this, I have developed an approximation algorithm for computing GS

which consists of two steps. First, a spanning tree TS of GI is constructed. The construction of

TS balances computing a tree with a large number of leaves (a maximum leaf spanning tree) with

computing a tree with a small stretch factor (a t-spanner). Because no tree may have the desired

stretch factor of t, the second step is to add additional edges to TS to satisfy the t-spanner property.

I now describe these two steps in detail.

4.3.1 Constructing the spanning tree

I begin by describing a simple, greedy approximation algorithm for computing a maximum leaf

spanning tree (MLST) proposed by Guha and Khuller [61]. The idea behind the algorithm is to

grow a tree TS one vertex at a time, starting with the vertex of maximum degree.

Basic MLST algorithm. The algorithm maintains a color for each node. Initially, all nodes are

unmarked (white), and the algorithms proceeds as follows:

1. Let TS be initialized to the empty graph. Select the node v of maximum degree. Add v to TS ,

and color v black.

2. Add every unmarked neighbor of v, and the edge connecting it to v, to TS and color these

neighbors gray.

3. Select the gray node v with the most unmarked neighbors, color it black, and go to step 2,

until all nodes are black or gray.
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I first modify this algorithm to ensure that the constructed tree is feasible. To do so, I maintain a

parent for each node (except the first). The parent P (v) of a node v is the node that caused v to be

colored gray. In step 2 of the algorithm, I only color a neighbor u of v gray if the path (P (v), v, u)

is feasible. Similarly, in step 3, when counting unmarked neighbors of a node v I only consider

those for which (P (v), v, u) is feasible. These constraints guarantee that the reconstructed tree is a

feasible reconstruction.

4.3.2 Considering edge weights.

The basic MLST algorithm finds a spanning tree with a large number of leaves, but the stretch

factor of this tree could be arbitrarily high, and many extra edges may need to be added to reduce

the stretch factor to t. Thus, the spanning tree algorithm should ideally produce a tree with a stretch

factor as close to the target value of t as possible, so as to minimize the number of extra edges

required. It should therefore select nodes and edges that not only have high degree, but which are

also critical for keeping distances between nodes as short as possible. Some images and edges are

naturally more important than others. For instance, some nodes and edges might be on a large

number of shortest paths, and removing them may result in large growth in distances between many

pairs of nodes. On the other hand, some edges in a graph may not be along any shortest path, and

are therefore relatively unimportant. Therefore, I integrate a notion of node and edge importance

into the algorithm.

There are many possible ways of measuring the importance of a node to the global connectivity

of a graph. Many measures of the centrality of a node have been proposed, including betweenness

centrality, which measures the number of shortest paths that pass through a node, eigenvector cen-

trality (a variant of which is used in Google’s PageRank algorithm [106]), and closeness, which

measures the average distance from a node to every other node. These measures can be expensive

to compute, so in my algorithm, I take a very simple, local approach. I first measure the importance

of an edge (I, J) by computing the length of the shortest feasible path between I and J in GI (I

denote this length df (I, J ;GI)), and dividing by the weight of (I, J) itself:

imp(I, J) =
df (I, J ;GI)

wIJ
.
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Figure 4.5: Edge importance. A four-node region of an undirected graph is shown. The edge
weights are shown in normal typeface, and the importance of an edge is shown in red italics. Three
of the edges ((I,K), (J,K), and (K,L)) have an importance of 1, because each of these edges is
the shortest path between its endpoints. On the other hand, the shortest path between I and J is the
sequence (I,K,L, J), which has length 0.4, while the length of edge (I, J) itself is 0.8. Because
there is a path 0.5 times the length of (I, J), imp(I, J) = 0.5. Edge (I, J) would be removed from
the graph if the importance threshold τ > 0.5.

If the edge (I, J) is itself a shortest path between I and J , imp(I, J) = 1. Otherwise, imp(I, J) <

1, and the longer the edge is compared to the shortest path, the smaller imp(I, J) will be. Some

pairwise reconstructions (I, J) are naturally ill-conditioned, and a much higher certainty can be

achieved via a detour through one or more other images. Such edges receive a low importance

score. This definition of importance is illustrated in Figure 4.5.

While this is a much more local definition of importance than the others mentioned above, it has

several advantages. First, it is relatively efficient to compute. Second, it gracefully handles edges

that are almost shortest paths (unlike, e.g., the betweenness centrality measure, which would assign

an importance of zero to an edge that is almost, but not quite, a shortest path). Finally, there is a

connection between this measure of importance and the stretch factor of a graph, described below

(“Setting the importance threshold”).

Before running the basic MLST algorithm, I remove edges from GI that have an importance

score lower than a threshold τ , forming a pruned graph GI′. The degree of a node in GI ′ is then the

number of incident “important” edges, and is a better predictor for how important the node is than

its “raw” degree in GI .

Setting the importance threshold. How should the importance threshold τ be set? The tradeoff

is that with a very small threshold, very few edges will be pruned and the MLST algorithm will
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try to maximize the number of leaves in TS , without considering the stretch factor, as before. With

a larger threshold, more edges will be pruned, and it may be more difficult to create a tree with a

large number of leaves, but the stretch factor of the tree will likely be smaller. Is there a connection

between t and τ?

Yes. Consider the case when t = ∞. Any spanning tree of GI will satisfy this stretch factor, so

we need not prune any edges (τ = 0). Now consider a finite value of t, and suppose an edge (I, J)

has an importance score imp(I, J) < 1
t . I claim that this edge will not be included in a minimum

t-spanner of GI . To see why, first notice that, by the definition of importance, there must be a path

between I and J in GI that has length � < wIJ
t . Thus, a t-spanner GS of GI must contain a path

of length at most t · � between I and J . Edge (I, J) does not satisfy this requirement, because

w(I, J) > t · �. Therefore there must exist another, shorter path π between I and J in GS . As a

result, no shortest path in GS will contain edge (I, J), because a shorter path can be obtained with

a detour through π. Any t-spanner containing edge (I, J) will therefore not be minimal, as (I, J)

can be removed without changing the stretch factor.

Given this, we can safely remove from GI all edges (I, J) such that imp(I, J) < 1
t before

constructing the spanning tree TS ; none of these edges can appear in GS . In my implementation, I

use a larger importance threshold of τ = 4
t (clamped to a maximum of τ = 1), thereby removing a

larger number of weak edges.

4.3.3 From MLST to t-spanner

The tree TS computed above spans the entire graph, but may not be a t-spanner. To guarantee that

the stretch factor of the skeletal graph is at most t, additional edges may need to be added, forming

a graph GS with cycles. In order to determine which, if any, edges to add, the algorithm must first

test whether the target stretch factor has been met. How can we verify that a graph is a t-spanner?

One way would be to take every pair of nodes I and J , compute the shortest paths between I and J

in both GI and GS , and compare the lengths of the two shortest paths. However, it is not necessary

to check shortest paths between all pairs of nodes to verify that a subgraph is a t-spanner; it suffices

to only check shortest paths between all neighboring nodes (I, J) in GI . The reasoning behind this

is that if the distance between all neighboring nodes in a graph is dilated by at most a constant factor
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t, the distance between any two nodes must also be dilated by at most a factor t, because each edge

on the original shortest path can be replaced by a new path at most t times longer.

I therefore enumerate all edges of GI not included in the tree TS . For each edge (I, J), I

compute the feasible distance between I and J in both graphs, denoting these distances df (I, J ;GI)

and df (I, J ;GS). If t · df (I, J ;GI) < df (I, J ;GS), I add edge (I, J) to GS ; otherwise, I omit

the edge. Once this procedure is complete, all neighboring nodes (I, J) of GI must satisfy the

t-spanner property, and therefore GS must be a t-spanner of GI .

The set of edges added to GS depends on the order in which the edges are processed, since

adding a single edge can affect many shortest paths, obviating the need to add other edges later on.

Therefore, I first consider edges between nodes that are already on the interior of GS (i.e., the black

nodes of the MLST algorithm). I then follow the heuristic of Älthofer, et al., [5] and consider the

remaining edges in order of increasing covariance weight.

Putting it all together. Once GS has been augmented with the necessary edges, the skeletal set

S is selected as the set of non-leaf nodes of GS . The skeletal set is then reconstructed with the

incremental structure from motion technique described in the previous chapter. Next, the remaining

(leaf) images are added using pose estimation [68], forming a full reconstruction. Bundle adjustment

is then optionally run on the full reconstruction.

In summary, the skeletal sets algorithm has the following steps:

1. Compute feature correspondences for the images.

2. Compute a reconstruction and covariances for each matching image pair, and remove dupli-

cate images (Section 4.2). Create the graphs GI and GP .

3. Compute an importance score for each edge of GI , and prune edges with low importance

(Section 4.3.2)

4. Construct a MLST from GI (Section 4.3.1).

5. Add edges to guarantee the stretch factor (Section 4.3.3).

6. Identify and reconstruct the skeletal set.

7. Add in the remaining images using pose estimation.

8. Optionally, run bundle adjustment on the full reconstruction.
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4.3.4 Implementation of shortest path computation in GP .

Shortest paths are computed in two steps of the skeletal set algorithm: (1) step 3, computing the

importance of each edge in the graph, and (2) step 5, determining which edges must be added to TS

to achieve the stretch factor. These paths are computed in the graph GP so that only feasible paths

are considered.

The shortest path between two nodes in a graph G = (V,E) can be computed using Dijkstra’s

algorithm [35] in O(|E| + |V | log |V |) amortized time by using a Fibonacci heap [48] to find the

minimum-distance node in each iteration of the algorithm. I compute shortest paths in GP with a

modified version of this algorithm. The main difference comes from the fact that the covariance

weights on the edges of GP are derived from reconstructions in different coordinate systems, so the

covariances are not directly comparable. Thus, I use the scale factors computed when constructing

the pair graph to scale the edge weights during the shortest path computation (the edge weights

are scaled by the square of the scale factors, as the trace of a covariance matrix grows with the

square of the scene scale). In addition, for each image I , care must be taken to make sure that all

outgoing edges have weights measured in the same coordinate system. Therefore, as a preprocess

to the skeletal sets algorithm, for each image I I select a reconstruction (I, J) to be the canonical

coordinate system for I , and align all other reconstructions (I,K) to (I, J). Not all reconstructions

(I,K) may overlap with (I, J), but through transitivity most can be aligned (I remove any remaining

unaligned reconstructions).

Note that the shortest path algorithm can often be terminated early (i.e., it is not always necessary

to find the exact shortest path between two nodes). In the importance pruning stage, if at any time

a path between I and J in GI shorter than τ · wIJ is found, (I, J) can immediately be pruned.

Similarly, in the stretch factor stage, if any path between I and J in TS shorter than t ·wIJ is found,

we know that (I, J) can be omitted from TS .

4.4 Results and discussion

I have evaluated my algorithm on several large Internet photo collections of famous world sites (St.

Peter’s Basilica, Stonehenge, the Pantheon, the Pisa Duomo, Trafalgar Square, and the Statue of Lib-

erty). I obtained these data sets by doing keyword searches on Flickr and downloading the results.
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(a) (b) (c) (d)

(e)

Figure 4.6: Reconstruction of Stonehenge. (a) The full image graph for Stonehenge and (b) the
skeletal graph (for t = 16). The black (interior) nodes of (b) comprise the skeletal set, and the
gray (leaf) nodes are added in later. Note that the large loop in the graph is preserved. (The graph
layouts are not based on the physical position of the cameras, but are created with the neato tool in
the Graphviz package). (c) Aerial photo. (d-e) Two views of the Stonehenge reconstruction. The
reconstructions show the recovered cameras, rendered as small frusta, in addition to the point cloud.

(a) (b) (c) (d)

Figure 4.7: Reconstruction of the interior of St. Peter’s. (a) The full image graph for St. Peter’s
and (b) our skeletal graph (for t = 16). In this graph, white nodes represent images found to be
duplicates. These nodes are removed before computing the skeletal graph. (c) Overhead photo of
St. Peter’s. (d) The final reconstruction.
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Table 4.1: Data sets and running times. Each row lists: name, the name of the scene; # images, the
number of input images; largest cc, the size of the largest connected component of the image graph;
| S |, the size of the computed skeletal set; #reg full, the number of images registered in the full
reconstruction; #reg S, the number of images registered in the skeletal set reconstruction; rt full,
the running time of the full reconstruction; rt S, the running time of the skeletal set reconstruction,
including computing the pairwise reconstructions and the skeletal graph; rt S+BA, the running time
of the skeletal set reconstruction plus a final bundle adjustment. The columns in bold represent
the running times for the full reconstruction with both the baseline method and the skeletal sets
algorithm.

Name # images largest cc | S | #reg full #reg S rt full rt S rt S+BA
Temple 312 312 54 312 312 46 min 58.5 min 63.5 min
Stonehenge 614 490 72 408 403 276 min 14 min 26 min
St. Peter’s 927 471 59 390 370 11.6 hrs 3.54 hrs 4.85 hrs
Pantheon 1123 784 101 598 579 108.4 hrs 7.58 hrs 11.58 hrs
Pisa1 2616 1671 298 1186 1130 17.8 days 14.68 hrs 22.21 hrs
Pisa2 1112 1110 352 1101 1093 18.5 days 32.9 hrs 37.4 hrs
Trafalgar 8000 3892 277 - 2973 > 50 days 17.78 hrs 30.12 hrs
Liberty 20931 13602 322 - 7834 > 50 days 15.59 days N/Aa

aRunning bundle adjustment on the full reconstruction was not possible due to memory constraints.

I also tested on a second collection of images of the Pisa Duomo taken by a single photographer

with the express purpose of scene reconstruction (I refer to the Internet collection as Pisa1, and the

single-photographer collection as Pisa2). Finally, I evaluated the algorithm on the Temple data set.

This 312-image collection is taken from the multi-view stereo evaluation data of Seitz, et al. [128],

and was captured in the lab using the Stanford spherical gantry, so the camera poses are known (the

camera used was also calibrated, so the intrinsics are known as well). The images are regularly

sampled on a hemisphere surrounding a plaster reproduction of the Temple of the Dioskouroi.

I reconstructed each data set using the skeletal graph algorithm with a stretch factor t = 16.

Visualizations of the full and skeletal image graphs for the Stonehenge data set are shown in Fig-

ure 4.6, for St. Peter’s in Figure 4.7 and for the Pantheon in Figure 4.8. Note that the skeletal graphs

are much sparser than the original graphs, yet preserve the overall topology. For instance, the large

loop in the full image graph for Stonehenge is retained in the skeletal graph.

Figure 4.8 shows overhead views of the Pantheon during several stages of our algorithm; note

that both the inside and outside are reconstructed (connected by images that see through the door-
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(a) (b) (c) (d) (e)

Figure 4.8: Reconstructions of the Pantheon. (a) The full image graph for the Pantheon and (b) our
skeletal graph. The black (interior) nodes of (b) comprise the skeletal set, and the gray (leaf) nodes
are added in later. The Pantheon consists of two dense sets of views (corresponding to the inside
and outside), with a thin connection between them (views taken outside that see through the door).
Note how the skeletal set preserves this important connection, but sparsifies the dense parts of the
graph. (c) Reconstruction from the skeletal set only. (d) After using pose estimation to register the
remaining images. (e) After running bundle adjustment on (d).

way). Views of the reconstruction of Stonehenge are shown in Figure 4.6, St. Peter’s in Figure 4.7,

Pisa1 in 4.9, Pisa2 in Figure 4.10, and Trafalgar Square in Figure 4.11.

Table 4.1 summarizes the running time for each data set (excluding the correspondence esti-

mation stage). The running times reported for my algorithm are for the entire skeletal sets pipeline

(computing pairwise reconstructions, building the skeletal graph, and reconstructing the scene). For

Trafalgar and the Statue of Liberty (the largest sets), the baseline method was still running after 50

days.

The results show that the skeletal sets method (with the exception of the Temple dataset, to be

discussed shortly) reconstructs scenes significantly faster than the baseline method, and the perfor-

mance gain generally increases dramatically with the size of the data set. The speedup ranges from

a factor of 2 for St. Peter’s, to a factor of at least 40 for Trafalgar Square. At the same time, the

algorithm recovers most of the images reconstructed by the baseline method. A few images are lost;

most of these are very tenuously connected to the rest, and can mistakenly be pruned as infeasible

while building the skeletal graph. My method also works well on the set taken by a single person

(Pisa2), although the fraction of images in the skeletal set for this collection is higher than for the
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Figure 4.9: Several views of the Pisa1 reconstruction.

Figure 4.10: Overhead photo and view of the Pisa2 reconstruction.
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Figure 4.11: Views of the Trafalgar Square reconstruction, with images for comparison.
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(a)

(b)

Figure 4.12: Views of the Statue of Liberty reconstruction. (a) An overhead view of the reconstruc-
tion centered on the Statue. The point cloud itself is in the very center of the image, and the small
black triangles around the point cloud represent recovered cameras. Many photos were taken either
on Liberty Island itself or from boats out in the water. (b) Overhead view of the full reconstruction,
including parts of Manhattan on the right.
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Figure 4.13: Stretch factor analysis for St. Peter’s. Left: stretch factor vs. number of nodes in
the skeletal set. Right: median error (in meters) in camera position for reconstructions before and
after final bundle adjustment. As the stretch factor increases, the error before bundling increases,
but applying bundle adjustment results in a low error level (around 6-8cm; note that the nave of the
cathedral is about 24m across), even for stretch factors as large as 30.

Internet sets, due to the more regular distribution of photos.

For most of the data sets, the algorithm spent more time in reconstruction than in building the

skeletal graph; for a few particularly dense sets (e.g., the Pantheon), the preprocessing took more

time (for the Statue dataset, the pairwise reconstructions took over 90% of the reconstruction time).

This was also true for the Temple data set, the only set for which the baseline method outper-

formed the skeletal set algorithm. Because of the high density of images, there are a large number

of overlapping pairs, yet few pairs that match my definition of duplicate. Hence, a large amount

of time (approximately 55 minutes) was spent creating pairwise reconstructions. In contrast, once

the skeletal set was computed, the full model was reconstructed in just 9 minutes, compared to 64

minutes for the baseline reconstruction. The baseline reconstruction still took less time, however,

due to the length of time taken in computing pairwise reconstructions. There is significant opportu-

nity to speed up this step, for instance, through parallelization (each pairwise reconstruction can be

computed independently), or through a more efficient implementation of RANSAC.

Next, I analyze the tradeoff between the stretch factor t and the accuracy of the reconstruction.

To evaluate this tradeoff, I took one of the data sets (St. Peter’s) and reconstructed it with multiple

values of t. There is no ground truth reconstruction for this data set, so I used the reconstruction

obtained from running the baseline method on the full image set as a standard by to measure ac-
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Figure 4.14: Stretch factor analysis for the Temple data set. The graph on the left plots the number
of images in the skeletal set for several values of the stretch factor t. The graph on the right plots
the average distance between the reconstructed and ground truth camera centers for these values
of t, showing average error (in cm) both before and after a final bundle adjustment. Note that the
error before bundle adjustment, while noisy, tends to increase with the stretch factor, but the error
after bundle adjustment stays roughly constant. I also ran SfM with the full set of input images,
and plot the error as a baseline. This data set is very controlled and regularly sampled compared
to the Internet collections, and the behavior as t changes is somewhat different than the St. Peter’s
collection. For instance, even for the largest values of t we tried, the initialization provided by the
skeletal reconstruction was close enough to the correct solution for the final bundle to pull it to the
right place.

curacy. (This baseline reconstruction, which uses all available information, should in theory have

the highest accuracy.) For each value of t, I first aligned the resulting reconstruction to the baseline

reconstruction by finding a similarity transform between corresponding points. I then computed the

distances between corresponding cameras, both before and after a final bundle adjustment. Figure

4.13 shows the results, plotting the size of the skeletal set, and the median error in camera position,

for several values of t. As t increases, the size of the skeletal set decreases, and the error before

the final bundle adjustment increases. However, applying the final bundle results in a low, relatively

constant error level (in this case, a median error between 6-8cm for a building about 24m in width),

even for stretch factors as large as 30, at which point only 10% of the images are used in the skeletal

set. For even larger stretch factors, however, the bundled solution begins to degrade, because the

initialization from the skeletal set is no longer good enough to converge to the correct solution.

I then ran the same experiment on the Temple dataset (this time comparing to the known ground

truth, rather than the results of the baseline method). Figure 4.14 shows the results. The error before
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the final bundle adjustment is noisy, but tends to generally increase with the stretch factor; the error

after bundle adjustment stays roughly constant, even for the largest stretch factors I tried. This data

set is very controlled and regularly sampled compared to the Internet collections, and the behavior

as t changes is somewhat different than the St. Peter’s collection. For instance, even for the largest

values of t I tried, the initialization provided by the skeletal reconstruction was close enough to the

correct solution for the final bundle to pull it to the right place.

4.5 Conclusion

I have presented an algorithm for reconstructing Internet photo collections by computing a skeletal

graph, and shown that this method can improve efficiency by up to an order of magnitude, with

little or no loss in accuracy. There are also many interesting avenues for future work. First, my

experiments indicate that a bottleneck in the algorithm is the computation of the two-image recon-

structions and covariances for each pair of matching images. This step could easily be made much

faster through paralellization, but are also other potential ways to improve efficiency. For instance,

if a lower bound on, or an approximation to, the covariance for a pair of images could be computed

quickly, it might be possible to compute the skeletal set and the pairwise reconstructions at the same

time, only computing exact edge weights when required. An online approach to creating the skeletal

set would also be interesting in cases where new images are coming in all the time (as is the case

with the Internet), and should be incorporated into existing reconstructions. Many of these new

images would likely contain redundant information, and need not be added to the skeletal set, but

others may be desirable to strengthen or extend the current skeletal set.

It would also be interesting to create a more sophisticated model of uncertainty, e.g, taking

uncertainty in camera orientation, and perhaps in scene structure, into account, or by considering

multiple paths between image pairs. It could also be fruitful to work with triples, rather than pairs,

for convenience in representing connectivity and improved robustness.
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Part II

NAVIGATION AND VISUALIZATION OF 3D PHOTO COLLECTIONS

In Part I of this thesis, I described my approach to recovering the geometry of large, unstructured

photo collections. This capability can enable a host of applications, e.g., taking 3D measurements

of objects, studying the behavior of photographers, and analyzing images for use in forensics. How-

ever, one of the most exciting applications, and the focus of Part II, is to automatically recreate the

experience of the world’s famous places from photos on the Internet and to build new 3D interfaces

for immersively exploring and interacting with our world.

What should such interfaces look like? The answer is not immediately clear, because these

reconstructions really combine two intertwined artifacts—photos and scenes—each of which are

interesting to explore in isolation. In a photo collection, each individual photo was carefully com-

posed and captured to tell a story or record a moment of some sentimental or aesthetic importance

to the photographer. The photos themselves are therefore worthy of examination, not only to the

photographer, but potentially to their larger circle of friends and family or to the world as a whole.

Photo-sharing sites like Flickr and SmugMug have built up communities of people who share pho-

tos with one another and view, comment on, and tag each others photos, validating the idea that

photographs can be artifacts of value to many people, even complete strangers. The second artifact

is the underlying scene that is reconstructed. Scenes—examples of which include the Taj Mahal,

the Pantheon in Rome, Yosemite National Park, and one’s own home—are also interesting and

can be meaningful for aesthetic, historical, and personal reasons. Thus, within these reconstructed

collections, there are two interrelated tasks to consider:

1. Photo browsing: getting an overview of a photo collection, finding specific images, and

viewing and sharing progressions of photos (telling stories).

2. Scene exploration and understanding: building a mental map of a place, finding specific

objects, rooms, or views, and learning the names of and facts about particular parts of a scene.

In my work, I have created interfaces that address both of these tasks together. For each of these



98

tasks, I argue that there are elements of the other that can be beneficial. For photo browsing, placing

the user inside of a 3D scene to immersively interact with a photo collection can aid in understand-

ing the physical relationships between different photos and allow for the creation of new types of

geometric search controls that help find photos of specific objects or viewpoints. I also believe that

putting photos together in a single, consistent 3D world can help strengthen photo communities like

Flickr, by placing and relating the community’s photos together in a way that makes it easier see

how they fit together. On the other hand, for the task of scene exploration, the very fact that photos

are meant to be interesting means that the statistics of large photo collections, taken by many dif-

ferent people, can reveal a great deal of information about the underlying scene; for instance, what

parts of the scene seem important, how people tend to move around in the scene, and the locations

of individual objects.

I explore these issues in the next two chapters, which describe two new systems for exploring 3D

photo collections. In Chapter 5, I describe the Photo Tourism system, an immersive photo browser

that uses 3D information to provide new geometric controls for exploring and annotating large

photo collections. In Chapter 6, I describe Pathfinder, a scene exploration tool that uses large photo

collections for rendering, and which automatically discovers interesting, scene-specific navigation

controls by analyzing the distribution of views in the input collections. While these two systems

look at two sides of a coin, they are very much related—they both take the same input, and neither

one is purely about photo browsing, or purely about scene understanding. Rather, both examine the

ways in which these two tasks complement each other.

Two critical components of both systems are rendering (how to effectively display the scene

and create good transitions between images) and navigation (how to browse the photos and ex-

plore the scene). For the problem of rendering, the sparse points produced by SfM methods are by

themselves very limited and not always effective for rendering a scene. Nonetheless, I demonstrate

that camera information and sparse geometry, along with new morphing, image stabilization, and

non-photorealistic proxy rendering techniques, are sufficient to provide compelling scene render-

ings and view interpolations. Likewise, the unstructured nature of the photo collections can make it

difficult to provide the free-viewpoint navigation controls found in games and 3D viewers, or even

the simplified 3D controls in applications like Google Street View. For both systems, I describe new

techniques for creating simple, easily-understood controls for unstructured collections.
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Chapter 5

PHOTO TOURISM: AN IMMERSIVE 3D PHOTO BROWSER

How can we build a better photo browser for collections of photographs for which we know

exactly where each photo was taken, and in which direction it was looking, and have a sparse 3D

model of the scene? The reconstruction algorithms of Part I of this thesis present us with this

opportunity, and this chapter presents a 3D photo browser called Photo Tourism that addresses this

question.

In many ways Photo Tourism is primarily a photo browser. It has tools for searching for images,

playing slideshows, and tagging images, and the emphasis of the system on moving the user from

one photo to another. However, it combines these common photo browsing features with several

elements of 3D navigation. First, the primary view is a window into a virtual world where the

user is moving around in 3D among the reconstructed photos. Second, the search controls include

new geometric and object-based controls, which make it easier to find photos of particular views

or objects. Finally, the reconstructed 3D information is used to produce attractive 3D transitions

between images, which highlight the spatial relationships between photos. Such transitions can be

much more powerful and evocative than the cross-dissolves used in traditional photo browsers.

In addition to navigation and rendering, semantics plays an important role in photo browsing. It

is often useful or interesting to learn more about the content of an image, e.g., “which statue is this?”

or “when was this building constructed?”—things someone familiar with the content of the photos

might be able to tell us. A great deal of annotated imagery of this form already exists in guidebooks,

maps, and Internet resources such as Wikipedia [158] and Flickr. However, the images in your own

personal collection, a random photo on the web, or the image you may be viewing at any particular

time (e.g., on your cell phone camera) may not have such annotations, and a tour guide may not

be readily available. A very powerful feature of Photo Tourism is the ability to transfer annotations

automatically between images, so that information about an object in one image can be propagated

to all other images that contain that same object.
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System overview. The input to Photo Tourism is the scene and camera geometry recovered from

the structure from motion (SfM) algorithms described in Chapters 3 and 4. Recall from Chapter 3

that this geometry consists of:

1. A set of cameras, C = {C1, C2, . . . , Ck}, each with a corresponding image image Ij and a

set of viewing parameters Cj .

2. A set of 3D points P = {p1, p2, . . . , pn}, each with a color and a position Xi.

3. A set of line segments L = {l1, l2, . . . , lm}.

4. A 3D plane, Plane(Ci), for each camera Ci, fit to the 3D points seen by that camera.

5. A 3D plane, CommonPlane(Ci, Cj), for each pair of overlapping cameras Ci and Cj .

Photo Tourism consists of three main components. The first is the rendering engine. While the

user is often looking at a single photo, as in any other photo browsing tool, the user really exists in

a 3D world and can view the scene from any angle. In addition, when the system transitions from

one image to another, it physically moves users between the two, as if they were flying between the

images in 3D. In addition to camera motion, these transitions use a specialized rendering algorithm

for morphing between pairs of photographs. Users are not strictly confined to the photos, however,

and can also choose to move freely through the scene, which is rendered using the recovered points

and line segments. These rendering techniques are described in Section 5.1.

The second component of Photo Tourism consists of the navigation interface for exploring and

searching for photos. There are four kinds of controls: zooming controls for finding details, similar

views, or broader perspectives of a given photo; directional controls for finding photos that show

more in a particular direction; object-based controls for finding views of a specific object; and regis-

tered slideshows for viewing a sequence of related images. These navigation controls are described

in Section 5.2.

The final component of Photo Tourism consists of tools for scene annotation and enhancement.

A user can label an object in one image and have that label propagate to all other relevant images. In

addition, a user can also augment a scene with additional photos, which are automatically registered

to the reconstructed scene. These capabilities are described in Section 5.3. Finally, Section 5.4

(and especially the companion video on the project webpage [108]) presents results, and Section 5.5

concludes with a discussion of the system.
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(a) (b)

Figure 5.1: Screenshots from the Photo Tourism viewer. Left: when the user visits a photo, that
photo appears at full-resolution, and information about it appears in a pane on the left. Results of
search operations appear in the thumbnail pane on the bottom of the screen, and an overhead map
is shown on the upper-right side of the screen. Right: a view looking down on the Prague dataset,
rendered in a non-photorealistic style.

5.1 Rendering scenes and transitions in Photo Tourism

This chapter describes the visual user interface and rendering components of the Photo Tourism

system. Figure 5.1 (left-hand side) shows a screenshot from the user interface. The elements of

this window are the main view into the scene, which fills the window, and three overlay panes: an

information and search pane on the left, a thumbnail pane along the bottom, and a map pane in the

upper-right corner.

The main view shows the world as seen from a virtual camera controlled by the user. This view

is not meant to show a photo-realistic rendering of the scene (unless the user is situated directly at a

photo), but rather to display photographs in spatial context and give a sense of the geometry of the

true scene.

The information pane appears when the user visits a photograph. This pane displays information

about that photo, including its name, the name of the photographer, and the date and time when it

was taken. In addition, this pane provides access to geometric controls for searching for other

photographs with certain relations to the current photo.

The thumbnail pane shows the results of search operations as a filmstrip of thumbnails. When
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the user mouses over a thumbnail, the corresponding image Ij is projected onto Plane(Cj) to show

the content of that image and how it is situated in space. The thumbnail panel also has controls for

sorting the current thumbnails by date and time and viewing them as a slideshow.

Finally, when a reconstruction has been aligned to a map, the map pane displays an overhead

view of the scene. The map tracks users’ position and heading as they move through the scene.

5.1.1 Rendering the scene

While the main emphasis in Photo Tourism is directing users towards photos, the system also can

render the scene using the point, line, and plane geometry recovered from SfM, as shown in the

right-hand side of Figure 5.1. This scene is rendered by drawing the reconstructed points and lines.

In addition, the interface supports a non-photorealistic rendering mode that provides more attractive

visualizations. This mode creates a washed-out rendering designed to give an impression of scene

appearance and geometry, but is abstract enough to be forgiving of the lack of detailed geometry. To

generate the rendering, the system projects a blurred, semi-transparent version of each image Ij onto

Plane(Cj), using alpha blending to combine the projected images together to create a watercolor

effect.

The cameras themselves are rendered as small wire-frame pyramids with a solid back face.

If the user is visiting a camera, the back face of that camera pyramid is texture-mapped with an

opaque, full-resolution version of the photograph, so that the user can see it in detail, as shown

in the left-hand image of Figure 5.1. The back faces of other cameras are texture-mapped with a

low-resolution, semi-transparent thumbnail of the corresponding photo.

5.1.2 Transitions between photographs

Another important component of Photo Tourism is the ability to render transitions between photos.

While traditional 2D photo browsers typically use simple cuts or cross-fades to transition between

two photos, the accurate geometric information provided by SfM allows Photo Tourism to use 3D

camera motion and view interpolation techniques to make transitions more visually compelling and

to emphasize the spatial relationships between photographs.
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Camera motion. During a transitions between two camerasCstart andCend, the system moves the

virtual camera along a path between the endpoints (linearly intepolating the locations and rotations,

represented using quaternions). The field of view of the virtual camera is also interpolated so that

when the camera reaches its destination, the destination image will fill as much of the screen as

possible, while still remaining wholly within the field of view. The timing of the camera motion is

non-uniform, easing in and out of the transition to maintain second-order continuity [83].

If the camera moves as the result of an object selection (as described in Section 5.2.3), the

transition is slightly different, and tries to keep the object of interest centered in the field of view.

Before it begins moving, the virtual camera is first oriented to point at the mean of the selected

points. As the position of the camera is then interpolated towards the destination image, the camera

orientation is updated so as to keep the selected object fixed in the center of the view. The final

orientation and focal length are computed so that the selected object is centered and fills the screen.

View interpolation. While the camera is moving during a transition, the system also interpolates

or morphs between the two photos to create in-between views; this interpolation smooths the visual

transition between the two images. To do the interpolation, I first compute projection surfaces onto

which the images will be projected during the transition. Then, as the camera moves from Cstart

to Cend, image Istart is slowly faded out as Iend is faded in, both projected onto their respective

projection surface. One way to imagine the process is to think of the cameras Cstart and Cend as

two slide projectors, each projecting onto a screen placed in the scene. During the camera motion,

the first projector is slowly turned off, as the second is turned on. If the projection surfaces are

close to the actual scene geometry, the effect of this transition is to visually align the two images as

the cross-fade occurs. Combined with the camera motion, this alignment can create a strong sense

of both the physical and visual relationships between the two views. The effect can also be quite

visually striking, especially when morphing between photos with very different appearances, such

as daytime and nighttime.

Photo Tourism supports two types of projection surfaces: (1) planes and (2) polygonal meshes

created from triangulating the point cloud. When planar projection surfaces are used, a single com-

mon plane is computed for the two images used in the transition. When polygonal meshes, two

meshes are used for each transition, one for each image. Figure 5.2 illustrates how transitions work
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when planar projection surfaces are used.

Planar projection surfaces. In this mode, CommonPlane(Cstart, Cend) is used as a com-

mon projection surface for the two images. Though a plane is a very simple geometric object and

this method tends to stabilize only a dominant plane in the scene, this technique can still produce

compelling transitions, particularly for urban scenes, which are often composed of planar surfaces.

Polygonal meshes. In this mode, a triangulated mesh is created for each of the two images in-

volved in the transition. To create the meshes, I first compute a 2D Delaunay triangulation for image

Istart from the set of 2D projections of Points(Cstart) into Istart. The projections of Lines(Cstart)

into Istart are also imposed as edge constraints on the triangulation [22]. The resulting constrained

Delaunay triangulation may not cover the entire image, so I overlay a grid onto the image and add

to the triangulation each grid point not contained inside the original triangulation. Each added grid

point is associated with a 3D point on Plane(Cstart). Thus, we now have a set of triangulated 2D

points that covers the image plane, and a corresponding 3D point for each 2D point. An example

triangulation is shown in Figure 5.4. The 2D triangulation is then used to create a 3D mesh, by

triangulating the 3D points using the same connectivity as their 2D counterparts. This mesh is used

as the projection surface for Istart. I compute a second projection surface for Iend in an analogous

way.

During the transition, each of the two images is projected onto its own projection surface. The

depth buffer is turned off to avoid popping due to intersections between the two projection surfaces.

While the meshes are fairly coarse and are not a completely accurate representation of the scene

geometry, they are often suitable as projection surfaces and sufficient to give a sense of the 3D

geometry of the scene. For instance, this approach works well for many transitions in the Great

Wall data set. However, missing geometry, spurious points, and the projection of people and other

foreground elements onto the mesh can often cause distracting artifacts. In my experience, the

artifacts resulting from planar projection surfaces are usually less objectionable than those resulting

from meshes, perhaps because we are accustomed to the distortions caused by viewing planes from

different angles from our experiences in everyday life. Thus, planar impostors are used as the default

projection surfaces for transitions. Example morphs using both techniques are shown in the video
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(a) (b)

(c) (d) (e)

Figure 5.2: Transitions between images. This figure illustrates how Photo Tourism renders transi-
tions between images (using a planar projection surface). (a) Given two registered images A and B
and the recovered point cloud, a common plane is computed for the image pair by (b) finding the
points visible to both images (colored red), and fitting a plane, denoted CommonPlane(A,B) to
these points. For architectural scenes, such planes tends to coincide with walls of buildings, which
are often nearly planar. Parts (c)-(e) show three moments in time during the transition from A to
B. The system starts with the virtual camera at the location of image A (c), and treats A and B as
slide projectors projecting onto CommonPlane(A,B). Initially, projector A is turned completely
on, and projectorB is completely off. The system then moves the virtual camera fromA toB, while
turning off projector A and turning off projector B. (d) Midway through the transition, the virtual
camera is halfway between A and B, and both projectors are projecting at 50% opacity, hence the
projected image is a blend of A and B. (e) The end of the transition, with the virtual camera at
B and projector B turned completely on. If the plane is close to the plane of the front wall of the
house, that part of the scene will be stabilized during the transition.
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(a) (b) (c)

Figure 5.3: Frames from an example image transition. Images (a) and (c) are two photos from the
Prague data set. Image (b) is the midpoint of a transition between (a) and (c), rendered using a
planar projection surface. In this case, the building on the right in image (a) is stabilized.

Figure 5.4: Delaunay triangulation of an image. Left: an image from the Great Wall data set.
Right: Delaunay triangulation of the points seen by the image, augmented with points placed on a
coarse grid over the image.
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on the project website [108].

Special cases for planar projection surfaces. When planar projection surfaces are used, there

are a few situations that must be handled as special cases. First, if Cstart and Cend observe no

common points, CommonPlane(Cstart, Cend) is undefined, and the system has no basis for creating

a projection surface for the images. In this situation, the system reverts to rendering the transition

using points, lines, and textured planes, as in Figure 5.1(b), rather than using the images.1

Second, if the normal to CommonPlane(Cstart, Cend) is nearly perpendicular to the viewing

directions of Cstart or Cend, the projected images undergo significant distortion during the morph.

In this case, I instead use a plane which passes through the mean of Points(Cstart)∩Points(Cend),

whose normal is the average of the viewing directions of the two cameras. Finally, if the vanishing

line of CommonPlane(Cstart, Cend) is visible in either Istart or Iend, it is impossible to project the

entirety of Istart or Iend onto the plane; imagine turning on a slide projector in an infinite room, and

observing how much of the slide projects onto the floor—there is a problem because the horizon of

the room (the vanishing line of the floor) is visible to the slide projector. In this case, I project as

much as possible of Istart and Iend onto the plane, and project the rest onto the plane at infinity.

5.2 Navigation in Photo Tourism

Photo Tourism supports several different types of controls for navigating through the scene and

finding interesting photographs. These include free-flight navigation, geometric and object-based

search tools, and a stabilized slideshow viewer.

5.2.1 Free-flight navigation

The free-flight navigation controls include standard controls for 3D motion found in games and 3D

viewers. The user can move the virtual camera forward, back, left, right, up, and down, and can

control pan, tilt, and zoom. This allows the user to freely move around the scene and provides a

simple way to find interesting viewpoints and nearby photographs.

At any time, the user can click on a camera pyramid in the main view, and the virtual camera

1Chapter 6 introduces a path planning algorithm that gets around this problem by using multi-image transitions.
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will smoothly move until it is coincident with the selected camera. The virtual camera pans and

zooms so that the selected image fills as much of the main view as possible.

5.2.2 Selecting related views

When visiting a photograph, the user has a snapshot of the world from a single point of view and

a single instant in time. The user can pan and zoom to explore the photo, but may also want to see

aspects of the scene beyond those captured in a single picture. He or she might wonder, for instance,

what lies just outside the field of view, or to the left of the objects in the photo, or what the view

looks like at a different time of day.

To make it easier to find such related views, the interface provides the user with a set of geometric

browsing controls. These controls find photos with certain spatial relationships, and fall into two

categories: zooming controls for selecting the scale at which to view the scene, and directional

controls for seeing more in a particular direction (e.g., left or right). Icons associated with these

controls appear in two rows in the information pane that appears when the user is visiting a photo.

Zooming controls. Photo Tourism supports three zooming controls: (1) finding details, or higher-

resolution close-ups, of the current photo, (2) finding similar photos, and (3) finding zoom-outs, or

photos that show more surrounding context.

Let Ccurr be the photo the user is currently visiting. How can we identify photos that depict

the current view at different scales? One approach would be to find photos taken from a similar

location, but with different zoom settings. However, the intent of these controls are to show the

content of the image at different levels of detail, rather than to keep the view itself absolutely fixed.

For instance, an image taken twenty meters backwards from Ccurr with the same zoom setting may

be just as good a zoom-out as an image taken at the same location as Ccurr with a wider field of

view. Similarly, a detail of part of the scene may have been taken at a slightly different angle from

Ccurr, in order to capture a more representative or visually pleasing close-up of an object. Therefore,

the zooming relations are based on the content of the photos rather than their absolute positions and

orientations.

To compute these relations, I first define the notion of apparent size. Roughly speaking, the

apparent size of an object in an image is the proportion of the image occupied by that object. For
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instance, a given object might take up much more of an image Ij than an image Ik, and thus have a

larger apparent size in Ij . Such an image could reasonably be called a detail of Ik.

As the scene is not really divided up into specific objects, I simply use the visible point set

Points(C) as the “object” visible to camera C and estimate the apparent size of the point set in an

image by projecting it into that image and computing the area occupied by the projections. Specif-

ically, to estimate the apparent size of a point set P in a camera C, I project the points into C,

compute the bounding box of the projections that land inside the image, and calculate the ratio

of the area of the bounding box (in pixels) to the area of the image. I refer to this quantity as

ApparentSize(P,C).

Clicking on one of the scaling controls activates a search for images with the selected relation

(detail, similar, or zoom-out). The images returned from this search are selected from among images

with sufficient overlap with Ccurr (I use images which have at least three points in common with

Ccurr). I classify each such camera Cj as:

• a detail of Ccurr if

ApparentSize(Points(Cj), Ccurr) < 0.75 · ApparentSize(Points(Cj), Cj), (5.1)

i.e., Points(Cj) appears at least 25% larger in Cj than in Ccurr. In addition, 95% of the points

in Points(Cj) must project inside the field of view of Ccurr.

• similar to Ccurr if

0.75 <
ApparentSize(Points(Ccurr), Cj)

ApparentSize(Points(Ccurr), Ccurr)
< 1.3 (5.2)

and the angle between the viewing directions of Ccurr and Cj is less than a threshold of 10◦

• a zoom-out of Ccurr if Ccurr is a detail of Cj .

The results of these searches are displayed in the thumbnail strip (sorted by decreasing apparent

size, in the case of details and zoom-outs, i.e., the most zoomed-in view is first). These controls

are useful for viewing the scene in more detail, comparing similar views of an object which differ
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Figure 5.5: Zooming controls. Left: an image from the Notre Dame data set. Right: the results
of searching for details (top), similar images (middle), and zoom-outs (bottom), starting from this
input image.

in other respects, such as time of day, season, and year, and for “stepping back” to see more of the

scene. Results returned from these zooming controls are shown in Figure 5.2.2.

Directional controls. The directional tools give the user a simple way to “step” left or right, i.e., to

see more of the scene in a particular direction. For each camera, I compute a left and right neighbor

and link these neighbors to arrows displayed in the information pane. To find the left and right

neighbors of a camera Cj , I look for images in which the objects visible in Cj appear to have moved

right or left, respectively.2 In particular, I compute the average 2D motion mjk of the projections of

Points(Cj) from image Ij to each neighboring image Ik:

mjk =
1

|Points(Cj)|
∑

X∈Points(Cj)

(P (Ck,X) − P (Cj ,X)) (5.3)

where P (C,x) is the projection equation defined in Chapter 3. If the angle between mjk and the

desired direction (i.e., left = (−1, 0)T or right = (1, 0)T ) is less than 15◦, and the apparent size of

Points(Cj) in both images is similar, Ck is a candidate left (or right) neighbor to Cj . Out of all

the candidates (if there are any), the algorithm selects the left or right neighbor to be the camera Ck

whose motion magnitude ||mjk|| is closest to 20% of the width of image Ij .

2Facing an object and stepping to the right induces a leftward motion of the object in the field of view.
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Figure 5.6: Object-based navigation. Left: the user drags a rectangle around the statue in the current
photo. Right: the system finds a new, high-resolution photograph of the selected object, and moves
to that view. Additional images of the object are shown in the thumbnail pane at the bottom of the
screen.

5.2.3 Object-based navigation

Another type of search query supported by the viewer is “show me photos of this object,” where

the object in question can be directly selected in a photograph or the point cloud. This type of

search, similar to that applied to video in the Video Google system [133], is complementary to, and

has certain advantages over, other types of queries such as keyword search for finding images of a

specific object. The ability to select an object is especially useful when exploring a scene—when

the user comes across an interesting object, direct selection is an intuitive way to find a better picture

of that object, and does not require knowing the name of that object.

The user selects an object by dragging a 2D box around a region of the current photo or the

point cloud. All points whose projections lie inside the box form the set of selected points, S. The

system then searches for the “best” photo of S by scoring each image in the database based on how

well it is estimated to depict S. The top scoring photo is chosen as the representative view, and the

virtual camera is moved to that image. Other images with scores above a threshold are displayed in

the thumbnail strip, sorted by descending score. An example object selection interaction is shown

in Figure 5.6.

My function for scoring images is based on three criteria: (1) whether most of the points in

S are visible in an image, (2) the angle from which the points in S are viewed (frontal views are
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preferred), and (3) the image resolution. For each image Ij , I compute the score as a weighted sum

of three terms, Evisible, Eangle, and Edetail.

To compute the visibility term Evisible, I first check whether S ∩Points(Cj) is empty. If so, the

object is deemed not to be visible to Cj at all, and Evisible = −∞. Otherwise, Evisible = ninside
|S| ,

where ninside denotes the number of points in S that project inside the boundary of image Ij .

The termEangle is used to favor head-on views of a set of points over oblique views. To compute

Eangle, I first fit a plane to the points in S using a RANSAC procedure. If the percentage of points

in S which are inliers to the recovered plane is above a threshold of 50% (i.e., there appears to be a

dominant plane in the selection), I favor cameras that view the object head-on by setting Eangle =

V (Cj) · n̂, where V indicates viewing direction, and n̂ the normal to the recovered plane. If fewer

than 50% of the points fit the plane, then Eangle = 0.

Finally, Edetail favors high-resolution views of the object. Edetail is defined to be the area,

in pixels, of the bounding box of the projections of S into image Ij (considering only points that

project inside the boundary of Ij). Edetail is normalized by the area of the largest such bounding

box, so the highest resolution available view will have a score of 1.0.

Once the three scores Evisible, Eangle, and Edetail have been computed for an image, the final

score is computed as a weighted combination of the three: E = Evisible + αEangle + βEdetail. In

my system, I set α to 1 and β to 3. The image that achieves the highest score is selected as the next

image, and a transition to the image is played.

The set S can sometimes contain points that the user did not intend to select, especially oc-

cluded points that happen to project inside the selection rectangle. These extra points can belong to

completely unintended objects, and can therefore cause unexpected images to be returned from an

object selection search. If the system had complete knowledge of visibility, it could cull such hidden

points. However, the fact that the system uses only sparse geometry means that occlusions cannot

be computed without additional assumptions, as infinitesimal points will occlude each other with

zero probability. Therefore, I use a set of heuristics to prune the selection. If the selection was made

while visiting an image Ij , I can use the points that are known to be visible from that viewpoint

(i.e., Points(Cj)) to refine the selection. In particular, I compute the 3× 3 covariance matrix for the

points in S′ = S ∩ Points(Cj), and remove from S all points with a Mahalanobis distance greater

than 1.2 from the centroid of S′. If the selection was made while not visiting an image, I instead
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Figure 5.7: A stabilized slideshow. The user first finds a photo they like (left-most image), then finds
similar views using the toolbar. The next two images are part of a stabilized slideshow, where Half
Dome is in the same place in each view.

compute a weighted centroid and covariance matrix for the entire set S. The weighting favors points

that are closer to the virtual camera, since these are more likely to be unoccluded than points that are

far away. Thus, the weight for each point is computed as the inverse of its distance from the virtual

camera.

5.2.4 Creating stabilized slideshows

Whenever a search is activated, the resulting images appear in the thumbnail pane; when the thumb-

nail pane contains more than one image, its contents can be viewed as a slideshow by pressing a play

button in the pane. The default slideshow behavior is that the virtual camera will move in 3D from

camera to camera, pausing at each image for a few seconds before proceeding to the next. However,

the user can also choose to “lock” the virtual camera, fixing it to its current position, orientation, and

field of view. When the images in the thumbnail pane are all taken from approximately the same

location, this locked camera mode stabilizes the images, making it easier to compare one image to

the next. This mode is useful for studying changes in the appearance of a scene over time of day,

seasons, years, weather patterns, etc. An example stabilized slideshow from the Yosemite data set

is shown in Figure 5.7, and in the companion video [108].

5.3 Augmentation and enhancement of scenes

Photo Tourism also allows users to add content to a scene in two ways: a user can (1) register new

photographs to an existing scene and (2) annotate regions of an image and have these annotations
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automatically propagate to other images.

5.3.1 Registering new photographs

New photographs can be registered on the fly to an existing reconstruction using two different tech-

niques, one interactive, the other automatic. In the interactive technique, the user switches to a mode

where an overhead map fills the view, opens a set of images, which are displayed in the thumbnail

panel, and drags and drops each image onto its approximate location on the map. After each image

has been placed on the map, the system estimates the location, orientation, and focal length of each

new photo by running an abbreviated version of the SfM pipeline described in Chapter 3. First, SIFT

keypoints are extracted from the image and matched to the keypoints of the twenty registered images

closest to the specified initial location. The matches to each of the other images are then pruned to

contain geometrically consistent matches, and the 3D points corresponding to the matched features

in the existing registered images are identified. Finally, these matches are used to refine the pose

of the new camera using bundle adjustment. Once a set of photos has been placed on the map, it

generally takes around ten seconds to compute the final registration for each new camera on my test

machine, a 3.80GHz Intel Pentium 4.

The second way to register a new image requires no initialization. The SIFT features in the new

image are matched directly to the point cloud, and these matches are used for registration. As a

pre-process, a representative SIFT feature descriptor is computed for each 3D point in the scene by

averaging the feature descriptors associated with that point. When a new image is to be registered,

its SIFT keypoints are extracted and matched to the representative feature descriptors. The resulting

matches to 3D points are used to initialize the pose of the new camera by running a direct linear

transform (DLT) procedure [68], and the pose is refined with a local bundle adjustment. Although

this method has the advantage of not requiring initialization, it is slower for very complex scenes and

tends to identify fewer matches than the first method, and can therefore be somewhat less reliable.

An example registration of a new image to an existing scene (using this second method) is shown in

Figure 5.8.
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Figure 5.8: A registered historical photo. Left: Moon and Half Dome, 1960. Photograph by Ansel
Adams. This historical photo taken by Ansel Adams was automatically registered to our Half Dome
reconstruction. Right: rendering of DEM data for Half Dome from where Ansel Adams was stand-
ing, as estimated by the system. The white border was drawn manually for clarity. (DEM and color
texture courtesy of the U.S. Geological Survey.)

5.3.2 Creating and transferring annotations

Annotations on image regions are an increasingly popular feature in photo organizing tools such as

Flickr. A unique capability of Photo Tourism is that annotations can be automatically transferred

from one image to all other images that contain the same scene region.

In the Photo Tourism interface, the user can select a region of an image and enter a label for that

region. This annotation is then stored, along with the 3D points Sann that lie in the selected area.

When the user visits the photo, the annotation appears as a semi-transparent box around the selected

points. Once annotated, an object can also be linked to other sources of information, such as web

sites, guidebooks, and video and audio clips.

When an annotation is created, it is automatically transferred to all other photographs that see

the annotated object. To transfer an annotation to another image Ij , the system first checks whether

the annotation is visible in Ij , and whether it is at an appropriate scale for the image—that it neither

fills too much of the image nor labels a very small region. To determine visibility, I simply test that

at least one of the annotated points Sann is in Points(Cj). To check whether the annotation is at an

appropriate scale, I compute the apparent size, ApparentSize(Sann, Cj), of the annotation in image
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Figure 5.9: Example of annotation transfer. Three regions were annotated in the photograph on the
left; the annotations were automatically transferred to the other photographs, a few of which are
shown on the right. Photo Tourism can handle partial and full occlusions.

Ij ; if the annotation is visible and

0.05 < ApparentSize(Sann, Cj) < 0.8, (5.4)

i.e., the annotation covers between 5 and 80% of the image, the system transfers the annotation to

Cj . When the user visits Cj , the annotation is displayed as a box around the annotated points, as

shown in Figure 5.9.

Besides quickly enhancing a scene with semantic information, the ability to transfer annotations

has several applications. First, it enables a system in which a tourist can take a photo (e.g., from a

camera phone that runs my software) and instantly see information about objects in the scene super-

imposed on the image. In combination with a head-mounted display, such a capability could offer

a highly portable, computer-vision-based augmented reality system [44]. Second, it makes labeling

photographs in preparation for keyword search much more efficient; many images can be labeled

with a single annotation.

There are several existing sources of annotated imagery that can be leveraged by my system.

Flickr, for instance, allows users to attach notes to rectangular regions of photos. Tools such as

the ESP Game [155] and LabelMe [123] encourage users to label images on the web and have

accumulated large databases of annotations. By registering such labeled images with an existing
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collection of photos using our system, Photo Tourism could transfer the existing labels to every

other relevant photo in the system. Other images on the web are implicitly annotated: for instance,

an image on a Wikipedia page is “annotated” with the URL and topic of that page. By registering

such images to a reconstruction, I could automatically link other photos in that collection to the

same page.

5.4 Results

I have evaluated the features of Photo Tourism on several photo collections. Because Photo Tourism

is an interactive system, the results are best demonstrated through the video captures of interactive

sessions found on the Photo Tourism project website [108]. Screenshots from these sessions are

shown in figures throughout this chapter.

The first two collections were taken under relatively controlled settings (i.e., a single person with

a single camera and lens): Prague, a set of 197 photographs of the Old Town Square in Prague,

Czech Republic, taken over the course two days, and Great Wall, a set of 120 photographs taken

along the Great Wall of China (82 of which were ultimately registered). The images in the Prague

data set were taken by a photographer walking along the sides of the square, facing the buildings. A

few more distant views of the buildings were also captured. The directional and zooming controls

work particularly well on this collection, as demonstrated in the companion video. In addition, the

reconstruction was registered to an aerial image, and therefore a map appears as part of the interface.

For the Great Wall collection, one interesting way to view the images is to play them in order as a

slideshow, simulating the effect of walking along the wall in the photographer’s footsteps. For this

collection, the mesh-based projection surfaces are particularly effective.

I also demonstrate the system on several “uncontrolled” sets consisting of images downloaded

from Flickr. Trevi Fountain is a set of 360 photos of the Trevi Fountain in Rome, registered from

466 photos matching “trevi AND rome.” Notre Dame is a set of 597 photos of the front façade

of the Notre Dame Cathedral in Paris. These photos were registered starting from 2,635 photos

matching the search term “notredame AND paris.” Yosemite is a set of 325 photos of Half Dome in

Yosemite National Park, registered from 1,882 photos matching “halfdome AND yosemite.”

The Trevi Fountain collection contains several interesting, detailed sculptures. The video seg-
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ment for this collection demonstrates the object selection feature, in which the system finds and

transitions to a good photo of an object selected by the user, as shown in Figure 5.6. Notre Dame

contains photos at many different levels of detail, from images taken from over a hundred meters

away from the cathedral, to extreme close-ups showing intricate details of the sculptures above the

central portal. The total difference in scale between the extreme views is a factor of more than

1,000. Thus, the zooming features of Photo Tourism are well-suited to this collection. The video

also demonstrates the annotation transfer feature on this collection, as well as the selection of an-

notations for display based on the scale of the current image. Finally, the Half Dome collection

contains many spectacular images of the mountain during different seasons and times of day. The

stabilized slideshow feature, demonstrated in the video and in Figure 5.7, is an effective way to view

the resultant variation in the appearance of the mountain.

After the initial reconstruction of the Half Dome collection, I aligned it to a digital elevation

map using the approach described in Chapter 3, Section 3.4.1. I then registered a historical photo,

Ansel Adam’s “Moon and Half Dome,” to the data set, using the automatic method described in

Section 5.3.1. The result is an estimate of where Adams was standing when he took the photo.

Figure 5.8 shows a synthetic rendering of Half Dome from this estimated position.

5.5 Discussion

This chapter described Photo Tourism, a new interface for exploring photo collections related by

place. Photo Tourism situates the user in a 3D world among the reconstructed photo collection,

and provides new tools for searching for images, including zooming controls, directional controls,

and an object selection tool. Photo Tourism also enables new ways to visualize and render scenes,

through 3D transitions between images and stabilized slideshows. Finally, it provides a powerful

annotation mechanism that can be used to label an entire collection of images at once.

Photo Tourism also has several limitations. The 3D transitions work well for images of planar

or near-planar parts of a scene, such as walls. The results can be less attractive for images that view

more complex 3D geometry, or for images that view multiple dominant planes. The mesh-based pro-

jection surfaces can handle non-planar geometry, but produce their own artifacts, especially where

the geometry is inaccurate or unmodeled, or when people or other foreground objects are projected
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onto the mesh. More accurate geometry produced, e.g., from a laser scan or with multi-view stereo,

would solve some, but not all, of these problems. Hence, better methods for rendering transitions

between photos containing complex surfaces and foreground objects is an important open research

challenge.

The navigation controls provided by Photo Tourism are primarily photo-centric, designed to

move the user from one photo to another. While these can be effective tools for exploring the photo

collection, they are not necessarily the best interface for exploring the scene itself. A more common

approach, used in most 3D games, is to give users continuous control over their movement, rather

than constraining them to a particular fixed set of views. Of course, in Photo Tourism, users can

choose to use the free-viewpoint navigation controls, but they then lose the realistic views afforded

by the images. In any case, it is not clear that even free-viewpoint navigation controls are the ideal

interface for exploring scenes, as they can provide too many degrees of freedom, leaving a user

with too many possible directions to explore. In the next chapter, I present a second user interface

designed for exploring scenes. The interface analyzes the distribution of camera viewpoints in large

photo collections to create sets of constrained 3D navigation controls tailored to specific locations.
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Chapter 6

FINDING PATHS THROUGH THE WORLD’S PHOTOS

The previous chapter described Photo Tourism, a 3D photo browser that provides new geomet-

ric controls for exploring photo collections. Let us now consider a slightly different task: explor-

ing scenes. How well does Photo Tourism work as a tool for exploring a large space such as the

Prague Old Town Square? As demonstrated in the previous chapter and accompanying video, Photo

Tourism allows us to move around the square in several ways. We can zoom in or out of a photo

to see more detail or more context. We can move to the left or right to see a photo of the next

building over in a row of shops. We can also drag a box around an interesting object or building,

and transition to a good photo of that selected object.

All of these controls are potentially useful, but what are the best possible controls? To attempt

to answer that question, let’s step back for a moment, and consider what we want to accomplish

in exploring the scene. Suppose we have never been to the square. We might know that it is a

significant place, with interesting sights, but we may not know exactly where we should go or what

we should see. Indeed, the square contains several notable landmarks, including the Old Town

Hall with its astronomical clock, the Tỳn Cathedral, the St. Nicholas Church, and the statue of Jan

Hus. An ideal 3D navigation interface might make it easy to find all of these landmarks, and offer

additional controls, such as a way to orbit the Jan Hus statue and see it from different angles, when

suitable. Another scene—the Vatican, say—will have a completely different set of interesting views

(the Sistine Chapel, Michelangelo’s Pietà, St. Peter’s Square) and might require a different set of

controls. Scenes also come in a wide variety of shapes and sizes. The Old Town Square consists of

rows of buildings, while other scenes, such as the Statue of Liberty, consist of a single, dominant

object.

This variability is at the heart of the problem I consider in this chapter: how can we discover

or devise the best navigation controls for any given scene? The solution I present in this chapter is

to derive controls from large Internet photo collections of the scene. These collections of photos,
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captured by many people, provide an extremely valuable source of information for creating controls

for exploration tasks, as they represent samples of how people actually experienced the scene, where

they stood, and what views they found interesting.

The navigation controls provided by Photo Tourism also adapt to photo collections, but only at

a very local level. For each photo, considered in isolation, a set of possible details, similar images,

left and right neighbors, etc., are computed. Analyzing the structure of the photo collection at this

level might miss important features of the scene. Of course, Photo Tourism also provides standard

continuous, free-viewpoint navigation controls, as do the vast majority of games and simulators,

that let users move wherever they want. However, while such unconstrained controls might make

it possible to explore the scene in any particular way, they still might not make it easy; they may

provide too many degrees of freedom when only a few are required (e.g., the one-dimensional

case of rotating around an object), and do not directly solve the problem of getting users where they

really want to, or ought to, go. Thus, devising a good interfaces for exploring scenes is a challenging

problem. As image-based rendering (IBR) methods scale up to handle larger and larger scenes, the

problem of devising good viewpoint controls becomes even more critical.

The overarching issue here is that to quickly and efficiently explore understand a scene, a user

may want a variety of controls—Photo Tourism-style controls (for instance, for finding a photo of a

selected object), continuous, object-based navigation controls (to orbit around a statue), automatic

controls (to take the user to an interesting landmark), and perhaps even controls that suggest where

to go next. These various controls depend on the task the user wants to perform, the contents of the

scene (e.g., does it contain objects?), and the part of the scene the user is currently visiting.

One solution to this problem is to manually plan a set of desired paths through a scene and

capture those views, then design a user interface that only exposes controls for following these

paths. This approach is used for many IBR experiences such as panoramas, object movies [21], and

moviemaps [87]. While effective, this kind of approach cannot leverage the vast majority of existing

photos, including the millions of images of important landmarks available through the Internet.

While deriving such controls is a challenging research problem, using Internet photo collections

to generate controls also has major advantages. Internet photo collections represent samples of

views from places people actually stood and thought were worth photographing. Therefore, through

consensus, they tend to capture the “interesting” views and paths through a scene. I leverage this
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Figure 6.1: Paths through the Statue of Liberty photo collection. Left: several Flickr images of the
Statue of Liberty, from a collection of 388 input photos. Right: reconstructed camera viewpoints
for this collection, revealing two clear orbits, shown here superimposed on a satellite view. The goal
is to automatically discover such orbits and other paths through view space to create scene-specific
controls for browsing photo collections.

observation to generate controls that lead users to interesting views and along interesting paths.

For example, consider the overhead view of a reconstruction of the Statue of Liberty from 388

photos downloaded from Flickr, shown in Figure 6.1. Most of the photos in this collection were

captured from the island or from boats out in the water, and are distributed roughly along two

circular arcs. Even if we knew absolutely nothing about the content of the scene, this distribution of

views would tell us that (a) there is some very important thing in the scene, since almost all images

are trained on the same point, and (b) the object of interest is typically viewed from a range of

angles forming arcs around the object. The distribution thus suggests two natural orbit controls for

browsing this scene. While the viewpoints in this scene have a particularly simple structure, I have

observed that many Internet collections can be modeled by a combination of simple paths through

the space of captured views.

In this chapter, I describe the Pathfinder system,1 which extends Photo Tourism to provide a

fluid, continuous IBR experience with effective scene-specific controls derived from the distribution

of views in a photo collection. As with Photo Tourism, there are both rendering and navigation

aspects to this problem. On the rendering side, I introduce new techniques for selecting and warping

images for display as the user moves around the scene, and for maintaining a consistent scene

1The work described in this chapter originally appeared at SIGGRAPH 2008 [136]. Rahul Garg contributed signifi-
cantly to the ideas and results described in this chapter.
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appearance. On the navigation side, I describe my approach for automatically generating good

controls from a photo collection and integrating these controls into the user interface. These two

problems, rendering and navigation, are not separate, but are intimately linked together, for two

reasons. First, my approach to rendering is based on a new view scoring function that predicts the

quality of reprojecting an input photo to a new viewpoint. This function is used to select good views

for rendering, but also to find trajectories through viewpoint space with high visual quality, suitable

for use as navigation controls. Second, the projection surfaces used for rendering are selected based

on how the user is currently moving through the scene.

The remainder of this chapter describes the various components of the Pathfinder system. First,

however, I review related work in 3D navigation interfaces to motivate the design of the system.

6.1 Related work on 3D navigation

A primary goal of the Pathfinder system is to create controls that make 3D navigation through a

scene easy and intuitive. While computer graphics researchers have concentrated mainly on render-

ing of scenes, there has also been a wealth of research on interfaces for 3D navigation, primarily in

the field of human-computer interaction. This section surveys previous work on 3D navigation and

distills a set of key guiding principles for the design of navigation interfaces.

6.1.1 Principles of 3D scene navigation

3D scene navigation refers to manipulating a first-person viewpoint in a virtual 3D scene. It involves

translating some input—from a mouse, keyboard, head-mounted display, or other device—into a 6D

set of camera parameters which specify the 3D position and 3D orientation of the camera (sometimes

with an additional degree of freedom for zoom). 3D navigation is a surprisingly difficult problem;

without good exploration and visualization tools it can be easy to get lost in a scene [131]. The

development of interfaces for navigating virtual 3D environments dates back at least to the work

of Sutherland in the 1960’s [142]. Since then such interfaces have appeared in numerous settings:

games, simulations, 3D modeling software, mapping applications such as Google Earth, virtual

reality systems, and others.

Before considering the design of navigation interfaces, however, it is useful to consider the goals
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of 3D navigation, i.e., what tasks a user may be interested in performing in a 3D environment. Tan, et

al., [145], present a task-based taxonomy of navigation controls which enumerates three categories

of tasks:

• Exploration: gaining survey knowledge, e.g., building a mental map of the scene.

• Search: finding and moving to a particular view, region, or object.

• Object inspection: exploring a range of desired views of a particular object.

While this list is not necessarily comprehensive, these tasks are relevant to the kinds of experiences I

seek to enable in Pathfinder. The first of these, exploration, is particularly relevant; my work focuses

on exploration of popular real world scenes, scenes which many users may be interested in visiting

or learning more about, but with which they may not initially be intimately familiar. For such users,

an ideal interface might be a set of simplified controls that make it easy to find the interesting parts

of the scene.

What kind of controls best aid a user in accomplishing these tasks? While there is no simple

answer, certain principles for 3D interface design can be found in the literature on 3D navigation.

The right navigation controls are scene- and task-dependent. Researchers have found that nav-

igation controls that are entirely natural in one setting can be completely ineffective in another. In

one study, Ware and Osbourne [157] evaluated several types of navigation controls, including “flying

vehicle,” where a user moves around the scene by directly moving and turning the virtual camera,

and “scene-in-hand,” where the user instead moves and rotates the scene itself. They found that in

scenes consisting of a single object, test subjects overwhelmingly found the scene-in-hand controls

to be most natural and the flying vehicle controls to be the least natural, while the exact opposite

was true for complex scenes such as a maze. Similarly, different types of controls have been shown

to be more useful depending on the task a user is trying to perform, such as getting an overview of

a scene or inspecting a particular object [145].

For these reasons, many 3D interfaces, including those used in the Maya 3D modeling software

and several VRML browsers, provide different sets of controls which users can toggle between,

such as camera-centric and object-centric controls. However, manually toggling between modes

may be more cumbersome than necessary. Another approach is to learn the right set of controls for
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a given scene, and a few researchers have explored this idea. Singh and Balakrishnan [131] propose

a system that attempts to learn good visualizations of a scene based on a set of previous interactions

with the same scene. In the Pathfinder system, such controls are learned from the distribution of

views in a large photo collection.

Constrained navigation can be more efficient. A common problem with 3D viewers that allow

completely unrestricted motion is that it can be easy to get “lost in space,” getting in a state where the

user doesn’t know where they are or how to get back. Even if a user stays grounded, unconstrained

controls may provide more degrees of freedom than are strictly necessary, making them more diffi-

cult to use. Furthermore, common 2D input devices, such as a mouse, cannot always be naturally

mapped to the 6 or 7D space of camera views. Constraining the navigation controls to a smaller

number of degrees of freedom is one way to solve these problems. Indeed, some approaches, such

as Galyean’s River Analogy [50], simply move users automatically along a pre-specified path, but

give the user freedom to control certain parameters, such as viewing direction and speed. Hanson, et

al. [64] suggest several design techniques for adding such constraints to a controller, such as making

the orientation of the camera dependent on the position. They also present a preliminary evaluation

showing that adding constraints can help improve a user’s survey knowledge about an environment.

Several specific constrained navigation techniques have been developed, such as Hovercam [78],

which converts 2D input to a generalized orbit around an arbitrary object for tasks that require close

object inspection. The main drawback of constrained navigation is that it can give a user less of a

sense of freedom [64].

Use high-level goals and automatic navigation when possible. Often, automatic navigation is

the easiest way for a user to satisfy a certain goal [63, 36, 38]. For instance, suppose a user is

virtually visiting Prague and has the goal of finding the Jan Hus Memorial. It would probably

be much easier for the user to express that goal to the system, and have the system automatically

move the user to the Memorial, than for the user to try and hunt for it himself. A good example

of a system that implements this behavior is Google Earth, which supports automatic navigation

through its search features. In Google Earth, a user can search for a place by typing in a name or

address, and a smooth camera motion automatically brings the user to the destination. The path
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along which the user is transported is a factor in how comprehensible the transition is. The quickest

path from point A to point B is teleportation—instantaneously cutting from one view to the next;

however, teleportation can be quite disorienting [14]. Another approach, explored by Santos, et al.

[36], moves the user along shortest paths in 3D space between two views. Drucker and Zeltzer [38]

describe a general system where multiple tasks and constraints can be combined in a path planning

algorithm to generate automatic, natural camera motions.

The user’s spatial position and motion should always be clear. Unless users can easily tell

where they are and how they are moving, they can easily become disoriented [63]. If the scene

has a variety of visual content, then landmarks assist users in keeping track of their position [52].

Other, more explicit cues have also been investigated, such as augmenting a scene with gridlines or

additional landmarks [28]. One particular cue—an overhead map which displays or tracks the user’s

position—is very commonly used [28, 152], and has been shown to substantially aid in navigation

tasks [27].

These interface considerations are all relevant to the design of the Pathfinder system. However,

Pathfinder takes these ideas a step further by trying to automatically infer good sets of navigation

controls by analyzing how many different people have photographed a given scene. In particular,

Pathfinder finds scene-specific, constrained navigation controls, such as orbits around objects, and

suggests these controls to the user. In addition to these controls, Pathfinder attempts to find im-

portant views of the scene, and provides automatic controls for moving to these important views.

Paths between these views are generated with a new path planning algorithm that attempts to create

understandable paths by mimicking how people move through the scene.

6.2 System overview

The Pathfinder system takes as input a set of photos from a variety of viewpoints, directions, and

conditions, taken with different cameras, and with potentially many different foreground people and

objects. From this input, the systems creates an interactive 3D browsing experience in which the

scene is depicted through photographs that are registered and displayed as a function of the current

viewpoint. The system guides the user through the scene by means of a set of automatically com-
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puted controls that expose detected orbits, panoramas, interesting views, and optimal trajectories

specific to the scene and distribution of input views.

The system consists of the following components:

A set of input images and camera viewpoints. The input is an unstructured collection of pho-

tographs taken by one or more photographers. We register the images using the SfM algorithms

described in Chapters 3 and 4.

Image reprojection and viewpoint scoring functions that evaluate the expected quality of render-

ing each input image at any possible camera viewpoint. The reprojection process takes into account

such factors as viewpoint, field of view, resolution, and image appearance to synthesize high quality

rendered views. The viewpoint scoring function can assess the quality of any possible rendered

view, providing a basis for planning optimal paths and controls through viewpoint space.

Navigation controls for a scene. Given the distribution of viewpoints in the input camera database

and the viewpoint scoring function, the system automatically discovers scene-specific navigation

controls such as orbits, panoramas, and representative images, and plans optimal paths between

images.

A rendering engine for displaying input photos. As the user moves through the scene, the ren-

dering engine computes the best scoring input image and reprojects it into the new viewpoint, trans-

formed geometrically and photometrically to correct for variations between images. To this end, I

introduce an orbit stabilization technique for geometrically registering images to synthesize motion

on a sphere, and an appearance stabilization technique for reducing appearance variation between

views.

A user interface for exploring the scene. A 3D viewer exposes the derived controls to users,

allowing them to explore the scene using these controls, move between different parts of the scene,

or simply fly around using traditional free-viewpoint navigation. These controls combine in an

intuitive way.

These components are used in the three main stages of the Pathfinder system. First, the offline

structure from motion process recovers the 3D location of each photograph. Next, the scene is au-

tomatically processed to derive controls and optimal paths between images. Finally, this augmented

scene can be browsed in an interactive viewer.
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The remainder of the chapter is organized as follows. In the next section, I describe the view

scoring function at the heart of the system. Section 6.4 describes how scene-specific navigation

controls are derived from a photo collection and integrated with other modes of navigation. Sec-

tion 6.5 describes the scene rendering engine. Section 6.6 describes the path planning algorithm

used to compute transitions between views. Section 6.7 describes techniques used to stabilize the

appearance of images as the user moves through the scene. Section 6.8 demonstrates the approach

on a variety of scenes and for a range of visualization tasks including free-form 3D scene brows-

ing, object movie creation from Internet photos or video, and enhanced browsing of personal photo

collections. Finally, Section 6.9 discusses limitations of the system and ideas for future work.

6.3 Viewpoint scoring

My approach is based on (1) the ability to reproject input images to synthesize new viewpoints, and

(2) to evaluate the expected quality of such reprojections. The former capability enables rendering,

and the latter is needed for computing controls that move the viewer along high quality paths in

viewpoint space. In this section I describe my approach for evaluating reprojection quality.

As in Photo Tourism, the Pathfinder system is given a database of input images I whose camera

parameters (intrinsics and extrinsics) have been computed. The term camera denotes the viewing

parameters of an input image Ij . Each camera Cj observes a set of points Points(Cj). The term

image denotes an input photo Ij from the database. The term viewpoint denotes a set of viewing

parameters v in the virtual scene, and the term view denotes an output photo that we seek to render

from a given viewpoint. A view is produced by reprojecting an input photo, through a rendering

process, to the desired new viewpoint v.

The first step is to define a reprojection score Sproj(Ij , v) that rates how well a database image Ij

can be used to render a new view at v. The best reprojection is obtained by maximizing Sproj(Ij , v)

over the image database, yielding a viewpoint score Sview(v):

Sview(v) = max
Ij∈I

Sproj(Ij , v) (6.1)

Ideally, Sproj(Ij , v) would measure the difference between the synthesized view and a real photo of

the same scene captured at v. Because the system does not have access to the real photo (unless v is
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Figure 6.2: Angular deviation. The angular deviation factor of the viewpoint score penalizes the av-
erage angular deviation between rays from the current viewpoint and the image under consideration
through a set of points in the scene. Here, the angle penaltyang is shown for one of the points.

exactly coincident with an input camera), I instead use the following three criteria to estimate how

well image Ij represents v:

1. Angular deviation: the relative change in viewpoint between Cj and v should be small.

2. Field of view: the projected image should cover as much of the field of view of v as possible.

3. Resolution: image Ij should be of sufficient resolution to avoid blur when projected into v.

For a given image and viewpoint, each of these criteria is scored on a scale from 0 to 1. To compute

these scores, we require a geometric proxy for each image to use as a projection surface during

reprojection into v; the proxy geometry is discussed in Section 6.5.2.

Angular deviation. The angular deviation score Sang(Ij , v) is proportional to the angle between

rays from viewpoint v through a set of points in the scene and rays from cameraCj through the same

points. This is akin to the minimum angular deviation measure used in Unstructured Lumigraph

Rendering [17]. Rather than scoring individual rays in the database, however, the system scores

entire images by averaging the angular deviation over a set of 3D points observed by Ij These points,

denoted SamplePoints(Cj), are selected from Points(Cj) for each image in a pre-processing step.

To compute SamplePoints(Cj), I project Points(Cj) into Ij , distribute them into a 10× 10 grid of

bins defined on the image plane, then select one point from each non-empty bin. This ensures that

the points are relatively evenly distributed over the image.
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The average angular deviation is computed as:

S′
ang(Ij , v) =

1
|SamplePoints(Ij)|

∑
X∈SamplePoints(Ij)

angle(X − cj ,X − c(v)). (6.2)

where cj is the 3D position of camera Cj , c(v) is the 3D position of viewpoint v, and angle(a,b)

gives the angle between two rays a and b. The average deviation is clamped to a maximum value

of αmax (for all my examples, I set αmax = 12◦), and mapped to the interval [0, 1]:

Sang(Ij , v) = 1 − min(S′
ang(Ij , v), αmax)
αmax

. (6.3)

A score of 1 indicates that Cj and v are coincident viewpoints, and a score of 0 means that the

average angle between corresponding rays is greater than αmax.

Field-of-view score. The field-of-view score Sfov(Ij , v) is computed by reprojecting Ij into v and

computing the area of the view at v that is covered by the reprojected image. I compute a weighted

area, with higher weight in the center of the view, as I find that it is generally more important to

cover the center of the view than the boundaries. The weighted area is computed by dividing the

view into a grid of cells, G, and accumulating weighted contributions from each cell:

Sfov(Ij , v) =
∑
Gi∈G

wi
Area(Project(Ij , v) ∩Gi)

Area(Gi)
, (6.4)

where Project(Ij , v) is the 2D polygon resulting from reprojecting image Ij into viewpoint v (if

any point of the projected image is behind viewpoint v, Project returns the empty set); Area is the

area, in pixels, of a 2D polygon. The weights wi approximate a 2D Gaussian centered at the image

center.

Resolution score. Finally, the resolution score Sres(Ij , v) is computed by projecting Ij into v

and finding the average number of input pixels of Ij used per output screen pixel. An image of

sufficient resolution should have at least one input pixel per output pixel. This score is thus computed

as the ratio of the number of pixels in Ij to the area, in screen pixels, of the reprojected image
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Project(Ij , v):

S′
res(Ij , v) =

Area(Ij)
Area(Project(Ij , v))

. (6.5)

If this ratio is greater than one, then, on average, the resolution of Ij is sufficient to avoid blur when

Ij is projected into the view (the system uses mip-mapping to avoid aliasing, so a ratio greater than

one is acceptable). I transform S′
res to map the interval [ratiomin, ratiomax] to [0, 1]:

Sres(Ij , v) = clamp
(
S′

res(Ij , v) − ratiomin

ratiomax − ratiomin
, ε, 1

)
, (6.6)

where clamp(x, a, b) clamps x to the range [a, b]. I use values of 0.2 and 1.0 for ratiomin and

ratiomax, and enforce a non-zero minimum resolution score ε because I favor viewing a low-

resolution image rather than no image at all.

The three scores described above are multiplied to give the final reprojection score Sproj:

Sproj(Ij , v) = Sang(Ij , v) · Sfov(Ij , v) · Sres(Ij , v). (6.7)

Again, to compute the viewpoint score Sview, the reprojection score is computed for each input

image; Sview is the maximum over these scores.

6.4 Scene-specific navigation controls

In Section 6.1 I laid out several guidelines for the design of 3D navigation control. Three primary

guidelines are that the right navigation controls are scene- and task-dependent, constrained navi-

gation can be more efficient, and one should use high-level goals and automatic navigation when

possible. Based on these observations, the Pathfinder system attempts to (a) derive constrained,

scene-specific controls for different parts of the input scene, (b) find interesting views that users

might want to visit, and (c) provide automated, optimized paths from getting between any pair of

views or controls.

To these ends, the large Internet photo collections used as input to the system are extremely

useful, in that the tend to cluster along interesting paths through a scene, and around interesting

objects, and thus provide important cues as to what controls should be provided. Of course, the

regions near the input samples will also be the areas where we can likely render good views of the
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scene (i.e., views for which Sview(v) is high). I take advantage of this information through a set of

automatic techniques for deriving controls from a reconstructed scene. The result of this analysis

is a set of scene-specific controls. For instance, the Statue of Liberty scene shown in Figure 6.1

has two scene-specific controls: an orbit control for the cluster of views taken on the island, and a

second orbit for views taken out on the water.

In the rest of this section, I outline the navigation modes of the Pathfinder system and describe

how scene-specific controls are computed.

6.4.1 Navigation modes

Pathfinder supports three basic navigation modes:

1. Free-viewpoint navigation.

2. Constrained navigation using scene-specific controls.

3. Optimized transitions from one part of the scene to another.

Free-viewpoint navigation. The free-viewpoint navigation mode allows a user to move around

the scene using standard 6-DOF (3D translation, pan, tilt, and zoom) “flying vehicle” navigation

controls. I also provide an orbit control which allows for scene-in-hand-style rotation about an

object.

While free-viewpoint controls give users the freedom to move wherever they choose, they are

not always the easiest controls for move around complex scenes, as the user has to continually

manipulate many degrees of freedom while (at least in IBR) ideally staying near the available photos.

Scene-specific controls. Pathfinder supports two types of scene-specific controls: orbits and panora-

mas. Each such control is defined by its type (e.g., orbit), a set of viewpoints, and a set of images

associated with that control. For an orbit control, the set of viewpoints is a circular arc of a given

radius centered at and focused on a 3D point; for a panorama the set of viewpoints is a range of

viewing directions from a single 3D nodal point. When a control is active, the user can navigate

through the corresponding set of viewpoints using the mouse or keyboard. In addition to scene-

specific orbits and panoramas, I also compute a set of representative canonical views for a scene.
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Transitions between controls. The final type of control is a transition between scene-specific

controls or canonical views. Pathfinder allows users to select a control or image they are interested

in exploring next; once a destination is selected, the virtual viewpoint is then moved on an automated

path to the new control or image. The transition is computed using a new path planning algorithm

that adapts to the database images, as described in Section 6.6. This method of directly selecting and

moving to different parts of the scene is designed to make it easy to find all the interesting views,

following the guideline that automatic navigation is often the most efficient.

6.4.2 Discovering controls

Once a scene is reconstructed, the Pathfinder system automatically analyzes the recovered geom-

etry to discover interesting orbits, panoramas, and canonical views. Orbits typically correspond

to interesting objects which can be viewed from many different angles, panoramas are viewpoints

from which the scene is photographed from many different viewing directions (e.g., the top of a tall

building), and canonical views correspond to important viewpoints represented many times in the

database. This section describes how each of these are discovered in a scene.

Orbit detection. I define an orbit to be a distribution of views positioned on a circle and con-

verging on (looking at) a single point, denoted the convergence point pfocus. I only consider circles

parallel to the ground plane as valid orbits, as most orbits that appear in the world are around objects

photographed from different directions by people standing on a floor or other plane. I further con-

strain pfocus to lie on a vertical axis o passing through the center of the circle and perpendicular to

the ground plane. The height of pfocus determines the tilt at which the object of interest is viewed.

Because full 360◦ view distributions are uncommon, I allow an orbit to occupy a circular arc. I

define a good orbit to be on that satisfies the following objectives, as illustrated in Figure 6.3:

• quality: maximize the quality of rendered views everywhere along the arc.

• length: prefer arcs that span large angles.

• convergence: prefer views oriented towards the center of the orbit.

• object-centered: prefer orbits around solid objects (as opposed to empty space).
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Figure 6.3: Scoring a candidate orbit. An orbit is evaluated by regularly sampling viewpoints along
the candidate arc (here, the arc is shown in gray, and the samples are shown as small circles drawn
on top of the arc). For each sample position, we want to find a nearby image with a high reprojection
score that is oriented towards the orbit center (thus eliminating the red cameras). The light samples
score well on these objectives while the black samples do not. We search for large arcs where the
sum of the sample scores is high, and that do not contain large low-scoring gaps. Here, the optimal
subset of the arc is shown with the curved black arrow.

Given these objectives, the problem of detecting orbits involves (1) defining a suitable objective

function, (2) enumerating and scoring candidate orbits, and (3) choosing zero or more best-scoring

candidates. One could imagine many possible techniques for each of these steps; in what follows, I

describe one approach that has worked quite well in practice.

I first define my objective function for evaluating orbits. An orbit is fully specified by a center

orbit axis o and an image Ij ; the image defines the radius of the circle (the distance of the camera

center from o), and the convergence point pfocus on the orbit axis (pfocus is the closest point on the

axis o to the optical axis of camera Cj). Assume further that Cj is the point on the arc midway

between the endpoints of the arc. The geometry of such an orbit is illustrated in Figure 6.4.

I define the orbit scoring function, Sorbit(o, Ij), to be the sum of individual view scores, Sorbit(o, I, θ),

sampled at positions θ along the arc. To compute Sorbit(o, Ij , θ) at a sample viewpoint v(θ) (the

viewpoint on the arc at angle θ from Ij), I look for support for that view in the set of database images

I. In particular, I score each image Ik ∈ I based on (a) how well Ik can be used to synthesize a

view at v(θ) (estimated using the reprojection score Sproj(Ik, v(θ))), and (b) whether Ik is looking
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Figure 6.4: An orbit can be defined by an orbit axis and a camera. A vertical orbit axis orbit o,
combined with a camera Cj (which defines the orbit radius), defines a family of orbit arcs around
the axis. This family consists of all arcs of a circle centered on the axis which passes through the
camera center (and for which the camera center is at the middle of the arc). The focal point pfocus

is the point on the axis o closest to the ray through the center of Cj .

at the orbit axis (the convergence score). Sorbit(o, Ij , θ) is then the score of the best image Ik at

v(θ):

Sorbit(o, Ij , θ) = max
Ik∈I

{S(Ik, v(θ)) · fo(Ik)}. (6.8)

The convergence score fo(Ik) is defined as:

fo(Ik) = max
(

0, 1 − ψ

ψmax

)
(6.9)

where ψ = angle(v(Ck),pfocus − p(Ck)), i.e., the angle between the viewing direction v(Ck) of

image Ik and the ray from the optical center p(Ck) of Ik to pfocus; I use a value of ψmax = 20◦.

This term downweights images for which pfocus is not near the center of the field of view.

I place a few additional constraints on the images Ik considered when computing Sorbit(o, Ij , θ):

• pfocus must be inside the field of view and in front of Ik.

• The tilt of Ik above the ground plane must be less than 45◦ (orbits with large tilt angles do not

produce attractive results).

• There must be a sufficient number (I use k = 100) of 3D points visible to Ik whose distance
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from Ik is less than the orbit radius. I enforce this condition to ensure that we find orbits

around an object (as opposed to empty space).

I compute Sorbit(o, Ij , θ) at every degree along the circle −180 < θ ≤ 180. For simplicity, I

refer to these sample scores as s(θ). A good orbit will have a long arc of relatively high values of

s(θ). Simply summing the values s(θ), however, could favor orbits with a few sparsely scattered

good scores. Instead, I explicitly find a long chain of uninterrupted good scores centered around Ij ,

then add up the scores on this chain. I define this chain as the longest consecutive interval [−θL, θL]

such that the maximum s(θ) in each subinterval of width 15◦ is at least ε = 0.01. This definition

allows for small “gaps,” or intervals with low scores, in the arc. If this longest chain subtends an

angle less than 60◦, the score of the orbit is zero. Otherwise, the score is the sum of the individual

scores in the chain:

Sorbit(o, Ij) =
L∑

k=−L

s(θk). (6.10)

Now that we have an objective function, we need a way to enumerate candidate orbits (mainly for

sake of efficiency; we could score all possible orbits). My strategy for finding such orbits operates

in two stages. First, I compute a set of good candidate orbit axes, by finding axes in 3D space that

are the convergence points of many database images. Second, I create and score candidate orbits by

pairing each candidate axis with each database image Ij .

To identify a set of candidate orbit axes, I take an approach similar to that of Epshtein et al.[40]

and use the idea that an interesting object will often occupy the center of the field of view of many

images. I first project all cameras onto the ground plane2 and compute the 2D intersections of the

optical axes of all pairs of cameras (discarding intersection points which lie in back of either camera,

or which are not approximately equidistant from both cameras). I then compute the density D of

these intersection points at each point x:

D(x) = number of intersection points within distance w of x.

(I use w = 0.02, although this value should ideally depend on the scale of the scene). The local

maxima in this density function identify vertical axes in the scene which are at the center of many

2This projection, reducing the problem to 2D, is possible because all orbit axes are assumed to be vertical.
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Figure 6.5: Density function and detected orbits for the Pantheon data set. Top row, left: the set of
intersection points of viewing axes is superimposed on the point cloud of the Pantheon. The color
of each point corresponds to the density of points in its neighborhood (a red point has the highest
density, a dark blue point the lowest). There are several clear maxima of this function, including a
point just behind the front facade and a point at the altar (at the extreme left of the figure).4 Top row,
right: the three final detected orbits shown as blue arcs centered at the red orbit points. Bottom row:
images from each of the three detected orbits.

different photos, and are thus potentially interesting. A plot of the density function for the Pan-

theon dataset is shown in Figure 6.5, along with the three detected orbits. These orbits are also

demonstrated in the video accompanying this chapter [107].

Next, I find the point with the highest density Dmax, then select all local maxima (points that

have the highest density in a circle of radius w) that have a density at least 0.3Dmax. These points

form the set of candidate orbit axes.

The next step is to find arcs centered at these axes. I form a set of candidate orbits by considering

all pairings of orbit axes o and input images Ij . I only accept candidate orbits that satisfy the three

constraints enumerated above, i.e., that the point of convergence is in the field of view, the tilt is less

than 45◦, and a sufficient number of points are visible in front of the orbit radius. I then evaluate

Sorbit(o, Ij) for each such suitable combination of orbit axis and image.
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Figure 6.6: Panoramas detected in the Pantheon. The panorama detector found five panoramas in
the Pantheon collection, shown in this image as blue circles (the two panoramas near the top of
the image are quite close to each other). For this scene, it is common for people to stand near the
circumference of the interior and take photos looking across the building in different directions.

I now have a set of orbits and a score for each orbit. To form a final set of orbits, I select the

orbit with the highest score, remove it and all similar orbits from the set of candidates, then repeat,

until no more orbits with a score of at least 0.5 times the maximum score remain. Two orbits are

deemed similar if the area of intersection of the two circles defined by the orbits is at least 50% of

their average area. An example of detected orbits for the Pantheon collection is shown in Figure 6.5

and in the companion video. In this case, three orbits were detected, two around the outer façade

at different distances, and one around the altar in the interior. Note that the furthest detected orbit

arc is actually some distance behind the reconstructed cameras. The reason why this orbit does not

pass closer to the camera centers is the constraint that it should not be too similar to an existing orbit

(in this case, the inner orbit around the façade, which is the highest-scoring orbit). Furthermore,

this orbits still has a high camera score, as translating a viewpoint backwards from an image along

the viewing direction does not affect the angular deviation of rays nearly as much as translating the

viewpoint sideways.

When computing viewpoint scores for orbit samples, I use a default vertical field of view of 50

degrees and a default screen resolution of 1024 × 768 (for the purposes of computing the field of

view and resolution scores).



139

Figure 6.7: Canonical views detected in the Pantheon data set. Left: the first nine detected canonical
views, using the algorithm of Simon et al.[130]. These views include the front façade, altar, oculus,
and several sculptures. Right: the canonical views shown in the interface as a row of thumbnails
at the bottom of the screen. Clicking on a thumbnail moves the user along an optimal path to the
corresponding view.

Panorama detection. A panorama consists of a set of images all taken close to a nodal point,

but possibly pointing in different directions. Similar to orbits, a good panorama has good views

available from a wide range of viewing directions. To find panoramas in a scene, I first consider

each image Ij to be the center of a candidate panorama and compute a panoramas score Spano(Ij)

for each candidate. Spano(Ij) is computed as the sum of view scores Sview for a range of viewing

directions around Ij :

Spano(Ij) =
25◦∑

φ=−5◦

360◦∑
θ=0◦

Sview(v(Ij , θ, φ)) (6.11)

where v(Ij , θ, φ) is the viewpoint located at the optical center of image Ij with viewing direction

given by angles θ (pan) and φ (tilt). Once each candidate panorama has been scored, I select a set

of final panoramas from among this set. To do so, I select the top scoring candidate I∗, remove all

images that have a non-zero reprojection score for some view v(I∗, θ, φ), then repeat this selection

process, until no remaining candidate’s score is above a threshold. The panoramas detected in the

Pantheon collection are shown in Figure 6.6, and as images in Figure 6.8.
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Selecting canonical views. To compute the set of representative, canonical views, I use the scene

summarization algorithm of Simon et al.[130]. This algorithm seeks to capture the essence of a

scene through a small set of representative images that cover the most popular viewpoints. To select

a set of canonical views, the algorithm first represents each image Ij as a feature vector fj , where

fj has an entry for every 3D point pk in the scene, and where the kth entry of the vector, fj(k) = 1

if pk is visible in image Ij , and 0 otherwise; f̂j denotes a normalized version of fj . The scene

summarization algorithm then clusters the normalized feature incidence vectors f̂j , then selects a

representative image for each cluster. The representative images are ordered by the size of their

respective clusters; the first represents the most popular view, the second represents the second-

most popular view, and so on.

In addition to canonical views computed for the entire scene, I also choose a representative

image for each detected orbit and panorama. For a given set of images S associated with a given

control, the representative image is chosen as:

arg minIj∈S
∑

Ik∈S,Ij �=Ik

f̂j · f̂k, (6.12)

i.e., the image whose normalized feature vector is most similar to those of all other images in S.5

6.5 Scene viewer and renderer

Once a scene has been reconstructed and augmented with scene-specific controls and canonical

views, it can be explored in the interactive scene viewer. The viewer situates the user in the scene,

exposes the derived controls to the user, and depicts the scene by continually selecting and warping

appropriate images as the user moves. This section describes the navigation interface and rendering

components of the viewer.

6.5.1 Navigation interface

As described in Section 6.4, the Pathfinder viewer supports standard 3D translation, panning, and

zooming controls, as well as an orbit control, which rotates the camera about a fixed 3D point or

5For orbits, the definition of f̂ is slightly different; it only contains an entry for every point inside the orbit circle, as
only these points could possibly be salient to the object of interest.
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Figure 6.8: Pathfinder user interface. The scene viewer displays the currently photo in the main
view, and shows suggested controls in the thumbnail pane at the bottom of the screen. The pane is
currently showing detected panoramas. Arrows on the sides of the screen indicate which directions
the user can pan to find more views.

axis. Typically, the orbital motion is constrained to a ring around an orbit axis, as many objects are

viewed from a single elevation, but our viewer also supports orbital motion on a sphere. When the

user is moving on a discovered scene-specific orbit, the orbit axis is automatically set to be the axis

discovered for that control. Alternatively, the user can manually specify an orbit point by clicking

on a 3D point in the scene. Once an orbit point is defined, the user can drag the mouse left and right

to orbit around a vertical axis, or up and down to move the viewpoint vertically (when 2D orbital

motion is enabled). The process is rapid and seamless: the user simply shift-clicks on a point in the

image (the closest 3D feature defines the orbit point), and the orbit begins as soon as the mouse is

moved. This orbit procedure is shown in the companion video for this chapter6 for several scenes,

including the Statue of Liberty and the Venus de Milo. Figure 6.9 demonstrates how a user can orbit

around an object (in this case, a figurine of Mark Twain) to see it from different angles.

The user interface displays the derived scene-specific controls in a thumbnail pane at the bottom

of the screen. The user can choose between displaying pre-defined orbits, panoramas, canonical

6http://phototour.cs.washington.edu/findingpaths/
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Figure 6.9: Orbiting a home-made object movie of Mark Twain. This sequence shows screenshots
from a interaction session with a figurine of Mark Twain. The input images are from a video taken
of the figurine while rotating it around in front of the camera. The images show a user clicking and
dragging the mouse to rotate the object to the right (right image), left (middle image), and down
(left image).

images, and all controls, as shown in Figures 6.10, 6.7, and 6.8. Each control is depicted in the

pane with a thumbnail created from that control’s representative image. The orbit and panorama

thumbnails are annotated with small arrow icons to show the type of control.

When the user clicks on a thumbnail, the system computes a path from the user’s current location

to the selected control (as described in the next section) and animates the virtual camera along that

path. If the user arrives at a panorama, left, right, up, and down arrows are drawn on the sides of the

screen indicating directions in which more images can be found, as shown in Figure 6.8. Similarly,

if the user arrives at an orbit control, left and right orbit arrows appear on the sides of the screen, as

shown in Figure 6.10. To determine if a particular arrow cue should be shown, the system computes

the viewpoint score for the view the user would see by moving in that direction a given amount. If

the score is above a threshold, the arrow is displayed.

6.5.2 Rendering

As the user moves through the scene, the system continually chooses an image to display based

on the reprojection score, Sproj(I, v), which rates how well each database image I can be used to

render the current viewpoint v (Section 6.3). The image with the top score is selected as the next

image to be displayed. If no image has a large enough viewpoint score (i.e., Sview(v) < ε), no

image is displayed; only the point cloud is rendered.

If the input images are carefully captured and densely sample the space of all viewpoints (as
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Figure 6.10: Detected orbits in the Statue of Liberty and Venus data sets. Left: two orbits were de-
tected for the Statue of Liberty data set, an inner orbit and an outer orbit. These orbits are displayed
to the user in the control panel at the bottom of the screen. Right: a single orbit was detected for the
Venus data set.

in Quicktime VR object movies and moviemaps), the rendering process is straightforward—simply

display the photo corresponding to the desired viewpoint. In practice, however, casually acquired

image collections tend to be incomplete and irregularly sampled, with objects centered and oriented

differently in each image. Hence, it is necessary to warp each image to better match the desired

viewpoint. This is the function of the rendering engine.

To warp an image to match a desired viewpoint v, the image is projected onto a 3D projec-

tion surface in the scene, then into v. My system normally renders the scene using planar proxy

geometry, but can also render using a dense 3D model, if one is available.

Warping with proxy planes. When the system uses planar proxy geometry, it associates a plane

with each image and renders the image by projecting it onto the plane and back into the virtual view-

point. Planar proxies are also used in the Photo Tourism system, which fits planes to image points

for use in transitions. While these best-fit planes work well for some scenes and navigation modes,

they can produce jerky motion in situations where the user is moving rapidly through a wide range

of views. This is especially true when orbiting; while the viewer is fixated on a particular object,

the per-image best-fit planes can stabilize different parts of the scene (including the background) in

different images, causing the object to jump around from frame to frame. A demonstration of this
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Figure 6.11: Proxy planes should intersect the orbit point. Left: to warp an image from view S to
D, image S is projected onto the proxy plane P , which is then rendered into D. P passes through
the orbit point o, ensuring that o is rendered to the correct position in D. Right: P does not pass
though the orbit plane, causing o to be rendered to the wrong position.

effect can be found in the video on the project webpage [107].

My solution to this problem is simple but effective. Suppose the user is orbiting around an

orbit point o, indicating an object of interest, and suppose we wish to render the scene captured

by a “source” photo S into the “destination” viewpoint D. Consider a proxy-plane P in the scene.

I compute the warp by perspectively projecting S onto P , then back into D. As shown in Figure

6.11, making P intersect the orbit point o ensures that o projects to the correct location inD. Hence,

we can stabilize o in the rendered images (make o project to the same pixel (x, y) in all views) by

(1) choosing P to intersect o for each input view, and (2) orienting the rendered views so that the

viewing ray through (x, y) for each view passes through o. While any choice of P that passes

through o will suffice, choosing P to be parallel to the image plane of S results in well-behaved

warps (Figure 6.12). When an orbit axis, rather than a single point, is to be stabilized, we define the

normal to P to be the projection of the viewing direction of S onto the plane orthogonal to the axis.

I call this form of image stabilization orbit stabilization.

Orbit stabilization performs a similar function to software anti-shake methods that reduce jitter

in video. However, it has the advantage of performing a globally-consistent stabilization, producing

the effect of rotation about a single center, and avoiding the drift problems that can occur with

frame-to-frame video stabilization methods. Note also that orbit stabilization does not require any
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Figure 6.12: Orientation of proxy planes. Left: if P is parallel to S’s image plane, a point x near the
orbit point will get mapped to a nearby point x′ on P , causing a small error in D. Right: an oblique
choice of P will generally result in larger errors.

knowledge of scene geometry, although it does require known camera viewpoints and a reasonable

orbit point.

My system defaults to using best-fit planar proxies, until an orbit point is selected, at which point

it switches to orbit stabilization. The user can also opt to use best-fit planes even when an orbit point

is selected, which can produce better results if the scene is truly planar or nearly planar.

Warping with a 3D model. When a 3D scene model is available, it can be used in place of the

planar proxy to further improve rendering quality. Such models can be obtained, e.g., through laser

scanning [85], multi-view stereo [55], or manual modeling. To render an image with a 3D proxy, I

project the source image onto the proxy and then into the destination image, and place an additional

plane in back of the model to account for unmodeled geometry.

Using a 3D model for rendering usually results in a more realistic experience, but, as in the Photo

Tourism system, can also result in artifacts due to holes in the model or from projecting foreground

objects onto the geometry. In my experience, planar proxies tend to produce less objectionable

artifacts in these situations. The companion video shows a comparison of orbiting around the central

portal of the Notre Dame Cathedral using planar and 3D proxies. 3D proxies work well in this

example, and cause the 3D shape of the portal to be more pronounced. The artifacts resulting from

3D proxies are less noticeable here, as the façade of the Cathedral is roughly planar, hence projecting

foreground objects onto the proxy is less objectionable. On the other hand, for the Statue of Liberty
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Figure 6.13: Screenshot from the Notre Dame collection. This screenshot from an interactive
Pathfinder session exploring the Notre Dame collection shows multiple images blended together
as the user moves around the scene.

collection, these artifacts are more pronounced, and hence the 3D proxies work less well for that

data set.

Compositing the scene. The output image shown on the screen is rendered by first drawing a

background layer consisting of the reconstructed point cloud drawn on top of a solid color, then ren-

dering the currently selected image, projected onto its proxy geometry. Rather than instantaneously

switching between images as new ones are selected for display, images are faded in and out over

time. The system maintains an alpha value for each image; whenever a new image is selected for

display, the alpha of the previous image decays to zero, and the alpha of the new image rises to

one, over a user-specified interval of time. When the user is moving on a planned path, the system

can look ahead on the path and fade images in early, so that each image reaches full opacity when

it becomes the optimal image. When the user moves on a free-form path, this prediction is more

difficult, and the system instead starts fading in an image at the moment it becomes optimal.

If the user is moving fairly quickly, multiple images can simultaneously have non-zero alphas.

I blend the images by first normalizing all alphas to sum to one, then compositing the rendered

images in an off-screen buffer. This image layer is then composited onto the background layer. An

example screenshot showing multiple blended images is shown in Figure 6.13.

Once the photos are cached in memory, the Pathfinder viewer runs at over 30 frames per second
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with up to 1700 photos on a machine with a 3.4GHz Intel Xeon processor and an nVidia Quadro FX

4000 graphics card. A companion video showing the viewer being used to explore several scenes

can be found on the project website [107].

6.6 Path planning

As described in the previous section, the Pathfinder viewer allows a user to select among the set of

detected controls and representative views using the thumbnail pane, and takes the user along an

automated path to a selected control. Unlike in Photo Tourism [137], which performs two-image

morphs, the Pathfinder system can create transitions involving multiple images, making it much

more effective for moving along long, complex paths. These multi-image transitions are created

using a new path planning approach. The system attempts to find smooth paths between two images

that are always close to good views, so that at any point on the path the user can be presented with

a high-quality rendering of the scene. An additional benefit of constraining the path to pass near

photos in the database is that it will more closely emulate how a human would move through the

scene, as it will stay close to places where people actually stood and took photos. Such paths are

more likely to be physically plausible, e.g., to not pass through walls or other obstacles.

Path planning, often used in robotics, has also found application in computer graphics for com-

puting camera paths through 3D environments. For instance, Drucker and Zeltzer [38] use planning

to help create paths through a 3D scene which satisfy task-based objectives (such as focusing on a

specific object) and geometric constraints. In the realm of IBR, Kang et al.[76] analyze a sequence

of images to predict which views or portions of views can be synthesized. In my work, I extend

these ideas to use our view quality prediction score to plan good camera paths.

In order to find the best path between two views given our database of existing images I, sup-

pose we have a viewpoint cost function CostI(v) (to be defined shortly) over the space of possible

viewpoints, where CostI is low for viewpoints close to existing image samples, and large for more

distant views. The optimal path between two viewpoints can then be defined as the lowest-cost path

(geodesic) connecting them.

The dimension of the viewpoint space, however, is relatively high (five degrees of freedom for

camera pose, and six if zoom is included), and therefore this continuous approach is computationally
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expensive. I instead find a discrete solution by first computing an optimal piecewise linear path

through the set of existing cameras, then smoothing this path. This discrete problem can be posed

as finding a shortest path in a transition graph GT whose vertices are the camera samples I (GT is

a weighted version of the image connectivity graph presented in Chapter 3).

GT contains a weighted edge between every pair of images Ij and Ik that see common 3D

points. The weight wjk on an edge (Ij , Ik) is the predicted cost of a transition, computed based on

how well the transition between the two images can be rendered. We denote this transition cost as

τjk, and define τjk to be the integral of the viewpoint cost function over a straight-line path γjk(t)

between Ij and Ik.7 Because edge (Ij , Ik) represents a two-image transition, when computing τjk,

I restrict the rendering process to consider only Ij and Ik when generating in-between views along

the path γjk(t); this restricted viewpoint cost function is denoted Costjk(v). Thus,

τjk =
∫ 1

0
Costjk(γjk(t)) dt. (6.13)

I define Costjk by first considering the cost of rendering a new viewpoint with one of the images

samples, Ij . In Section 6.3 I defined a reprojection score Sproj(Ij , v) for estimating how well an

image Ij can be used to synthesize a new view v. I now turn this scoring function into a cost

function:

Costj(v) = eα(1−Sproj(Ij ,v)) − 1. (6.14)

This function evaluates to 0 when Sproj(Ij , v) = 1, and to eα − 1 when Sproj = 0 (I use a value

α = 8). I now define the two-view cost function Costjk over the path γjk(t) as the weighted sum

of the single viewpoint cost function:

Costjk(γjk(t)) = (1 − t) Costj(γjk(t)) + tCostk(γjk(t)). (6.15)

I approximate the integral in Eq. 6.13 by computing the sum of Costjk at 30 samples along γjk(t).

If edges are weighted using the transition cost alone, shortest paths in the graph may not corre-

spond to smooth paths through viewpoint space; indeed, I have observed that such paths can zigzag

7A straight-line path is obtained by linearly interpolating the camera position and quaternions representing each cam-
era orientation.
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Figure 6.14: Using path planning to compute a camera transition. A transition from an image
outside the Pantheon (green) to an image inside (red) computed using my path planning algorithm.
The blue cameras are the intermediate nodes visited on the transition graph, and the blue line is
the linearly interpolated path. The black curve shows the path resulting from smoothing this initial
discrete path, and the red lines indicate the viewing directions at samples along this path.

in both position and orientation in a disorienting way. To penalize such paths, I add a smoothness

cost σjk to each edge weight wjk. This cost is simply the length of the edge in viewpoint space,

which I compute as a weighted combination of the difference in position and orientation between

cameras Cj and Ck:

σjk = ‖cj − ck‖ + β angle(v(Cj),v(Ck)), (6.16)

where c is the 3D position of camera C and v(C) is its viewing direction. I have found a value

β = 3.0 to work well in practice.

The final weight of an edge (Ij , Ik) is the weighted sum of the transition cost τjk and the smooth-

ness cost σjk:

wjk = τjk + λσjk. (6.17)

For my experiments, I use a value of λ = 400.
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Generating smooth paths. To generate a path between two images Istart and Iend, I first use

Djikstra’s algorithm [35] to compute a shortest path π∗ between Istart and Iend in GT . π∗ can be

interpreted as a piecewise linear physical path through viewpoint space; this path is next smoothed

to produce a more continuous path for animating the camera.

To smooth π∗, I first uniformly sample π∗ to produce a sequence of viewpoint samples v0
i , i = 1

to n (I use n = 100 samples in my implementation). I then repeatedly average each sample with its

two neighbors, and with its original position v0
i (in order to keep the sample close to the initial path

π∗):

vt+1
i =

1
1 + μ

(
0.5

(
vt
i−1 + vt

i+1

)
+ μv0

i

)
. (6.18)

I apply 50 iterations of smoothing.8 The parameter μ controls how closely the final path matches

π∗, versus how smooth the path is. In my implementation I set μ = 0.02, which produces nice,

smooth paths which still generally stay close enough to the images along π∗ to produce good views.

An example of a path computed between two images in the Pantheon collection is shown in Figure

6.14.

The final path πfinal between Istart and Iend is formed by linearly interpolating the final view-

point samples vi. To animate the camera, I sample πfinal non-uniformly, easing in and out of the

transition. The user need not be situated exactly at the position of Istart when the transition is started;

I adjust the initial path π∗ to begin at the user’s current position before smoothing. If the user is not

visiting any image, however (i.e., the user is at a viewpoint v where Sview(v) < ε), then my system

currently uses a simple linear path to move to Iend. This limitation could be addressed by adding a

virtual node to GT corresponding to the user’s current viewpoint, adding edges between this node

and nearby images, then weighting these edges with an appropriate cost function.

6.7 Appearance stabilization

Unstructured photo sets can exhibit a wide range of lighting and appearance variation, including

night and day, sunny and cloudy days, and photos taken with different exposures. By default,

Pathfinder displays photos based only on the user’s current viewpoint, which can result in large

changes in scene appearance as the user moves. These large, random variations can be useful in

8This smoothing operation is equivalent to applying a Gaussian filter to the path.
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(a) (b) (c) (d) (e) (f)

Figure 6.15: Computing image similarity. Image (a) with weight map (b); higher weights are darker.
To compare (a) to another image (c), I first downsample (a) to a height of 64 pixels (d) and resize
the second image to match the scale of the first. I then geometrically warp the second image to be
in alignment with the first (e), and apply color compensation to the first image (f). The distance
between the images is then computed as the weighted L2 distance between the RGB pixel values of
(e) and (f).

getting a sense of the variation in appearance space of a scene, but they can also be visually distract-

ing. To reduce this appearance variation, the user can enable a visual similarity mode, which limits

transitions to visually similar photos, and a color compensation feature, which hides appearance

changes by modifying the color balance of new images to better match that of previous images. In

addition, our system allows the photo collection to be separated into classes, such as day and night,

and allows the user the option of restricting selected photos to a particular class.

This section describes these features in more detail. I first describe a metric used to compute

photo similarity, then describe how this metric is incorporated into the viewer and how color com-

pensation is done. Finally, I describe how an object can be browsed in different appearance states.

6.7.1 Computing image distances

To reduce the amount of appearance variation that occurs while viewing a scene, I first need a

way to measure the visual distance between two images. To compute this distance, I register the

images geometrically and photometrically, then compute the L2 distance between corresponding

pixel values, weighted by confidence in the registration. These steps are summarized in Figure 6.15.

Geometric alignment. To compute the distance between images Ij and Ik, I first downsample Ij

to a resolution of 64× 64 pixels, and downsample Ik to approximately the same sampling rate with

respect to the scene, resulting in low-resolution images I ′j and I ′k.
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Next, I warp I ′k into geometric alignment with I ′j . If the complete scene geometry is known, it

can be used produce the warped version of I ′k, but since I do not assume geometry is available, I

instead use the sparse data interpolation method of thin-plate splines (TPS) [12] to model a non-rigid

2D warp between images.9 Given a set of 2D image correspondences (xi, yi) → (x′i, y
′
i), i = 1 to

k, a thin plate spline models the image warp D(x, y) = (Dx(x, y), Dy(x, y)) separately for each

dimension using a combination of an affine transformation and radial basis functions:

Dx(x, y) = a1 + axx+ ayy +
k∑

i=1

ciφ(||(xi, yi) − (x, y)||) (6.19)

Dy(x, y) = b1 + bxx+ byy +
k∑

i=1

diφ(||(xi, yi) − (x, y)||) (6.20)

where the kernel function φ(r) = r2 log(r) and the coefficients a, b, c, and d are the parameters of

the model. These parameters can be solved for in closed form.

To compute the warp, I project all 3D points visible to Ij into both I ′j and I ′k to form a set of 2D

basis points, and compute the corresponding TPS deformation D mapping I ′j onto I ′k. Computing

the TPS parameters involves solving a large, dense linear system Ax = b. In my implementation,

I use an LU decomposition to solve the system; because A only depends on the projections in I ′j , I

pre-factorize A into L and U in order to quickly solve for the TPS parameters each time an image

is registered with Ij .

Given the deformation D, for each pixel location x = (x, y) of I ′j , I compute the corresponding

pixel location D(x) of I ′k. If D(x) lies inside I ′k, I ′k is sampled at D(x) using bilinear interpolation.

This results in a sequence of pairs of RGB samples:

[I ′j(x1), I ′k(D(x1))], [I ′j(x2), I ′k(D(x2))], . . . , [I ′j(xn), I ′k(D(xn))]

Figure 6.15 (e) shows an example of one image warped into another using this technique.

The TPS deformation D will not necessarily extrapolate well far away from the basis points;

there is more confidence in the deformation near known 3D point projections. To make the image

9Planar proxies could also be used to warp the images into alignment, but I have found that, while planar proxies
often create reasonable visual results, they are not always accurate enough for the purpose of registering images for
computing image differences.
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comparison more robust to misregistration, I precompute a spatial confidence map Wj for each

image Ij . Wj is created by centering a 2D Gaussian at the projection of each 3D point observed

by Ij , with standard deviation proportional to the scale of the SIFT feature corresponding to that

point, and with height 1
2 . The Gaussians are then summed, sampled at each pixel, and clamped to

the range [0, 1]. Figure 6.15 (b) shows an example confidence map.

When registering image I ′k to image I ′j , I also create a confidence map for the registered result.

To do so, I downsample the weight maps Wj and Wk in the same way as the images, producing

low-resolution weight maps W ′
j and W ′

k, then create a weight for each of the RGB sample pairs

[I ′j(x), I ′k(D(x))] by taking minimum of the two confidence values corresponding to these samples:

wi = min{W ′
j(pi),W ′

k(D(pi))} (6.21)

giving a sequence of weights, w1, w2, . . . , wn.

Photometric alignment. After applying a spatial warp to I ′k, I next align the color spaces of the

two images. I use a simple gain and offset model to warp each RGB color channel of Ik to match

that of Ij :

Mkj =

⎡
⎢⎢⎢⎣
sr 0 0 tr

0 sg 0 tg

0 0 sb tb

⎤
⎥⎥⎥⎦

This affine transform can compensate linear changes in brightness, due, for instance, to changes in

exposure time. To compute the gain and offset parameters s and t for each color channel, I fit a

line to the pairs of color samples; I use RANSAC [45] during the fitting to achieve robustness to

bad samples due to misaligned or saturated pixels [45]. Figures 6.15 (e) and 6.15 (f) show a pair of

geometrically and photometrically warped images.

Finally, I compute the distance measure d(Ij , Ik) as the weighted average of color-shifted RGB

samples:

d(Ij , Ik) =
1∑
wk

n∑
i=1

wi

∥∥I ′j(xi) − MkjI
′
k(D(xi))

∥∥ (6.22)

using RGB values in the range [0, 255].
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Because it is difficult to reliably register photos with wide baselines, I only compute image

distances between pairs of photos that are relatively close to each other. In the Pathfinder viewer,

it is still possible to move a large distance when similarity mode is enabled, via a sequence of

transitions between nearby, similar images.

6.7.2 Browsing with similarity

The Pathfinder system reads the pre-computed similarity scores at startup. When the visual similar-

ity mode is enabled, these scores are used to prune the set of possible image transitions and to favor

transitions between images that are more similar. This is implemented by multiplying the reprojec-

tion score Sproj(I, v) with a similarity factor Ssim(I, Icurr), where Icurr is the currently displayed

image. To compute Ssim(I, Icurr), I remap the interval [dmin,dmax] to [0, 1] and clamp:

Ssim(I, Icurr) = 1 − clamp
(

d(I, Icurr) − dmin

dmax −dmin
, 0, 1

)
. (6.23)

I use values of dmin = 12 and dmax = 30. Enabling similarity mode results in the selection of a

sparser set of photos, so though their visual appearance is much more stable, the motion can be less

continuous.

6.7.3 Color compensation

The viewer can also use the pairwise RGB gain and offset parameters, estimated while computing

similarity scores, to disguise changes in appearance by adjusting the color balance of a new image

to match that of the previous image. When color compensation is enabled, the viewer maintains a

3x4 color compensation matrix Mj for each image Ij , which is applied when an image is rendered.

During a transition from an image Ij to an image Ik, Mk is set to Mkj , pre-multipled by the color

compensation already in effect for Ij ,

Mk = Mj · Mkj .

Examples of color corrected images are shown in Figure 6.16. To reduce problems with accumulated

drift over time and eventually return images to their true color balance, the matrices Mj fade back
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Figure 6.16: Similarity mode and color compensation. The first row shows a sequence of images,
going from left to right, from an object movie of the Trevi Fountain resulting from orbiting the site.
The second row shows the result of orbiting through the same path with similarity mode turned on.
Note that a different set of images with more similar lighting is selected. The third row shows the
same images as in the second row, but with color compensation turned on. The color balance of
each image now better matches that of the first.

to the identity transform [I|0] over time.

6.7.4 Viewing different appearance states

As with QuickTime VR object movies, my system allows an object to be viewed in different ap-

pearance states, such as day and night. This feature requires the photos to be classified into sets

corresponding to each state; once the photos are classified and a user selects a certain state, the

system will only display photos from that state. At a given viewpoint v, the user can toggle to any

state for which a photo Ij with non-zero reprojection score Sproj(I, v) exists.

I found that for two particular classes of photos, night and day, could be semi-automatically

classified using the observation that many 3D points (corresponding to SIFT features in the original

images) are highly correlated with either daytime or nighttime images; some features appear only

in daytime images, and some only in nighttime images. By hand-labeling a small number daytime

and seven nighttime photos, labels can be automatically propagated to all other photos.
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Figure 6.17: Switching between day and night in the Trevi Fountain. Left: a daytime view of the
Trevi Fountain. Right: the result of switching to a nighttime view; the same viewpoint is shown at
a different time of day.

I In particular, the labeling algorithm iteratively updates a set of (continuous) image labels U(I)

and point labels V (I) ∈ [−1, 1], where -1 corresponds to a nighttime image and 1 to a daytime

image. The image labels are first initialized to U(I) = 1 for the manually labelled daytime images,

U(I) = −1 for the nighttime images, and U(I) = 0 for other images, and the point labels were

initialized to V (p) = 0. Next, the point and image labels are updated using the following update

equations:

V (p) =

∑
I∈Imgs(p) U(I)∑

I∈Imgs(p) |U(I)| , U(I) =
1

|Points(I)|
∑

p∈Points(I)

V (I),

where Points(I) is the set of points visible in image I , and Imgs(p) is the set of images in which

point p is visible. In other words, points that are seen in mostly “night” (resp. “day”) images are

labeled as “night” (resp. “day”) points, and vice versa. For the cases I tried (the Trevi and Notre

Dame sets described in the next section), the update steps converged after about five iterations, and

cleanly separated the images into daytime (U(I) > 0) and nighttime (U(I) < 0) sets.

6.8 Results

I have applied the Pathfinder system to several large collections of images downloaded from Flickr,

as well as a collection of images taken from a hand-held camera. Screenshots of the interactive

viewer are shown in figures throughout this chapter (Figures 6.5, 6.10, 6.8, 6.9, and 6.13 and the

figures in this section); however, the results are best viewed in the video on the project web site [107].

Two of these scenes consist of dominant objects and provide an object movie experience: the Statue
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of Liberty, created from 388 photos, and the Venus de Milo, created from 461 images. The system

detected two orbits for the Statue of Liberty, and one orbit for the Venus de Milo; these orbits are

shown in Figure 6.10. The reconstruction of the Notre Dame Cathedral (created from 597 photos)

has a wide distribution of camera viewpoints on the square in front of the Cathedral, and is therefore

well suited for free-form 6-DOF navigation; a screenshot of the viewer with this data set loaded is

shown in Figure 6.13. This is a case where automatic orbit detection is less useful, as a good orbit

can be produced from almost anywhere on the square, as shown in the video. The reconstruction

of the Trevi Fountain (1771 photos) contains large numbers of both day and nighttime images,

making this a good candidate for evaluating both appearance stabilization and state-based modes.

Figure 6.17 shows an example of switching between day and night mode.

I also demonstrate how the system makes it easy to create an object movie experience by manu-

ally rotating a hand-held object (a Mark Twain figurine) in front of a camera. In this case, the user

manually specified a sphere of orbits, as the current implementation does not support spherical orbit

detection; screenshots are shown in Figure 6.9.

Finally, I demonstrate the system with a collection of photos of the Pantheon (602 images), a

complex scene consisting of both interior and exterior views. For this scene, Pathfinder detected

three orbits (Figure 6.5), several panoramas (Figures 6.6 and 6.8), and a number of canonical im-

ages (Figure 6.7), including photos of the front facade, the altar, the oculus, and several sculptures

inside the building. The accompanying video shows sample interactions with each of these types of

controls, and demonstrates the results of my path planning approach.

I also use this reconstruction to demonstrate another application of the Pathfinder system: cre-

ating a 3D slideshow of a personal photo collection. Suppose that you visit the Pantheon and take

your own set of photos, showing friends and family in a few discrete locations (e.g., the front façade,

the altar, looking up at the oculus). Structure from motion techniques are not likely to be able to reg-

ister the photos together due to insufficient overlap, unless they are captured much more frequently

than is customary with personal collections. However, if we combine them with all the other photos

of the Pantheon on the Internet, we can register our personal photos with that collection, and plan

paths between our own photos to create a 3D slideshow (in a sense, retracing our steps through the

Pantheon). The companion video shows such a slideshow created from a collection of four personal

photos added to the 602-image reconstruction. Figure 6.18 shows several photos in this personal
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Figure 6.18: Personal photo tour of the Pantheon. In this sequence, a user has added their own
personal collection to the Pantheon data set. This allows the user to create a 3D slideshow through
their own photos, using the community’s photos to fill in the gaps (please see the video on the project
webpage for an animated version of this tour).

collection in context in the Pathfinder viewer.

6.9 Discussion

I have successfully used my approach to create fluid IBR experiences with scene-specific controls

from unstructured community photo collections. I believe that these techniques represent an impor-

tant step towards leveraging the massive amounts of imagery available both online and in personal

photo collections in order to create compelling 3D experiences of our world. Part of the power

of this approach is the ability to learn controls from and create renderings of the world from large

photo collections. As these techniques are applied to larger and larger collections, I believe that the

experiences generated will continue to improve.

However, my approach also has several limitations in both the navigation and rendering compo-

nents. My geometric model for orbits is a circle, which fits many real-world scenes. On the other

hand, many paths around objects are ellipses, lines and polygons, or more free-form shapes. For

instance, consider the reconstructions of the Pisa Duomo and Stonehenge discussed in Chapter 4

and reproduced above in Figure 6.19. The paths people take around these objects follow walkways

or (in the case of Stonehenge) fences, resulting in more complex, non-circular paths. In the future,

it would be interesting to explore the detection of more general types of paths in a scene, perhaps

by unifying the path planning algorithm with the orbit and panorama detection algorithms. An ad-

ditional challenge is to devise better rendering algorithms for these more general paths, as orbit

stabilization will not always be applicable.
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(a)

(b)

Figure 6.19: Free-form paths around the Pisa Duomo and Stonehenge. Not all paths through scenes
are circular. (a) Photos taken of the Pisa Duomo and its surroundings tend to follow walkways
around the building. (b) Photos of Stonehenge follow an arc going about two-thirds of the way
around the prehistoric monument, but then curve inwards to follow a straight section of path for the
remainder of the circle.

Another interesting question brought up by this point is whether the paths a user wants to take

through a scene are the same as the ones people actually take when physically at the scene. The

paths discovered by my system reflect the latter, which results in controls that are arguably useful in

two senses: (1) they show you what you would presumably see if you were there and (2) inasmuch

as people take photos from “optimal” viewpoints and of interesting views, the derived controls are

likely to be interesting as well. However, people are also constrained by physics, walls, and other

physical barriers, which preclude viewpoints that might, in some sense, be better. For instance, the

fences around Stonehenge prevent people from getting close to and climbing around the stones, but

it would certainly be useful to have photos taken from such viewpoints (in fact, these views might

be much more useful in a virtual setting, where there is no possibility of damage to the stones). One

possible way around this problem might be to combine the controls learned from the masses with

more carefully created paths captured by experts with special access or equipment, or to have the
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masses vote on interesting paths through the scene with a distributed 3D drawing interface.

An expert creating a specialized path through a scene is an example of the more general concept

of authoring. Currently, the system discovers sets of controls and computes paths between views

completely automatically and without user input (the user can specify a set of endpoints to paths,

however, as in the 3D slideshow shown in Section 6.8). In some cases, a user might want to manually

specify paths, either to correct a mistake made by the automatic algorithm, highlight additional

interesting paths, or create a personalized tour through the scene. For instance, one could envision

a kind of “magnetic lasso” tool [96], where a user draws a path that automatically snaps to nearby

photos so as to improve the viewpoint score of the specified path.

Appearance compensation is also still a significant open problem. My color compensation

method works well for images that are fairly similar in overall appearance, so it goes hand in hand

with the similarity-based selection mode. However, because the method only models an affine trans-

formation per color channel, compensating two very different images (e.g., sunny and cloudy) is not

possible, limiting the number of possible transitions between images. Developing a more flexible

appearance compensation model would help avoid these problems. It also would be interesting to

explore more sophisticated image models that detect foreground objects, such as people, and back-

ground elements such as the sky. These elements could then be treated specially during rendering:

foreground objects could be removed during transitions, or popped up onto their own proxy planes,

and the sky could transition in a realistic way, with clouds rolling in or out.

For larger and larger scenes, memory will become a significant issue. Currently, the system

caches all images when the program is loaded: this not only introduces a significant startup time,

but will not scale to collections of tens or hundreds of thousands of images. Handling truly massive

collections will require more efficient caching schemes, such as those used in Seadragon [127] and

Photosynth [109].

How will the controls themselves scale to much larger scenes? For a city-sized scene, will

the user want the same set of controls as for a small-scale scene? I imagine that the toolset for

moving through the scene would probably consist of controls at different levels of detail, depending

on whether the user wants to get an overview of the entire city or a particular momument. Paths

between different parts of a city could be computed in a variety of ways as well, depending on the

user’s intent. A Google-Earth style transition (zooming out to city-level, then zooming back in to
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the destination) would provide a broad context of the scene, while a “taxi”-style transition wending

through the city streets would show how a person might actually move between two parts of the city.

Evaluation. Finally, evaluation is a very important area for further study. How effective are the

derived scene-specific controls, and the Pathfinder user interface as a whole, at enabling users to nav-

igate through and understand a scene? Part of the challenge in evaluating 3D navigation techniques

is deciding what questions to ask—what is it that we want to evaluate? Gauging the effectiveness

of an interface presupposes a certain task that users are trying to accomplish, as well as a certain

metric for success, such as speed or accuracy. For instance, in Ware and Osbourne’s study compar-

ing different navigation metaphors [157], the task is to locate several details distributed throughout

the scene (and afterwards make a movie showing where each detail is), and the evaluation metric

was how satisfied the user was with each metaphor. Other work has considered the efficiency of

completing tasks such as moving the viewpoint to a specific object [145] (somewhat analogous to

the 2D desktop task of moving a mouse cursor to a destination).

In practice, however, it can be hard to predict what task a user will wants to accomplish in

a scene, or the task itself may be ill-defined. In the context of this chapter, which has focused

mainly on famous, real-world scenes, the most natural task is perhaps “virtual tourism”—walking

around a scene doing what one might do if physically visiting a famous place for the first time,

such as looking at interesting objects and learning interesting facts about the location. These kind

of tasks seem less straightforward to evaluate, as they are more about entertainment and education,

or, perhaps, simply about the experience of being at an impressive or important place. For these

kinds of tasks, a more informal type of study evaluating how engaged users are in the interface, and

how long they remained interested, might be more appropriate. It would also be interesting to study

how people move through and interact with real tourist environments in order to create improved

interfaces and experiences. The work presented here uses an artifact of those interactions—people’s

photographs—to reverse-engineer patterns of movement and find interesting objects, but studying

behavior more directly could also be fruitful.

In addition to virtual tourism, there are also other scenarios that would be interesting to evaluate.

One example is real estate, where an owner might want to create a virtual tour of their home for po-

tential buyers to explore. From a buyer’s point of view, the goals of exploring a home might be more
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specific than with tourist sites, and could include seeing what individual rooms look like, how big

they are, and how they are spatially arranged. One way to evaluate a virtual home interface would

be to measure how well (i.e., how accurately, and how quickly) a user gains spatial knowledge of a

home when using the interface. This could be tested in a study in which users explore the home vir-

tually, then try to sketch out a floorplan. This approach was used by Darken and Seibert to evaluate

how well different navigational aids (e.g., an overhead map or a grid) improve wayfinding ability

in large virtual environments [27]. Other measures of spatial knowledge have also been explored.

For instance, Ruddle et al.[121] use three different metrics in the context of navigating virtual build-

ings: route-finding ability, relative distance between landmarks, and directional estimates, i.e., how

accurately users could “point” from one location to another after exploring a scene.

Individual components of the Pathfinder system could also be evaluated. For instance, the effec-

tiveness of the scene-specific controls could be evaluated in comparison to other types of controls

(e.g., different styles of free-viewpoint controls). The trajectories resulting from the path planning

algorithm could also be compared to other types of paths, such as linear interpolation, in terms of

scene and motion comprehension or visual appeal.
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Chapter 7

CONCLUSION

This thesis has presented my work on taking large, unstructured photo collections and creating

immersive 3D experiences of places, using combinations of new computer vision, graphics, and

interaction techniques. This work makes the following specific contributions to computer vision

and computer graphics:

• Computer vision:

– A structure from motion (SfM) pipeline, described in Chapter 3, that combines many

existing techniques (SIFT [90], RANSAC [45], sparse bundle adjustment [89]), into a

robust system. With this system, I have demonstrated, for the first time, that SfM can

be successfully applied to the large, unstructured, highly diverse collections of images

found with Internet search.

– An approach for handling the scale of Internet collections. In Chapter 4, I described

skeletal sets, an approach for sifting through a large image collection to find the subset

that is critical for reconstruction. This technique can significantly reduce the number of

images that need to be processed with the heavy machinery of SfM, reducing the SfM

processing time by an order of magnitude for large collections, while attaining provable

bounds on the loss in accuracy of reconstruction.

• Computer graphics and interactive techniques:

– A new 3D photo browser. In Chapter 5, I presented Photo Tourism, a photo browser

that takes photo collections reconstructed with SfM and places the user in the 3D scene

among the reconstructed photos. Photo Tourism provides new geometric photo browsing

controls that enable actions such as zooming in and out of a photo, moving to photos

taken to the left or right of a given image, finding good photos of a selected object, and
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viewing stabilized slideshows. Photo Tourism also contains a powerful annotation tool,

which can be used to label large numbers of photos at a time.

– A new 3D navigation system that automatically derives good navigation controls from

an input photo collection. Chapter 6 described Pathfinder, a scene browser that ana-

lyzes the distribution of photos in a collection, detects interesting orbits, panoramas,

and canonical views, and synthesizes optimal paths between different controls using

a new path planning algorithm. Pathfinder tailors the navigation controls to different

scenes in order to make exploring a particular scene more intuitive and automatic.

– New rendering techniques for depicting scenes from unstructured photo collec-

tions, including new ways to render transitions between images and to render scenes

in a non-photorealistic style (Chapter 5), and an approach for selecting and display-

ing images automatically based on a user’s current viewpoint and navigation controls

(Chapter 6).

7.1 Future work

In this thesis, I have presented work that demonstrates the tremendous potential of using massive

photo collections to create new ways to visualize the world. However, this work is just a first step

towards a goal of creating a virtual version of our world that is as visually rich and as extensive

as the real thing, putting a vivid recreation of the world at our fingertips. I envision a system that

stores all of the images of places ever taken and can display or synthesize a photo-realistic view

from nearly anywhere in the world, at any time, and under any possible weather condition. In this

section, I describe several specific projects that reach toward this ambitious goal.

Reconstructing Rome. Scale is still a significant problem in structure from motion problems. To

date, the largest collections I have reconstructed consist of about 10,000 photos. However, for many

large-scale scenes, we can easily find collections of photos that are two or three orders of magnitude

larger. For instance, searching for “Rome” on Flickr returns over 1.5 million photos. If we add the

Italian name for Rome, Roma, we get an addition half million photos. The same search in Picasa

Web Albums results in nearly 18 millions photos. I have downloaded just over a million of these,

and matched a subset of about 20,000 of the downloaded images. The image connectivity graph for
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Figure 7.1: Image connectivity graph for 20,000 images of Rome from Flickr. The graph is made up
of several large (and many smaller) connected components corresponding to individual sites, some
of which are labelled.

this subset is shown in Figure 7.1. The goal is to reconstruct as much of the city of Rome as possible

from these photos—to create a modern-day complement to the model of the ancient city created by

the Rome Reborn project [62].

How can we reconstruct one million photos? Further, can we reconstruct all of them in a single

day? This is a very challenging problem that will require new, more efficient algorithms, but also

intelligent ways of parallelizing the reconstruction effort.

Generally speaking, there are two parts of the reconstruction pipeline that are particularly time-

consuming: image matching and structure from motion. In the current image matching algorithm,

every pair of images is compared; for one million photos, we need to consider just under half a

trillion image pairs. At 0.1 second per pair, this process would take about a millenium and a half to

complete on a single machine. The matching is easily parallelizable, but even with 1,000 machines,

it would take more than 1.5 years (about 578 days) to complete. Linear-time algorithms based on a
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bag of words approach [133, 104, 24] are much more scalable, but may be less accurate than brute

force matching. These approaches might be fruitfully combined together in stages. For instance,

one could first run a linear-time algorithm to find likely pairs of matching images, followed by a

brute force verifier on those pairs, followed by a stage to compress the matching information to

remove redundancy, and finally another brute force step to find any missed matches.

For the structure from motion stage, the skeletal sets algorithm presented in Chapter 4 (com-

bined with parallelization of the pairwise reconstructions) may be efficient enough to reconstruct

each connected component of the match graph. If not, however, one way to make SfM even faster

would be to parallelize the reconstruction of the skeletal graph by recursively breaking it apart,

reconstructing individual pieces in parallel, and merging.

Robustness is another challenge with this large reconstruction effort. As noted in Chapter 3, the

SfM pipeline has several failure modes that can result in incorrect results. For individual models,

these failures can sometimes be fixed by manually tweaking parameters or by choosing a different

initial image pair. However, hundreds of reconstructions may be present in the million images of

Rome, and it would be tedious to check each one. Thus, improving the success rate of SfM is

another key problem.

Capturing appearance and dynamic phenomena. In this thesis I have focused mainly on re-

covering camera and sparse scene geometry from photo collections and providing corresponding

geometric controls. However, the appearance of a scene can change dramatically over time, from

day to night, over the course of the year, and due to changes in the scene itself. In the Pathfinder sys-

tem, I demonstrated techniques for normalizing appearance in order to maintain consistency across

views, and for partitioning photos into broad categories, such as day and night. Even better would

be controls for directly exploring the space of the appearance of a scene, in the same way that geo-

metric controls let the user explore the space of viewpoints. Imagine, for instance, having a handle

on the sun, being able to drag it across the sky, and having the appearance of the scene automatically

adjust to reflect the selected time of day and year.

One approach to this problem would be to index each photo by viewpoint and time of capture,

and display the photo that best matches the user’s current viewpoint and selected time. However, the

photo collections I have reconstructed are not yet dense enough—in both viewpoint and time—for
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this simple lookup scheme to work well. Moreover, the time and date information that is stamped

on most digital photos can be unreliable, as photographers can easily forget to set their camera’s

clock or update the time zone when they travel.

If the time and date information could be reliably determined, another approach would be to

learn an entire appearance model from scratch given the images. This would involve computing a

full 3D model for the scene, learning material parameters (or bi-directional reflectance distribution

functions (BRDFs)) for every surface, determining how the scene is lit, and using these recovered

parameters to render the scene from new views and at new times. This is a challenging data-fitting

problem, however, and would involve solving a complex, highly non-linear objective function; nev-

ertheless, this would be a very interesting approach to try. A somewhat less ambitious approach

would be to recover parameters of a simplified model from the data, using, e.g., PCA to learn a

linear basis for the scene appearance.

Of course, the appearance of a scene changes for other reasons besides variations in illumination.

At longer time scales, buildings are built and demolished1 and at shorter time scales, people move,

water flows, and trees sway. Can we also capture and display these kinds of dynamic effects? For

shorter time scales, it would be interesting to incorporate video of a scene into a reconstruction, and

attempt to resynthesize dynamic elements from the video in other views.

Video. The dense temporal sampling provided by video is not only helpful in capturing dynamic

effects, but could also be useful in many other ways as well. For instance, video can record the

paths people take through a scene much more densely, and thus it would be interesting to apply the

analyses in Chapter 6 to image collections with intermingled videos. At an even more basic level, it

would be interesting to characterize how (and why) people tend to capture video of a scene or event,

and how this differs from how people capture photos. Audio often comes along for free with video;

adding audio to scenes would make for richer experiences, and could provide an authoring interface

for creating video tours. An interesting interface for browsing such video is presented in [117].

1Usually in that order; this constraint is being used by the 4D Cities project to find a temporal ordering of historical
photos of Atlanta [125].
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Interiors. I have mainly explored reconstructing and exploring outdoor (usually architectural)

scenes. While indoor scenes are not necessarily more challenging to reconstruct (see, for instance,

the St. Peters and Pantheon reconstructions in Chapter 4), they do seem to be more challenging to

visualize through photo collections. One reason for this is that, while the exterior front of a building

can often be reasonably approximated with a plane, the inside of, say, a home, is more complex.

Typically, several walls (as well as floor and ceiling) are visible at any given time, and there tend

to be more objects (e.g., furniture) inside than outside. Hence, planar projection surfaces do not

work as well inside (the Pantheon is an exception, as the interior is approximately a simple cylinder

topped by a dome). To create good renderings of interiors, it may be necessary to use more complex

projection surfaces consisting of multiple planes or triangulated meshes.

Building a new photo-sharing community. The work presented in this thesis makes use of the

photos of many different photographers taking photos independently and without the intention of

collectively reconstructing 3D geometry or creating immersive experiences. What if people knew

that they were contributing photos towards a larger reconstruction effort, and could see the results

of that effort as they unfolded? It would be interesting to create a website where people could

upload their photos, as in Flickr, but where uploaded photos are automatically registered with an

existing set of reconstructions. The current state of this world reconstruction could be viewed at any

time, and the boundaries—the parts where new photos are needed—could be highlighted. Users

could also see their own photos, as well as the parts of the world to which they have contributed.

This distributed reconstruction effort could also be turned into a game in which points or other

incentives are offered for adding onto the reconstruction, or incorporated into other fun activities,

such as virtual treasure hunts. This type of online reconstruction procedure poses certain algorithmic

challenges. For instance, given an image collection and a corresponding skeletal graph, is it possible

to update the skeletal graph in an online fashion as new images come in? On the other hand, having

users more involved may simplify other problems. Image matching, for instance, may be much

easier if users interactively provide hints as to their location, e.g., by clicking or tapping on a map,

thus constraining candidate matching images to nearby photos.

Creating a website that collects and registers the world’s photos could be beneficial for a number

of reasons. First, it could help infuse the site with a greater sense of community; not only are
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people contributing to a large project (which no individual could possibly accomplish alone), but

users can also see how their photos fit in with those of other users, which could help forge links

between users who may otherwise not notice a connection (“oh, he’s been to that cafe in Istanbul as

well!”). Second, it would be very helpful in identifying—and encouraging people to fill in—gaps

where people normally shoot few photos, i.e., the places in-between the famous sites. This could

become a scalable way of capturing a rich visual record of the entire world. Finally, the resulting

reconstruction could serve as a foundation onto which other types of information could be added:

labels on statues, buildings, paintings, and other objects; links to Wikipedia pages and other sources

of information; and comments and reviews of restaurants and other businesses. Creating such a

gathering place for the world’s images would not only require new algorithms for managing massive

amounts of data and predicting where new images should be taken, but also research into how to

best give people incentives to contribute. In spite of these challenges, I believe that this project could

have significant impact, as a repository of data, a model of the world useful for education, research,

and virtual tourism, and a compelling social networking site.
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Appendix A

ESTIMATING THE FOCAL LENGTH OF A DIGITAL PHOTO FROM EXIF
TAGS

Almost every digital camera manufactured in the last few years embeds useful data about each

captured photo into the JPEG files that get stored to the camera’s memory. This information, en-

coded in Exif (exchangeable image file format) tags, often includes exposure time, focus, aperture,

whether the flash was activated, and focal length. The last of these, focal length, is especially useful

for structure from motion. This appendix describes how to extract the focal length from the Exif

tags of a digital photo and to convert it to the pixel units that can be directly used in structure from

motion. The following pieces of information are required for this conversion:

1. The focal length estimate (in mm), fmm.

2. The width of the camera CCD (in mm), CCDmm.

3. The dimensions of the image (in pixels), wpixels, hpixels.

Once all of these numbers are known, computing the focal length in pixel, fpixels, can be done via a

simple unit conversion:

fpixels =
fmm

CCDmm
(max{wpixels, hpixels})

This computation assumes that the image has not been cropped or warped in any way (aside from

simple resizing of the image). For instance, if the focal length of a photo is listed in the Exif tags as

5.4mm, we used, say, a Canon PowerShot S100 (with a CCD width of 5.27mm) to take the photo,

and the image resolution is 1600 × 1200, then

fpixels =
5.4
5.27

× 1600 = 1639.47.

To extract fmm from the Exif tags, any Exif tag reader will do. JHead [156] is a good free one

which works from the command line. The resolution of an image is also embedded in the Exif tags.
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The camera manufacturer and model name are also usually embedded as well, and for many camera

models CCDmm can be found online on camera review sites such as Digital Photography Review

[33]. For instance, the specifications page for the Canon PowerShot S100 on Digital Photography

Review lists the dimensions of the sensor as 1/2.7” (5.27 x 3.96 mm). Some cameras embed the

CCD width directly into the Exif tags, but in my experience, this number is often unreliable.

As with the example above, sometimes the CCD size is given as a ratio of inches (e.g., 1/2.7”).

These sizes stem from standard diameters of television camera tubes, and the conversion from these

units to millimeters is not straightforward; Digital Photo Review describes the conversion in its

glossary [34].
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Appendix B

COMPLEXITY ANALYSIS OF INCREMENTAL STRUCTURE FROM MOTION

The running time of the incremental structure from motion (SfM) algorithm of Chapter 3 de-

pends on the exact schedule in which the images are added to the reconstruction, and is dominated

by the calls to SBA [89] after every batch of new images is reconstructed. Let S(t) be the running

time of a call to SBA when there are t images currently in the reconstruction. Let T (n, r) be the total

amount of time spent inside SBA during SfM given n input images, r of which are added during

each iteration of SfM.1 Recall that S(t) = Θ(t3), so there exists N such that, for all t > N ,

c1t
3 ≤ S(t) ≤ c2t

3 (B.1)

for some constants c1 and c2.

Case 1: r = n
k . First, suppose that n

k images are added per iteration of SfM, i.e., we are consider-

ing T
(
n, n

k

)
. We have that

T
(
n,
n

k

)
=

k∑
i=1

S
(
i
n

k

)
.

For n
k > N , the bounds in Equation B.1 apply. Considering just the upper bound, we have that:

T
(
n,
n

k

)
≤

k∑
i=1

c2

(
i
n

k

)3

≤
k∑

i=1

c2

(
k
n

k

)3

= c2kn
3.

1In practice, the number of images added will vary between iterations. For simplicity of analysis, I only consider the
case where the same number of images are added each time.
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It follows that T
(
n, n

k

)
= O(n3). A lower bound proportional to n3 can also be shown, thus

T
(
n, n

k

)
= Θ(n3).

Case 2: r = �. Now let us consider the case when a constant number � of images are added during

each iteration, for a total of n
� iterations (assuming � divides n). We have that

T (n, �) =
n/�∑
i=1

S(i · �). (B.2)

Let us group the first N
� terms in the summation in Equation B.2 into a single constant, C (assuming,

without loss of generality, that � divides N ); the remaining terms (where i · � > N ) can then be

bounded using Equation B.1. Considering just the upper bound gives:

T (n, �) =
n/�∑
i=1

S(i · �) (B.3)

=
N/�∑
i=1

S(i · �) +
n/�∑

i=N/�+1

S(i · �) (B.4)

= C +
n/�∑

i=N/�+1

S(i · �) (B.5)

≤ C +
n/�∑

i=N/�+1

c2(i · �)3 (B.6)

= C + c1�
3

n/�∑
i=N/�+1

i3 (B.7)

= C + c1�
3

⎛
⎝n/�∑

i=1

i3 −
N/�∑
i=1

i3

⎞
⎠ . (B.8)
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The sum over i3 for 1 ≤ i ≤ N/� is another constant, which we denote by D:

T (n, �) ≤ C + c1�
3

⎛
⎝n/�∑

i=1

i3 −D

⎞
⎠ (B.9)

=
(
C − c1�

3D
)

+ c1�
3

n/�∑
i=1

i3 (B.10)

=
(
C − c1�

3D
)

+ c1�
3

[(
n
�

) (
n
� + 1

)
2

]2

(B.11)

= O(n4). (B.12)

Therefore T (n, �) = O(n4). Using the lower bound in Eq. B.1, we can also show that T (n, �) =

Ω(n4) through a very similar analysis, replacing

T (n, �) ≤ C +
n/�∑

i=N/�+1

c2(i · �)3

in Eq. B.6 with

T (n, �) ≥ C +
n/�∑

i=N/�+1

c1(i · �)3

Hence, T (n, �) = Θ(n4).
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Appendix C

LINE SEGMENT RECONSTRUCTION

Once the point cloud has been reconstructed and the camera positions recovered using structure

from motion (SfM), the SfM pipeline reconstructs 3D line segments in the scene. Line segments can

be useful for generating better triangulated morphs (Chapter 5, Section 5.1.2) and for enhancing the

renderings of architectural scenes. Line segment reconstruction from images has been investigated

in work such as [126]. My 3D line segment reconstruction algorithm is similar, and has the following

steps:

1. Detect 2D line segments in each image.

2. Derive a set of candidate 2D line segment matches by comparing line segments between pairs

of nearby images.

3. Find sets of mutually consistent matches across multiple images (line tracks) above a certain

size and triangulate the matching 2D line segments to obtain a 3D line segment.

These steps are now described in more detail.

To detect 2D line segments, I use Canny edge detection [19], followed by an edge-linking step

to form edge chains. These chains may have any shape, and may be closed; the next step is to break

the chains into sub-chains that approximate line segments. To do so, for each edge chain, I fit a line

to the chain using orthogonal regression. If the furthest point on the chain from the fitted line has a

distance to the line greater than a threshold, the chain is broken in two at that extremal point, then

this procedure is recursively applied two the two new chains. Finally, I remove chains smaller than

a threshold, and store the two endpoints of the line segment approximating of each of the remaining

chains. I use S(I) to denote the set of 2D line segments found in image I .

I then match line segments between images. For each image Ij , I first compute a set of other

images with which to match. This set should contain images whose cameras are close to camera Cj

and looking in roughly the same direction. To compute this set, I find the 32 cameras closest to Cj
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and remove those whose viewing directions are at an angle greater than a threshold to the viewing

direction of Cj .

Next, for each camera Ck in the set, I consider each line segment s ∈ S(Ij). Each line segment

t ∈ S(Ik) is labeled as a candidate match of s if t meets the following two conditions:

1. The endpoints of t are not too far away from the epipolar lines of the endpoints of s in image

Ik.

2. The L2 distance between a strip of intensity values around s and a strip of intensity values

around t is not too large. The intensity values are sampled along epipolar lines, and each strip

is normalized for bias and gain before their L2 distance is computed. After normalization, I

use a threshold of 0.3 to reject candidate matches.

After computing candidate matches between pairs of neighbors, I compute connected compo-

nents of candidate matches, as was done with SIFT feature matches in the SfM pipeline (Chapter 3,

Section 3.1). Unlike with keypoint matching, however, I now know where each photograph was

taken, so we can immediately check connected components for geometric consistency. For each

connected component of matches with a subset of consistent line segments of size at least four, I

create a 3D line segment. The 3D line segment is created by triangulating corresponding endpoints

of the 2D line segments; the resulting 3D points form the endpoints of the 3D line segment.
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their photos in my work. Photos from these Flickr users were used in the Photo Tourism project,

and appear in Chapter 5 or the associated video.

Holly Ables
http://www.flickr.com/photos/tmlens/of Nashville, TN

Rakesh Agrawal http://www.flickr.com/photos/asmythie/

Pedro Alcocer http://www.flickr.com/photos/pealco/

Julien Avarre http://www.flickr.com/photos/eole/

Rael Bennett http://www.flickr.com/photos/spooky05/

Loı̈c Bernard http://www.flickr.com/photos/loic1967/

Nicole Bratt http://www.flickr.com/photos/nicolebratt/

Nicholas Brown http://www.flickr.com/photos/nsgbrown/

Domenico Calojero1 http://www.flickr.com/photos/mikuzz/

DeGanta Choudhury http://www.flickr.com/photos/deganta/

dan clegg http://www.flickr.com/photos/mathmandan/

Claude Covo-Farchi http://www.flickr.com/photos/bip/
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