
Towards Linear-time Incremental Structure from Motion

Changchang Wu
University of Washington

Abstract

The time complexity of incremental structure from mo-
tion (SfM) is often known as O(n4) with respect to the
number of cameras. As bundle adjustment (BA) being sig-
nificantly improved recently by preconditioned conjugate
gradient (PCG), it is worth revisiting how fast incremen-
tal SfM is. We introduce a novel BA strategy that provides
good balance between speed and accuracy. Through al-
gorithm analysis and extensive experiments, we show that
incremental SfM requires only O(n) time on many ma-
jor steps including BA. Our method maintains high ac-
curacy by regularly re-triangulating the feature matches
that initially fail to triangulate. We test our algorithm
on large photo collections and long video sequences with
various settings, and show that our method offers state of
the art performance for large-scale reconstructions. The
presented algorithm is available as part of VisualSFM at
http://homes.cs.washington.edu/˜ccwu/vsfm/.

1. Introduction
Structure from motion (SfM) has been successfully used

for the reconstruction of increasingly large uncontrolled
photo collections [8, 2, 5, 4, 7]. Although a large photo
collection can be reduced to a subset of iconic images [8, 5]
or skeletal images [15, 2] for reconstruction, the commonly
known O(n4) cost of the incremental SfM is still high for
large scene components. Recently an O(n3) method was
demonstrated by using a combination of discrete and con-
tinuous optimization [4]. Nevertheless, it remains crucial
for SfM to achieve low complexity and high scalability.

This paper demonstrates our efforts for further improving
the efficiency of SfM by the following contributions:

• We introduce a preemptive feature matching that can re-
duce the pairs of image matching by up to 95% while still
recovering sufficient good matches for reconstruction.

• We analyze the time complexity of the conjugate gra-
dient bundle adjustment methods. Through theoretical
analysis and experimental validation, we show that the
bundle adjustment requires O(n) time in practice.

• We show that many sub-steps of incremental SfM,

including BA and point filtering, require only O(n) time
in practice when using a novel BA strategy.

• Without sacrificing the time-complexity, we introduce
a re-triangulation step to deal with the problem of
accumulated drifts without explicit loop closing.

The rest of the paper is organized as follows: Section 2
gives the background and related work. We first introduce
a preemptive feature matching in Section 3. We analyze the
time complexity of bundle adjustment in Section 4 and pro-
pose our new SfM algorithms in Section 5. The experiments
and conclusions are given in Section 6 and Section 7.

2. Related Work
In a typical incremental SfM system (e.g. [14]), two-

view reconstructions are first estimated upon successful
feature matching between two images, 3D models are then
reconstructed by initializing from good two-view recon-
structions, repeatedly adding matched images, triangulating
feature matches, and bundle-adjusting the structure and
motion. The time complexity of such an incremental SfM
algorithms is commonly known to be O(n4) for n images,
and this high computation cost impedes the application of
such a simple incremental SfM on large photo collections.

Large-scale data often contains lots of redundant infor-
mation, which allows many computations of 3D recon-
struction to be approximated in favor of speed, for example:

Image Matching Instead of matching all the image to
each other, Agarwal et al. [2] first identify a small number
of candidates for each images by using the vocabulary
tree recognition [11], and then match the features by using
approximate nearest neighbor. It is shown that the two-
folded approximation of image matching still preserves
enough feature matches for SfM. Frahm et al. [5] exploit
the approximate GPS tags and match images only to the
nearby ones. In this paper, we present a preemptive feature
matching to further improve the matching speed.

Bundle Adjustment Since BA already exploits linear
approximations of the non-linear optimization problem, it is
often unnecessary to solve the exact descent steps. Recent
algorithms have achieved significant speedup by using Pre-
conditioned Conjugate Gradient (PCG) to approximately

1

ccwu
Typewriter

ccwu
Typewriter

ccwu
Typewriter

ccwu
Typewriter

ccwu
Highlight
New site: http://ccwu.me/vsfm

http://homes.cs.washington.edu/~ccwu/vsfm/

solve the linear systems [2, 3, 1, 16]. Similarly, there is
no need to run full BA for every new image or always
wait until BA/PCG converges to very small residuals. In
this paper, we show that linear time is required by bundle
adjustments for large-scale uncontrolled photo collections.

Scene Graph Large photo collections often contain more
than enough images for high-quality reconstructions. The
efficiency can be improved by reducing the number of
images for the high-cost SfM. [8, 5] use the iconic images
as the main skeleton of scene graphs, while [15, 2] extract
skeletal graphs from the dense scene graphs. In practice,
other types of improvements to large-scale SfM should be
used jointly with scene graph simplifications. However,
to push the limits of incremental SfM, we consider the
reconstruction of a single connected component without
simplifying the scene graphs.

In contrast to incremental SfM, other work tries to avoid
the greedy manner. Gherard et al. [6] proposed a hierarchi-
cal SfM through balanced branching and merging, which
lowers the time complexity by requiring fewer BAs of large
models. Sinha et al. [13] recover the relative camera rota-
tions from vanishing points, and converts SfM to efficient
3D model merging. Recently, Crandall et al. [4] exploit
GPS-based initialization and model SfM as a global MRF
optimization. This work is a re-investigation of incremental
SfM, and still shares some of its limitations, such as initial-
izations affecting completeness, but does not rely on addi-
tional calibrations, GPS tags or vanishing point detection.

Notations We use n, p and q to respectively denote
the number of cameras, points and observations during a
reconstruction. Given that each image has a limited number
of features, we have p = O(n) and q = O(n). Since this
paper considers a single connected scene graph, n is also
used as the number of input images with abuse of notation.

3. Preemptive Feature Matching

Image matching is one of the most time-consuming steps
of SfM. The full pairwise matching takes O(n2) time for
n input images, however it is fine for large datasets to
compute a subset of matching (e.g. by using vocabulary
tree [2]), and the overall computation can be reduced to
O(n). In addition, image matching can be easily paral-
lelized onto multiple machines [2] or multiple GPUs [5] for
more speedup. Nevertheless, feature matching is still one
of the bottlenecks because typical images contain several
thousands of features, which is the aspect we try to handle.

Due to the diversity of viewpoints in large photo collec-
tions, the majority of image pairs do not match (75%−98%
for the large datasets we experimented). A large portion
of matching time can be saved if we can identify the
good pairs robustly and efficiently. By exploiting the

scales of invariant features [10], we propose the following
preemptive feature matching for this purpose:
1. Sort the features of each image into decreasing scale

order. This is a one-time O(n) preprocessing.
2. Generate the list of pairs that need to be matched, either

using all the pairs or a select a subset ([2, 5]).
3. For each image pair (parallelly), do the following:

(a) Match the first h features of the two images.
(b) If the number of matches from the subset is smaller

than th, return and skip the next step.
(c) Do regular matching and geometry estimation.

where h is the parameter for the subset size, and th is the
threshold for the expected number of matches. The feature
matching of subset and full-set uses the same nearest
neighbor algorithm with distance ratio test [10] and require
the matched features to be mutually nearest.

Let k1 and k2 be the number of features of two images,
and k = max(k1, k2). Letmp(h) andmi(h) be the number
of putative and inlier matches when using up to h top-scale
features. We define the yield of feature matching as

Yp(h) =
mp(h)

h
and Yi(h) =

mi(h)

h
. (1)

We are interested in how the yields of the feature subset cor-
relate with the final yield Yi(k). As shown in Figure 1(a),
the distributions of Yp(h) and Yi(h) are closely related
to Yi(k) even for very small h such as 100. Figure 1(b)
shows that the chances of have a match within the top-scale
features are on par with other features. This means that
the top-scale subset has roughly h/k chance to preserve a
match, which is much higher than the h2/(k1k2) chance
of random sampling h features. Additionally, the matching
time for the majority is reduced to a factor of h2/(k1k2)
along with better caching. In this paper, we choose h = 100
with consideration of both efficiency and robustness.

The top-scale features match well for several reasons: 1)
A small number of top-scale feature can cover a relatively
large scale range due to the decreasing number of features
on higher Gaussian levels. 2) Feature matching is well
structured such that the large-scale features in one image
often match with the large-scale features in another. The
scale variation between two matched features is jointly
determined by the camera motion and the scene structure,
so the scale variations of multiple feature matches are not
independent to each other. Figure 1(c) shows our statistics
of the feature scale variations. The feature scale variations
of an image pair usually have a small variance due to small
viewpoint changes or well-structured scene depths. For the
same reasons, we use up to 8192 features for the regular
feature matching, which are sufficient for most scenarios.
While large photo collections contain redundant views and
features, our preemptive feature matching allows putting
most efforts in the ones that are more likely to be matched.

2

0.40.30.20.10
The final inlier yield Yi(k)

0.5
0

Y
ie

ld
s

w
he

n
us

in
g

su
bs

et
s

0.2

0.1

0.4

0.3 Median of Yi(50)

Median of Yi(400)

Median of Yp(100)

Median of Yi(200)

Median of Yi(100)

0.5

(a) Yield when using subset of features

10K

20K

0 100 200 600 1000 5000

30K

40K

50K

60K

Histogram divided into three parts [0-200][200-1000][1000-]

(b) Histogram of max index of a feature match

-1 0 1 2 3
0

-3 -2

0.2

0.4

0.6

0.8

1

Difference of log2 scales

Deviations from means
Mean of each image pair

(c) The distribution of feature scale variations

Figure 1. (a) shows the relationship between the final yield and the yield from a subset of top-scale features. For each set of image pairs
that have roughly the same final yield, we compute the median of their subset yield for different h. (b) gives the histogram of the max
of two indices of a feature match, where the index is the position in the scale-decreasing order. We can see that the chances of matching
within top-scale features are similar to other features. (c) shows two distributions of the scale variations computed from 130M feature
matches. The mean scale variations between two images are given by the red curve, while the deviations of scale variation from means are
given by the blue one. The variances of scale changes are often small due to small viewpoint changes or structured scene depths.

4. How Fast Is Bundle Adjustment?
Bundle adjustment (BA) is the joint non-linear opti-

mization of structure and motion parameters, for which
Levenberg-Marquardt (LM) is method of choice. Recently,
the performance of large-scale bundle adjustment has
been significantly improved by Preconditioned Conjugate
Gradient (PCG) [1, 3, 16], hence it is worth re-examining
the time complexity of BA and SfM.

Let x be a vector of parameters and f(x) be the vector
of reprojection errors for a 3D reconstruction. The opti-
mization we wish to solve is the non-linear least squares
problem: x∗ = arg minx ‖f(x)‖2. Let J be the Jacobian of
f(x) and Λ a non-negative diagonal vector for regulariza-
tion, then LM repeatedly solves the following linear system

(JTJ + Λ) δ = −JT f,

and updates x ← x + δ if ‖f(x + δ)‖ < ‖f(x)‖. The
matrix HΛ = JTJ + Λ is known as the augmented Hessian
matrix. Gaussian elimination is typically used to first
obtain a reduced linear system of the camera parameters,
which is called Schur Complement.

The Hessian matrix require O(q) =O(n) space and
time to compute, while Schur complement requires O(n2)
space and time to compute. It takes cubic time O(n3) or
O(p3) to solve the linear system by Cholesky factorization.
Because the number of cameras is much smaller than
the number of points, the Schur complement method can
reduce the factorization time by a large constant factor.
One impressive example of this algorithm is Lourakis and
Argyros’ SBA [9] used by Photo Tourism [14].

For conjugate gradient methods, the dominant compu-
tation is the matrix-vector multiplications in multiple CG
iteration, of which the time complexity is determined by the
size of the involved matrices. By using only theO(n) space
Hessian matrices and avoiding the Schur complement, the

CG iteration has achieved O(n) time complexity [1, 3].
Recently, the multicore bundle adjustment [16] takes
one step further by using implicit multiplication of the
Hessian matrices and Schur Complements, which requires
to construct only the O(n) space Jacobian matrices. In
this work, we use the GPU-version of multicore bundle
adjustment. Figure 2(a) shows the timing of CG iterations
from our bundle adjustment problems, which exhibits linear
relationship between the time Tcg of a CG iteration and n.

In each LM step, PCG requires O(
√
κ) iterations to ac-

curately solve a linear system [12], where κ is the condition
number of the linear system. Small condition numbers can
be obtained by using good pre-conditioners, for example,
quick convergence rate has been demonstrated with block-
jacobi preconditioner [1, 16]. In our experiments, PCG
uses an average of 20 iterations solve a linear system.

Surprisingly, the time complexity of bundle adjustment
has already reached O(n), provided that there are O(1)
CG iterations in a BA. Although the actual number of the
CG/LM iterations depends on the difficulty of the input
problems, the O(1) assumption for CG/LM iterations is
well supported by the statistics we collect from a large
number of BAs of varying problem sizes. Figure 2(b) gives
the distribution of LM iterations used by a BA, where the
average is 37 and 93% BAs converge within less than 100
LM iterations. Figure 2(c) shows the distribution of the total
CG iterations (used by all LM steps of a BA), which are also
normally small. In practice, we choose to use at most 100
LM iterations per BA and at most 100 CG iterations per LM,
which guarantees good convergence for most problems.

5. Incremental Structure from Motion

This section presents the design of our SfM that practi-
cally has a linear run time. The fact that bundle adjustment
can be done in O(n) time opens an opportunity of push-

3

6000 8000 10000 12000

Colosseum

0 2000 4000

St. Peter’s Basilica
Loop
Arts Quad
Central Rome

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

n - Number of cameras
14000

T
cg

 (
se

co
nd

)

0.08

(a) Time spent on a single CG iteration.

40 60 80

1%

2%

3%

0 20

4%

5%

Mean = 37
Median = 29
93% smaller than 100

(b) Number of LM iterations used by a BA

4000 6000 8000

5%

10%

15%

0 2000

20%

Mean = 881
Median = 468
90% smaller than 2000
Histogram bin size = 100

(c) Number of CG iterations used by a BA

Figure 2. Bundle adjustment statistics. (a) shows that Tcg is roughly linear to n regardless of the scene graph structure. (b) and (c) show
the distributions of the number of LM and CG iterations used by a BA. It can be seen that BA typically converges within a small number
of LM and CG iterations. Note that we consider BA converges if the mean squared errors drop to below 0.25 or cannot be decreased.

ing incremental reconstruction time closer to O(n). As
illustrated in Figure 3, our algorithm adds a single image
at each iteration, and then runs either a full BA or a partial
BA. After BA and filtering, we take another choice between
continuing to the next iteration and a re-triangulation step.

Add Camera

Full BA

Partial BA

Filtering Re-triangulation

& Full BA

Figure 3. A single iteration of the proposed incremental SfM,
which is repeated until no images can be added to reconstruction.

5.1. How Fast Is Incremental SfM?

The cameras and 3D points normally get stabilized
quickly during reconstruction, thus it is unnecessary to
optimize all camera and point parameters at every iteration.
A typical strategy is to perform full BAs after adding
a constant number of cameras (e.g. α), for which the
accumulated time of all the full BAs is

bn/αc∑
i

TBA(i ∗ α) = O
(bn/αc∑

i

(i ∗ α)
)

= O
(n2

α

)
, (2)

when using PCG. This is already a significant reduction
from the O(n4) time of Cholesky factorization based BA.
As the models grow larger and more stable, it is affordable
to skip more costly BAs, so we would like to study how
much further we can go without losing the accuracy.

In this paper, we find that the accumulated time of BAs
can be reduced even more to O(n) by using a geomet-
ric sequence for full BAs. We propose to perform full
optimizations only when the size of a model increases
relatively by a certain ratio r (e.g. 5%), and the resulting
time spent on full BAs approximately becomes

∞∑
i

TBA

(n

(1 + r)i

)
= O

(∞∑
i

n

(1 + r)i

)
= O

(n
r

)
. (3)

Although the latter added cameras are optimized by fewer
full BAs, there are normally no accuracy problems because
the full BAs always improve more for the parts that have
larger errors. As the model gets larger, more cameras are
added before running a full BA. In order to reduce the ac-
cumulated errors, we keep running local optimizations by
using partial BAs on a constant number of recently added
cameras (we use 20) and their associated 3D points. Such
partial optimizations involve O(1) cameras and points pa-
rameters, so each partial BA takesO(1) time. Therefore, the
time spent on full BAs and partial BAs adds toO(n), which
is experimentally validated by the time curves in Figure 6.

Following the BA step, we do filtering of the points that
have large reprojection errors or small triangulation angles.
The time complexity of a full point filtering step is O(n).
Fortunately, we only need to process the 3D points that
have been changed, so the point filtering after a partial BA
can be done O(1) time. Although each point filtering after
a full BA takes O(n) time, they add to only O(n) due to
the geometric sequence. Therefore, the accumulated time
on all point filtering is also O(n).

Another expensive step is to organize the resection candi-
dates and to add new cameras to 3D models. We keep track
of the potential 2D-3D correspondences during SfM by
using the feature matches of newly added images. If each
image is matched to O(1) images, which is a reasonable as-
sumption for large-scale photo collections, it requires O(1)
time to update the correspondence information at each iter-
ation. AnotherO(1) time is needed to add the camera to the
model. The accumulated time of these steps is again O(n).

We have shown that major steps of incremental SfM
contribute to an O(n) time complexity. However, the above
analysis ignored several things: 1) finding the portion of
data for partial BA and partial filtering. 2) finding the subset
of images that match with a single image in the resection
stage. 3) comparison of cameras during the resection stage.
These steps require O(n) scan time at each step and add to
O(n2) time in theory. It is possible to keep track of these
subsets for further reduction of time complexity. However,

4

since the O(n) part dominates the reconstruction in our
experiments (up to 15K, see Table 2 for details), we have
not tried to further optimize these O(n2) steps.

5.2. Re-triangulation (RT)

Incremental SfM is known to have drifting problems
due to the accumulated errors of relative camera poses.
The constraint between two camera poses is provided by
their triangulated feature matches. Because the initially
estimated poses and even the poses after a partial BA may
not be accurate enough, some correct feature matches may
fail to triangulate for some triangulation threshold and
filtering threshold. The accumulated loss of correct feature
matches is one of the main reasons of the drifting.

To deal with this problem, we propose to re-triangulate
(RT) the failed feature matches regularly (with delay) dur-
ing incremental SfM. A good indication of possible bad rel-
ative pose between two cameras is a low ratio between their
common points and their feature matches, which we call
under-reconstructed. In order to wait until the poses to get
more stabilized, we re-triangulate the under-reconstructed
pairs under a geometric sequence (e.g. r′ = 25% when the
size of a model increases by 25%). To obtain more points,
we also increase the threshold for reprojection errors during
RT. After re-triangulating the feature matches, we run full
BA and point filtering to improve the reconstruction. Each
RT step requires O(n) time and accumulates to the same
O(n) time thanks to the geometric sequence.

The proposed RT step is similar to loop-closing, which
however deals with drifts only when loops are detected.
By looking for the under-reconstructed pairs, our method
is able to reduce the drift errors without explicit loop detec-
tions, given that there are sufficient feature matches. In fact,
the RT step is more general because it works for the relative
pose between any matched images, and it also makes loop
detection even easier. Figure 4 shows our incremental SfM
with RT on a 4K image loop, which correctly reconstruct
the long loop using RT without explicit loop closing.

6. Experiments
We apply our algorithms on five datasets of different

sizes. The Central Rome dataset and the Arts Quad datasets
are obtained from the authors of [4], which contain 32768
images and 6514 images respectively. The Loop dataset are
4342 frames of high resolution video sequences of a street
block. The St. Peter’s Basilica and Colosseum datasets
have 1275 and 1164 images respectively. We run all the
reconstructions on a PC with an Intel Xenon 5680 3.33Ghz
CPU (24 cores), 12GB RAM, and an nVidia GTX 480 GPU.

6.1. Feature Matching

To allow experiment on the largest possible model,
we have tried to first match sufficient image pairs. The

Without
RT

With
RT

Figure 4. Our reconstruction of the Loop dataset of 4342 frames
(the blue dots are the camera positions). Our algorithm correctly
handles the drifting problem in this long loop by using RT.

full pair-wise matching is computed for the St. Peter’s
Basilica and Colosseum dataset. For the Arts Quad and
Loop datasets, each image is matched to the nearby ones
according to GPS. For the Central Rome dataset, our
preemptive matching with h= 100 and th = 4 is applied.

We then run our incremental SfM with the subset of
image matches that satisfy the preemptive matching for
h = 100 and different th. Table 1 shows the statistics of the
feature matches and the reconstructed number of cameras
of the largest reconstructed models. With the preemptive
matching, we are able to reconstruct the larges SfM model
of 15065 cameras for Rome and complete models for other
datasets. Preemptive matching is able to significantly re-
duce the number of image pairs for regular matching and
still preserve a large portion of the correct feature matches.
For example, 43% feature matches are obtained with 6% of
image pairs for the St. Peter’s. It is worth noting that it is ex-
tremely fast to match the top 100 features. Our system has
an average speed of 73K pairs per second with 24 threads.

The preemptive matching has a small chance of losing
weak links when using a large threshold. Complete models
are reconstructed for all the datasets when th = 2 . However,
for th = 4, we find that one building in Arts Quad is missing
due to occlusions, and the Colosseum model breaks into the
interior and the exterior. We believe a more adaptive scheme
of preemptive matching should be explored in the future.

6.2. Incremental SfM

We run our algorithm with all computed feature matches
for the five datasets using the same settings. Table 2 summa-
rizes the statistics and time of the experiment for r = 5% and
r′ = 25%. Figure 4, 5 and 7 show the screenshots of our SfM
models. Our method efficiently reconstructs large, accurate
and complete models with high point density. In particular,
the two 1K image datasets are reconstructed in less than 10

5

Without Preemptive Matching Using Preemptive Matching (h = 100)

Dataset Pairs to Pairs With Feature
n th

Pairs to Pairs With Feature
nMatch 15+ Inliers Matches Match 15+ Inliers Matches

Central Rome N/A N/A N/A N/A 4 13551K 540K 67M 15065

Arts Quad 15402K 192K 32M 5624 4 521K, 3% 62K, 32% 25M, 78% 4272
2 4308K, 28% 121K, 63% 29M, 91% 5393

Loop 709K 329K 158M 4342 4 269K, 38% 235K, 71% 150M, 95% 4342
8 151K, 21% 150K, 46% 135M, 85% 4342

St. Peter’s 812K 217K 21M 1267 4 46K, 6% 38K, 18% 9.1M, 43% 1211
8 220K, 27% 100K, 46% 14M, 67% 1262

Colosseum 677K 54K 6.8M 1157 4 23K, 3% 13K, 24% 4.1M, 60% 517+426
2 149K, 22% 28K, 52% 5.4M, 79% 1071

Table 1. Reconstruction comparison for different feature matching. We first try th = 4, and then try th = 8 of the result is complete, or
try th = 2 if the resulting reconstruction is incomplete. Comparably complete models are reconstructed when using preemptive matching,
where only a small set of image pairs need to be matched. All reconstructions use the same setting r = 5% and r′ = 25%.

Dataset Input Cameras Points Observa- Time t Time Time Time Time
Images n p tions q Overall Full BA Partial BA Adding Filtering

Central Rome 32768 15065 1660415 12903348 6010 2008 2957 549 247
Arts Quad 6514 5624 819292 5838784 2132 1042 807 122 57
Loop 4342 4342 1101515 7195960 3251 1731 478 523 47
St. Peter’s 1275 1267 292379 2706250 583 223 268 48 20
Colosseum 1164 1157 293724 1759136 591 453 100 19 9

Table 2. Reconstruction summary and timing (in seconds). Only the reconstruction of largest model is reported for each dataset. The
reported time of full BA includes the BAs after the RT steps. The “adding” part includes the time on updating resection candidates,
estimating camera poses, and adding new cameras and points to a 3D model.

(a) Sparse reconstruction of Central Rome (15065 cameras) (b) Overlay on the aerial image

Figure 5. Our Rome reconstruction (the blue dots are the camera positions). The recovered structure is accurate compared to the map.

minutes, and the 15K camera model of Rome is computed
within 1.67 hours. Additional results under various settings
can be found in Table 3 and the supplemental material.

The timing in Table 2 shows that BAs (full + partial)
account for the majority of the reconstruction time, so the
time complexity of the BAs approximates that of the incre-
mental SfM. We keep track of the time of reconstruction
and the accumulated time of each step. As shown in Fig-
ure 6, the reconstruction time (as well as the accumulated

time of full BAs and partial BAs) increases roughly linearly
as the models grow larger, which validates our analysis of
the time complexity. The Loop reconstruction has a higher
slope mainly due to its higher number of feature matches.

6.3. Reconstruction Quality and Speed

Figure 4, 5 and 7 demonstrate high quality reconstruc-
tions that are comparable to other methods, and we have
also reconstructed more cameras than DISCO [4] for both

6

2000

1000

n - Number of cameras

0

6000

5000

4000

3000

1400012000100008000

Central Rome
Arts Quad
Loop
St. Peter’s Basilica
Colosseum

6000400020000

T
im

e
(s

ec
on

d)

(a) Reconstruction time.

500

n - Number of cameras

0
14000

2500

2000

1500

1000

12000100008000

Central Rome
Arts Quad
Loop
St. Peter’s Basilica
Colosseum

6000400020000

T
im

e
(s

ec
on

d)

3000

(b) Accumulated time of full BA.

500

n - Number of cameras

0
14000

2500

2000

1500

1000

12000100008000

Central Rome
Arts Quad
Loop
St. Peter’s Basilica
Colosseum

6000400020000

T
im

e
(s

ec
on

d)

3000

(c) Accumulated time of partial BA.

Figure 6. The reconstruction time in seconds as the 3D models grow larger. Here we report the timing right after each full BA. The
reconstruction time and the accumulated time of full BAs and partial BAs increase roughly linearly with respect to the number of cameras.
Note the higher slope of the Loop reconstruction is due to the higher number of feature matches between nearby video frames.

(a) Arts Quad (5624 cameras) (b) St. Peter’s Basilica (1267 cameras) (c) Colosseum (1157 cameras)

Figure 7. Our reconstruction of Arts Quad, St. Peter’s Basilica and Colosseum.

Central Rome and Arts Quad. In particular, Figure 5 shows
the correct overlay of our 15065 camera model of Central
Rome on an aerial image. The Loop reconstruction shows
that the RT steps correctly deal with the drifting problem
without explicit loop closing. The reconstruction is first
pushed away from local minima by RT and then improved
by the subsequent BAs. The robustness and accuracy of
our method is due to the strategy of mixed BA and RT.

We evaluate the accuracy of the reconstructed cameras
by comparing their positions to the ground truth locations.
For the Arts Quad dataset, our reconstruction (r = 5% and
r′ = 25%) contains 261 out of the 348 images whose ground
truth GPS location is provided by [4]. We used RANSAC
to estimate a 3D similarity transformation between the 261
camera locations and their Euclidean coordinates. With the
best found transformation, our 3D model has a mean error
of 2.5 meter and a median error of 0.89 meter, which is
smaller than the 1.16 meter error reported by [4].

We evaluate the reconstruction speed by two measures:
• t/n The time needed to reconstruct a camera.
• t/q The time needed to reconstruct an observation.
Table 3 shows the comparison between our reconstruction
under various settings and the DISCO and bundler recon-
struction of [4]. While producing comparably large models,
our algorithm normally requires less than half a second
to reconstruct a camera in terms of overall speed. By

t/n, our method is 8-19X faster than DISCO and 55-163X
faster than bundler. Similarly by t/q, our method is 5-11X
faster than DISCO and 56-186X faster than bundler. It is
worth pointing out that our system uses only a single PC
(12GB RAM) while DISCO uses a 200 core cluster.

6.4. Discussions

Although our experiments show approximately linear
running times, the reconstruction takes O(n2) in theory
and will exhibit such a trend the problem gets even larger.
In addition, it is possible that the proposed strategy will fail
for extremely larger reconstruction problems due to larger
accumulated errors. Thanks to the stability of SfM, mixed
BAs and RT, our algorithm works without quality problems
even for 15K cameras.

This paper focuses on the incremental SfM stage, while
the bottleneck of 3D reconstruction sometimes is the image
matching. In order to test our incremental SfM algorithm
on the largest possible models, we have matched up to
O(n2) image pairs for several datasets, which is higher
than the vocabulary strategy that can choose O(n) pairs
to match [2]. However, this does not limit our method
from working with fewer image matches. From a different
angle, we have contributed the preemptive matching that
can significantly reduce the matching cost.

7

Dataset Full BA Partial BA RT n q t t/n t/q

r = 5% Every Image r′ = 25% 15065 12903K 1.67hour 0.40s 0.47ms
r = 25% Every Image r′ = 50% 15113 12958K 1.32hour 0.31s 0.37ms

Central Rome r = 5% Every 3 Images r′ = 25% 14998 12599K 1.03hour 0.25s 0.29ms
DISCO result of [4] 14754 21544K 13.2hour 3.2s 2.2ms
Bundler result of [4] 13455 5411K 82hour 22s 54ms
r = 5% Every Image r′ = 25% 5624 5839K 0.59hour 0.38s 0.37ms
r = 25% Every Image r′ = 50% 5598 5850K 0.42hour 0.27s 0.26ms

Arts Quad r = 5% Every 3 Images r′ = 25% 5461 5530K 0.53hour 0.35s 0.35ms
DISCO result of [4] 5233 9387K 7.7hour 5.2s 2.9ms
Bundler result of [4] 5028 10521K 62hour 44s 21ms
r = 5% Every Image r′ = 25% 4342 7196K 3251s 0.75s 0.45ms

Loop r = 25% Every Image r′ = 50% 4342 7574K 1985s 0.46s 0.26ms
r = 5% Every 3 Images r′ = 25% 4341 7696K 3207s 0.74s 0.41ms
r = 5% Every Image r′ = 25% 1267 2706K 583s 0.46s 0.22ms

St. Peter’s r = 25% Every Image r′ = 50% 1267 2760K 453s 0.36s 0.16ms
r = 5% Every 3 Images r′ = 25% 1262 2668K 367s 0.29s 0.14ms
r = 5% Every Image r′ = 25% 1157 1759K 591s 0.51s 0.34ms

Colosseum r = 25% Every Image r′ = 50% 1087 1709K 205s 0.19s 0.12ms
r = 5% Every 3 Images r′ = 25% 1091 1675K 471s 0.43s 0.28ms

Table 3. The statistics of our reconstructions under various settings. We reconstruct larger models than DISCO and bundler under the
various settings, and our method also runs significantly faster. Additional results will be presented in the supplemental material.

7. Conclusions and Future Work
This paper revisits and improves the classic incremental

SfM algorithm. We propose a preemptive matching method
that can significantly reduce the feature matching cost for
large scale SfM. Through algorithmic analysis and exten-
sive experimental validation, we show that incremental
SfM is of O(n2) time complexity, but requires only O(n)
time on its major steps while still maintaining the recon-
struction accuracy using mixed BAs and RT. The practical
run time is approximately O(n) for large problems up to
15K cameras. Our system demonstrates state of the art
performance by an average speed of reconstructing about 2
cameras and more than 2000 features points in a second for
very large photo collections.

In the future, we wish to explore a more adaptive pre-
emptive feature matching and guide the full BAs according
to the accumulation of reprojection errors.

References
[1] S. Agarwal, N. Snavely, S. Seitz, and R. Szeliski. Bundle

adjustment in the large. In ECCV, pages II: 29–42, 2010. 2, 3
[2] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and

R. Szeliski. Building Rome in a day. In ICCV, 2009. 1, 2, 7
[3] M. Byrod and K. Astrom. Conjugate gradient bundle

adjustment. In ECCV, pages II: 114–127, 2010. 2, 3
[4] D. Crandall, A. Owens, N. Snavely, and D. P. Huttenlocher.

Discrete-continuous optimization for large-scale structure
from motion. In CVPR, 2011. 1, 2, 5, 6, 7, 8

[5] J. Frahm, P. Fite Georgel, D. Gallup, T. Johnson, R. Ragu-
ram, C. Wu, Y. Jen, E. Dunn, B. Clipp, S. Lazebnik, and
M. Pollefeys. Building rome on a cloudless day. In ECCV,
pages IV: 368–381, 2010. 1, 2

[6] R. Gherardi, M. Farenzena, and A. Fusiello. Improving the
efficiency of hierarchical structure-and-motion. In CVPR,
pages 1594–1600, 2010. 2

[7] A. Kushal, B. Self, Y. Furukawa, C. Hernandez, D. Gallup,
B. Curless, and S. Seitz. Photo tours. In 3DimPVT, 2012. 1

[8] X. Li, C. Wu, C. Zach, S. Lazebnik, and J. Frahm. Modeling
and recognition of landmark image collections using iconic
scene graphs. In ECCV, 2008. 1, 2

[9] M. A. Lourakis and A. Argyros. SBA: A Software Package
for Generic Sparse Bundle Adjustment. ACM Trans. Math.
Software, 36(1):1–30, 2009. 3

[10] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60:91–110, 2004. 2

[11] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In CVPR, pages 2161–2168, 2006. 1

[12] J. R. Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain, 1994. 3

[13] S. N. Sinha, D. Steedly, and R. Szeliski. A multi-stage
linear approach to structure from motion. In ECCV RMLE
workshop, 2010. 2

[14] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism:
exploring photo collections in 3D. In SIGGRAPH, pages
835–846, 2006. 1, 3

[15] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs for
efficient structure from motion. In CVPR, 2008. 1, 2

[16] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore
bundle adjustment. In CVPR, 2011. 2, 3

8

