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Abstract
This paper presents a novel approach for reconstructing
free-form, texture-mapped, 3D scene models from a single
painting or photograph. Given a sparse set of user-specified
constraints on the local shape of the scene, a smooth 3D
surface that satisfies the constraints is generated. This prob-
lem is formulated as a constrained variational optimization
problem. In contrast to previous work in single view recon-
struction, our technique enables high quality reconstruc-
tions of free-form curved surfaces with arbitrary reflectance
properties. A key feature of the approach is a novel hier-
archical transformation technique for accelerating conver-
gence on a non-uniform, piecewise continuous grid. The
technique is interactive and updates the model in real time
as constraints are added, allowing fast reconstruction of
photorealistic scene models. The approach is shown to yield
high quality results on a large variety of images.

1 Introduction
One of the most impressive features of the human visual
system is our ability to infer 3D shape information from a
single photograph or painting. A variety of strong single-
image cues have been identified and used in computer vi-
sion algorithms (e.g. shading, texture, and focus) to model
objects from a single image. However, existing techniques
are not capable of robustly reconstructing free-form objects
with general reflectance properties. This deficiency is not
surprising given the ill-posed nature of the problem–from
a single view it is not possible to differentiate an image of
an object from an image of a flat photograph of the object.
Obtaining good shape models from a single view therefore
requires invoking domain knowledge.

In this paper, we argue that a reasonable amount of user
interaction is sufficient to create high-quality 3D scene re-
constructions from a single image, without placing strong
assumptions on either the shape or reflectance properties of
the scene. To justify this argument, an algorithm is pre-
sented that takes as input a sparse set of user-specified con-
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Figure 1: The 3D model at right is generated from a single
image and user-specified constraints.

straints, including surface positions, normals, silhouettes,
and creases, and generates a well-behaved 3D surface sat-
isfying the constraints. As each constraint is specified, the
system recalculates and displays the reconstruction in real
time. The algorithm yields high quality results on images
with limited perspective distortion.

We cast the single-view modeling problem as a con-
strained variational optimization problem. Building upon
previous work in hierarchical surface modeling [16, 6, 17],
the scene is modeled as a piecewise continuous surface rep-
resented on a quad-tree-based adaptive grid and is computed
using a novel hierarchical transformation technique. The
advantages of our approach are:

� A general constraint mechanism: any combination of
point, curve, and region constraints may be specified
as image-based constraints on the reconstruction.

� Adaptive resolution: the grid adapts to the complex-
ity of the scene, i.e., the quad-tree representation can
be made more detailed around contours and regions of
high curvature.

� Real-time performance: a hierarchical transformation
technique is introduced that enables 3D reconstruction
at interactive rates.

A technical contribution of our algorithm is the formula-
tion of a hierarchical transformation technique that handles
discontinuities. Controlled-continuity stabilizers [19] have



been proposed to model discontinuities in inverse visual
reconstruction problems. Whereas hierarchical schemes
[16, 6] and quad-tree splines [17] enabled fast solutions for
related variational problems, our approach for integrating
discontinuity conditions into a hierarchical transformation
framework is shown to yield significant performance im-
provements over these prior methods.

The remainder of the paper is structured as follows. Sec-
tion 2 formulates single-view modeling as a constrained op-
timization problem in a high dimensional space. In order
to solve this large scale optimization problem efficiently
with adaptive resolution, a novel hierarchical transforma-
tion technique is introduced in Section 3. Section 4 presents
experimental results and Section 5 concludes.

1.1 Previous Work on Single View Modeling

The topic of 3D reconstruction from a single image is a
long-standing problem in the computer vision literature.
Traditional approaches for solving this problem have iso-
lated a particular cue, such as shading [7], texture [15],
or focus [11]. Because these techniques make strong as-
sumptions on shape, reflectance, or exposure, they tend to
produce acceptable results for only a restricted class of im-
ages. Of these, the topic of shape from shading, pioneered
by Horn [7], is most related to our approach in its use of
variational techniques and surface normal analysis.

More recent work by a number of researchers has shown
that moderate user-interaction is highly effective in creating
3D models from a single view. In particular, Horry et al.
[8] and Criminisi et al. [3] reconstructed piecewise planar
models based on user-specified vanishing points and geo-
metric invariants. Shum et al. [14] generated similar mod-
els from panoramas using a constraint system based on user
input. The Façade system [4] modeled architectural scenes
using collections of simple primitives from one or more im-
ages, also with the assistance of a user. A limitation of these
approaches is that they are limited to scenes composed of
planes or other simple primitives and do not permit mod-
eling of free-form scenes. A different approach is to use
domain knowledge; for example, Blanz and Vetter [1] have
obtained remarkable reconstructions of human faces from a
single view using a database of head models.

A primary source of inspiration for our work is a series
of papers on the topic of Pictorial Relief [10]. In this work,
Koenderink and his colleagues explored the depth percep-
tion abilities of the human visual system by having several
human subjects hand-annotate images with relative distance
or surface normal information. They found that humans are
quite proficient at specifying local surface orientation, i.e.,
normals, and that integrating a dense user-specified normal
field leads to a well-formed surface that approximates the
real object, up to a depth scale. Interestingly, the depth scale
varies across individuals and is influenced by illumination

conditions. We believe that the role of this depth scale is
mitigated in our work, due to the fact that we allow the user
to view the reconstruction from any viewpoint(s) during the
modeling process–the user will set the normals and other
constraints so that the model appears correct from all view-
points, rather than just the original view. The surface inte-
gration technique used by Koenderink et al. is not attractive
as a general purpose modeling tool, due to the large amount
of human labor needed to annotate every pixel or grid point
in the image. Although it is also based on the principles put
forth in the Pictorial Relief work, our modeling technique is
much more efficient, works from sparse constraints, and in-
corporates discontinuities and other types of constraints in
a general-purpose optimization framework.

An interesting alternative to the approach advocated in
this paper is to treat the scene as an intensity-coded depth
image and use traditional image editing techniques to sculpt
the depth image [20, 9, 12]. While our framework allows di-
rect specification of depth values, we found that surface nor-
mals are easier to specify and provide more intuitive surface
controls. This conclusion is consistent with Koenderink’s
findings [10] that humans are more adept at perceiving lo-
cal surface orientation than relative depth.

2 A Variational Framework for Sin-
gle View Modeling

The subset of a scene that is visible from a single image
may be modeled as a piecewise continuous surface. In our
approach, this surface is reconstructed from a set of user-
specified constraints, such as point positions, normals, con-
tours, and regions. The problem of computing the best sur-
face that satisfies these constraints is cast as a constrained
optimization problem.

2.1 Surface Representation

In this paper, the scene is represented as a piecewise contin-
uous function, f(x; y), referred to as the depth map. Sam-
ples of f are represented on a discrete grid, g i;j = f(id; jd),
where the i and j samples correspond to pixel coordinates
of the input image, and d is the distance between adjacent
samples, assumed to be the same in x and y. Denote g as
the vector whose components are gi;j .

A set of four adjacent samples, A=(i; j), B=(i + 1; j),
C=(i + 1; j + 1), and D=(i; j + 1) define the corners of a
grid cell. Note that a cell, written as A-B-C-D, is specified
by its vertices listed in counter-clock-wise order.

The technique presented in this paper reconstruct the
smoothest surface that satisfies a set of user-specified con-
straints. A natural measure of surface smoothness is the thin



plate functional [19]:

Q0(g) =
1

2d2

X
i;j

[�i;j(gi+1;j � 2gi;j + gi�1;j)
2

+2�i;j(gi+1;j+1 � gi;j+1 � gi+1;j + gi;j)
2

+i;j(gi;j+1 � 2gi;j + gi;j�1)
2] (1)

where �i;j , �i;j , and i;j are weights that take on values of
0 or 1 and are used to define discontinuities, as described in
Section 2.2.2.

2.1.1 Piecewise Continuous Surface Representation

While it is convenient to represent a surface by a grid of
samples, users should have the freedom to interact with a
continuous surface by specifying constraints at any location
with sub-grid accuracy. Given a sampled surface g i;j , we
represent the continuous surface f(x; y) using a triangular
mesh. Specifically, each grid cell is divided into four trian-
gles by inserting a vertex at the center with depth defined
as the average of the depths of the four corner samples, and
adding edges connecting the new vertex with the four cor-
ners. The resulting mesh defines a piecewise planar surface
over the cell. The depth of each point in the cell can be
expressed as a barycentric combination of the depth values
of four corner samples. Grid cells that intersect discontinu-
ity curves are omitted from the representation and appear as
gaps in the reconstruction.

2.2 Constraints

Our technique supports five types of constraints: point con-
straints, depth discontinuities, creases, planar region con-
straints, and fairing curve constraints. Point constraints
specify the position or the surface normal of any point on
the surface. Surface discontinuity constraints identify tears
in the surface, and crease constraints specify curves across
which surface normals are not continuous. Planar region
constraints determine surface patches that lie on the same
plane. Fairing curve constraints allow users to control the
smoothness of the surface along any curve in the image.

2.2.1 Point Constraints

A point constraint sets the depth and/or the surface normal
of any point in the input image. A position constraint is
specified by clicking at a point in the image to define the
(sub-pixel) position (x0; y0), and then dragging up or down
to specify the depth value. A surface normal is specified by
rendering a figure representing the projection of a disk sit-
ting on the surface with a short line pointing in the direction
of the surface normal (Figure 2(a)). This figure is superim-
posed over the point in the image where the normal is to
be specified and manually rotated until it appears to align

(a) (b) (c)

(d) (e) (f)

Figure 2: Modeling constraints. (a) The effects of position
(blue crosses) and surface normal constraints (red disks with
needles). (b) A depth discontinuity constraint creates a tear.
(c) A crease constraint (green curve). (d) The blue region is
a planar region constraint. (e) A fairing curve minimizing
curvature. (f) A fairing curve minimizing torsion makes the
surface bend smoothly given a single normal constraint–this
type of constraint is useful for modeling silhouettes.

with the surface in the manner proposed by [10]. In order to
uniquely determine the normal from its image plane projec-
tion, we assume orthographic projection.

A position constraint f(x0; y0) = f0 defines the follow-
ing constraint

c00gi;j + c10gi+1;j + c01gi;j+1 + c11gi+1;j+1 = f0 (2)

where (x0; y0) is located in grid cell [id; (i+1)d]�[jd; (j+
1)d] and c00, c01 ,c10, and c11 are the barycentric coordi-
nates of (x0; y0), as described in Section 2.1.1. Specifying
the normal of a point (x0; y0) to be (Nx; Ny; Nz)

T, defines
the following pair of constraints

f(x0 + d; y0)� f(x0 � d; y0)

2d
= �

Nx

Nz

(3)

f(x0; y0 + d)� f(x0; y0 � d)

2d
= �

Ny

Nz

(4)

Substituting Eq. (2) for f(x0�d; y0) and f(x0; y0�d)
yields two linear constraints on g. An example of the effects
of position and normal constraints is shown in Figure 2(a).

2.2.2 Depth Discontinuities and Creases

A depth discontinuity is a curve across which surface depth
is not continuous, creating a tear in the surface. A crease is
a curve across which the surface normal is not continuous
while the surface depth is continuous. Depth discontinuities



and creases are introduced to model important features in
real-world imagery. For example, mountain ridges can be
modeled as creases and silhouettes of objects can be mod-
eled as depth discontinuities. These features can be easily
specified by users with a 2D graphics interface.

Depth discontinuities and creases are modeled by defin-
ing the weights �i;j , �i;j , and i;j in the smoothness objec-
tive function of Eq. (1). Given a depth discontinuity curve,
let A-B-C be a set of three consecutive colinear grid points
that cross the curve, and D-E-F-G a cell that the curve inter-
sects. For each such tuple A-B-C, the term (gA�2gB+gC)

2

is dropped fromQ0 by setting �B or B to 0. For each such
cell D-E-F-G, the term (gD�gE�gF+gG)

2 is also dropped
by setting �G to 0. Each crease curve is first scan con-
verted [5] to the sampling grid points. Then, all the terms
(gA � 2gB + gC)

2 are dropped if B is on the curve; all the
terms (gD�gE�gF +gG)

2 are dropped if either edge D-E
or edge F-G is on the curve. Otherwise, all the weights are
1 by default. Examples of depth discontinuity and crease
constraints are shown in Figures 2(b) and (c) respectively.

2.2.3 Planar Region Constraints

The necessary and sufficient conditions for surface planarity
over a regionR are fxx(x; y) = fxy(x; y) = fyy(x; y) = 0,
8(x; y)2R, and define the following constraints on g

gA � 2gB + gC = 0 (5)

gD � gE � gF + gG = 0 (6)

for all three consecutive colinear grid points A-B-C in R,
and for all cells D-E-F-G in R. An example of a planar
region constraint is shown in Figure 2(d).

2.2.4 Fairing Curve Constraints

It is often very useful for users to control the smoothness of
the surface both along and across a specific curve. For ex-
ample, surface depth is made to vary slowly along a curve in
Figure 2(e), and the surface gradient is made to vary slowly
across a curve in Figure 2(f). Fairing curves provide bet-
ter control of the shape of the surface along salient contours
such as silhouettes, and are achieved as follows.

Suppose that a user specifies a curve �(l) = (x(l); y(l))T

in the image. To maximize the smoothness along the curve,
the following integral is minimized

Qd(�) =

Z
l

(
d2

dl2
f(�(l)))2dl (7)

The gradient of the surface across � is (rf)Tn� , where
rf = (fx; fy)

T is the gradient of the surface f(x; y) at the
point �(l) and n� (l) = (� d

dl
y(l); d

dl
x(l))T is the normal

of � . To make the surface gradient across �(l) have small
variation, the integral

Qs(�) =

Z
l

(
d

dl
((rf)Tn� ))

2dl (8)

is minimized. Note that d
dl
((rf)Tn� ) is the derivative of

the surface gradient across the curve with respect to the
curve parameter.

The terms d2

dl2
f(�(l)) and d

dl
((rf)Tn� ) may be dis-

cretized as

d2

dl2
f(�(li)) = f(�(li+1))� 2f(�(li�1)) + f(�(li�1))

((rf)Tn� )(li) = f((�+
d

2
n� )(li+1))�f((��

d

2
n� )(li+1))

d

dl
((rf)Tn� )(li) = ((rf)Tn� )(li+1)� ((rf)Tn� )(li)

where f�(li)g are sampling points on the curve. Conse-
quently, Eqs. (7) and (8), can be expressed as quadratic
forms of g. The resulting equations are added, with weights
�� and �� , into Eq. (1), resulting in a modified surface
smoothness objective function Q(g):

Qc(�) = ��Qd(�) + ��Qs(�)

Q(g) = Q0(g) +
X
�

Qc(�) (9)

We call ��Qd(�) the curvature term and ��Qs(�) the tor-
sion term. Note that Q(g) is a quadratic form.

2.3 Linearly Constrained Quadratic Opti-
mization

Based on the surface objective function and constraints pre-
sented in Section 2.1 and 2.2, finding the smoothest surface
that satisfies these constraints may be formulated as a lin-
early constrained quadratic optimization. Point constraints
and planar region constraints introduce a set of linear equa-
tions, Eqs. (2-6), for the depth map g, expressed asAg = b.
Surface discontinuity and crease constraints define weights
�, �, and  and fairing curve constraints introduce

P
�

Qc(�)

in Eq. (9). Q(g) is a quadratic form and can be expressed as
gTHg, where H is the Hessian matrix. Consequently, our
linearly constrained quadratic optimization is defined by(

g� = argmin
g

fQ(g) = gTHgg

subject to Ag = b
(10)

The Lagrange multiplier method is used to convert this
problem into the following augmented linear system�

H AT

A 0

� �
g

�

�
=

�
0

b

�
(11)



The Hessian matrixH is a diagonally-banded sparse ma-
trix. For a grid of size N by N , H is of size N 2 by N 2,
with band width of O(N) and about 13 non-zero elements
per row. Direct methods, such as LU Decomposition, are
of O(N4) time complexity, and are therefore do not scale
well for large grid sizes. Iterative methods are more appli-
cable. We use the Minimum Residue method [13], designed
for symmetric non-positive-definite systems. However, the
linear system arising from Eq. (10) is often poorly condi-
tioned, resulting in slow convergence of the iterative solver.
To address this problem, a hierarchical basis precondition-
ing approach with adaptive resolution is presented in the
next section.

3 Hierarchical Transformation with
Adaptive Resolution

The reason for the slow convergence of the Minimum
Residue method is that it takes many iterations to propa-
gate a constraint to its neighborhood, due to the sparseness
of H. The first row of Figure 4 shows an example of this
constraint propagation process, where the two normal con-
straints generate only two small ripples after 200 iterations.
Multigrid techniques [18] have been applied to this type of
problem, however, they are tricky to implement and require
a fairly smooth solution to be effective [16]. Szeliski [16]
and Gortler et al. [6] use hierarchical basis functions to ac-
celerate the solution of linear systems like Eq. (11). We
review their approach next, to provide a foundation for our
work which builds upon it.

In the hierarchical approach, a regular grid is represented
with a pyramid of coefficients [2], where the number of co-
efficients is equal to the original number of grid points. The
coarse level coefficients in the pyramid determine a low res-
olution surface sampling and fine level coefficients deter-
mine surface details, represented as displacements relative
to the interpolation of the low resolution sampling. To con-
vert from coefficients to depth values, the algorithm starts
from the coarsest level, doubles the resolution by linearly
interpolating the values of current level, adds in the dis-
placement values defined by the coefficients in the next finer
level, moves to the next finer level, and repeats the proce-
dure until the finest resolution is obtained. Using similar
notation as Szeliski’s [17], the process can be written

procedure CoefToDepth(coef)
for l = L� 1 down to 1

for every grid point P in level l

depthP = coefP +
P

Q2NP

wP;Q � depthQ

return depth

end CoefToDepth

where L is the number of levels in hierarchy, coefP is the
hierarchical coefficient for P , NP is the set of grid points in

Figure 3: A cell is the primitive for 2D hierarchical transfor-
mation. The depth at the center point I is interpolated from
the midpoints E, F, G, and H, which are in turn interpolated
along each edge of the cell.

level l � 1 used in interpolation for P in level l, and wP;Q

is a weight that will be described later. Level 0 consists of a
single cell, with coefficients defined to be the depth values
at the corners of the cell.

In previous work, the weightswP;Q were defined to aver-
age all the points in NP , resulting in a simple averaging op-
eration for computingP fromNP . This approach implicitly
assumes local smoothness within the region defined by NP ,
resulting in poor convergence in the presence of discontinu-
ities. In practice, this choice of weights causes the artifact
that modifying the surface on one side of a discontinuity
boundary disturbs the shape on the other side during the it-
erative convergence process. As a result, it takes longer to
converge to a solution, and results in unnatural convergence
behavior. The latter artifact is a problem in an incremen-
tal solver where the evolving surface is displayed for user
consumption, as is done in our implementation. To address
this problem, we next introduce a new interpolation rule to
handle discontinuities between the grid points in NP .

The basic unit in the 2D hierarchial transformation tech-
nique is the cell shown in Figure 3, where the depth for
corners A, B, C, and D has already been computed and the
task is to transform coefficients at E, F, G, H, and I to depth
values at these points. With the same notation as in the pro-
cedure, CoefToDepth, NE = fA;Bg, NF = fB;Cg,
NG = fC;Dg,NH = fD;Ag, and NI = fE;F;G;Hg.
gE ; gF ; gG; and gH are first interpolated from A, B, C, and
D along edges, and then offset by their respective coeffi-
cients ~gE ; ~gF ; ~gG, and ~gH . Second, gI is interpolated from
gE ; gF ; gG; and gH and offset by its coefficient, ~gI . The two
interpolation steps above use continuity-based interpolation
with weights defined as

wP;Q =

8<
:

eP;QP
Q2NP

eP;Q
if

P
Q2NP

eP;Q > 0;

0 otherwise:

where

eP;Q =

�
1 if edge P� Q is continuous;
0 otherwise:

In the absence of discontinuities, the proposed



continuity-based weighting scheme is the same as simple
averaging schemes used in previous work [16, 17]. In the
presence of discontinuities, only locally continuous coarse
level grid points are used in the interpolation. The new
scheme prevents interference across discontinuity bound-
aries and consequently accelerates the convergence of the
Minimum Residue algorithm. The second and third rows of
Figure 4 show a performance comparison between standard
hierarchical transformation and our transformation with
continuity-based weighting on a simple surface modeling
problem with one discontinuity curve. The improvement of
our algorithm is quite evident in this example. In the third
row, our new transformation both accelerates the propaga-
tion of constraints and removes the interference across the
discontinuity boundary. We have found this kind of behav-
ior very typical in practice and find that adding continuity-
based weighting yields dramatic improvements in system
performance.

To summarize our approach in brief, instead of solving
Eq. (11) directly, we solve the hierarchical coefficients ~g
of the grid point g instead. The conversion from ~g to g
is implemented by the procedure, CoefToDepth, with
continuity-based weighting. The procedure implements a
linear transformation and can be described by a matrix S
[16]. Substituting g = S~g into Eq. (10) and applying the
Lagrange Multiplier method yields the transformed linear
system [6]:�

STHS STAT

AS 0

� �
~g

�

�
=

�
0

b

�
(12)

The matrix STHS is shown to be better conditioned [16],
resulting in faster convergence. The number of floating
point operations of the procedure CoefToDepth and its
adjoint [16] is approximately 4N 2 for a grid size of N �N .
Considering that there are around 13 non-zero elements per
row in H, the overhead introduced by S in multiplying
STHS with a vector is about 30%. Given the considerable
reduction in number of iterations shown in Figure 4, the
total run time is generally much lower using a hierarchical
technique, even with this overhead.

3.1 Adaptive Surface Resolution

As an alternative to solving for the surface on the full grid,
it is often advantageous to use an adaptive grid, with higher
resolution used only in areas where it is needed. For ex-
ample, the surface should be sampled densely along a sil-
houette and sparsely in areas where the geometry is nearly
planar. We support adaptive resolution by allowing the
user to specify the grid resolution for each region via a
user-interface. Subdivision may also occur automatically–
in our implementation, discontinuity and crease curves are
automatically subdivided to enable accurate boundaries. A

quad-tree representation is used to represent the adaptive
grid. By modifying our hierarchical transformation tech-
nique to operate on a quad-tree grid, as in [17], the run time
of the algorithm is proportional to the number of subdivided
grid points, which is typically much smaller than the full
grid.

Modifying the algorithm to operate on a quad-tree re-
quires the following changes. First, the triangular mesh rep-
resentation in Section 2.1.1 is adapted so that each inserted
vertex is connected to all the grid points on the cell, not just
to the four corners. Second, expressions for the first and sec-
ond derivatives of f in terms of g should be derived from
the quad-tree representation, e.g., by interpolating a regu-
lar grid neighborhood around each point from the triangular
mesh. Finally, special care should be taken to approximate
surface and curve integrals by summations, e.g., Eq. (1), on
the non-uniform grid, by weighing each term in the summa-
tion according to the size of the local neighborhood. The
full details of these modifications are omitted here for lack
of space, but can be found online [21].

4 Experimental Results

We have implemented the approach described in this paper
and applied it to create reconstructions of a wide variety of
objects. Only three of these results are presented in this
section but higher resolution images and 3D VRML mod-
els can be found online [21]. We encourage the reader to
peruse these results online to better gauge the quality of the
reconstructions.

Smooth objects without position discontinuities are es-
pecially easy to reconstruct using our approach. As a case
in point, the Jelly Bean image in the first row of Figure 5 re-
quires only isolated normals and creases to generate a com-
pelling model, and can be created quite rapidly (about 20
minutes, including time to specify constraints) using our in-
teractive system. The first row of Figure 5 shows the input
image, quad-tree grid with constraints, a view of the quad-
tree from a novel viewpoint, and a texture mapped render-
ing of the same view. For this example, the user worked
with a 32�32 grid that was automatically subdivided as the
crease curves were drawn. This model has 144 constraints
in all, 3396 grid points, and required 25 seconds to converge
completely on a 1.5GHz Pentium 4 processor, using our hi-
erarchical transformation technique with continuity-based
weighting. The system is designed so that new constraints
may be added interactively at any time during the model-
ing process–the user does not have to wait until full con-
vergence to specify more constraints. The second row of
Figure 5 shows a single-view reconstruction of The Great
Wall of China. This example was much more challenging
than the Jelly Bean, due to the complex scene geometry and
significant perspective distortions. Despite these obstacles,



a 3D model was reconstructed that appears visually con-
vincing from a significant range of views. This model has
135 constraints, 2566 grid points, and required 40 seconds
to converge completely.

An interesting application of single view modeling tech-
niques is to reconstruct 3D models from paintings. In
contrast to other techniques [4, 8, 1, 3], our approach
does not make strong assumptions about geometry, making
it amenable to impressionist and other non-photorealistic
works. Here we show a reconstruction created from a self-
portrait of van Gogh. This model has 264 constraints, 3881
grid points, and required 45 seconds to converge. This
was the most complex model we tried, requiring roughly
1.5 hours to design. For comparison, it takes 70 seconds
to converge without using the hierarchical transformation
and 3 minutes using the hierarchical transformation with-
out continuity-based weighting, i.e., an inappropriately-
weighted hierarchical method can perform significantly
worse than not using a hierarchy at all. Note, however,
that there is significant room for optimization in our imple-
mentation; we expect that the timings for both hierarchical
methods could be improved by a factor of 1.5 or 2.

5 Conclusions
In this paper, it was argued that a reasonable amount of user
interaction is sufficient to create high-quality 3D scene re-
constructions from a single image, without placing strong
assumptions on either the shape or reflectance properties of
the scene. To justify this argument, an algorithm was pre-
sented that takes as input a sparse set of user-specified con-
straints, including surface positions, normals, silhouettes,
and creases, and generates a well-behaved 3D surface sat-
isfying the constraints. As each constraint is specified, the
system recalculates and displays the reconstruction in real
time. A technical contribution is a novel hierarchial trans-
formation technique that explicitly models discontinuities
and computes surfaces at interactive rates. The approach
was shown to yield very good results on a variety of images.

There are a number of interesting avenues for future re-
search in this area. In particular, single-view modeling has
the inherent limitation that only visible surfaces in an image
can be modeled, leading to distracting holes near occluding
boundaries. Automatic hole filling techniques could be de-
veloped that maintain the surface and textural attributes of
the scene. Another important extension would be to gener-
alize to perspective projection as well as other useful pro-
jection models like panoramas.
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Figure 4: Performance comparison of solving Eq. 11 by using no hierarchical transformation, traditional transformation, and
our novel transformation in terms of number of iterations. The model has approximately 1400 grid points, and 4 constraints.

original image constraints 3D wireframe novel view

Figure 5: Examples of single view modeling on different scenes. From left to right, the columns show the original images,
user-specified constraints on adaptive grids, 3D wireframe rendering, and textured rendering.


