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Abstract

A surface light fieldis a function that assigns a color to each

ray originating on a surface. Surface light fields are well suited
to constructing virtual images of shiny objects under complex
lighting conditions. This paper presents a framework for construc-|
tion, compression, interactive rendering, and rudimentary editing
of surface light fields of real objects. Generalizations of vector
quantization and principal component analysis are used to construg
a compressed representation of an object’s surface light field fro
photographs and range scans. A new rendering algorithm achieve
interactive rendering of images from the compressed represents
tion, incorporating view-dependent geometric level-of-detail con-
trol. The surface light field representation can also be directly edited
to yield plausible surface light fields for small changes in surface
geometry and reflectance properties.

CR Categories: 1.3.2. [Computer Graphics]: Picture/lmage Generation—
Digitizing and scanning, Viewing algorithms

Keywords: surface light fields, 3D photography, lumigraph, light field, ) ) ) ) )

function quantization, principal function analysis, view-dependent level-of- ~ Figure 1 Images of a surface light field demonstrating detailed

detail, image-based rendering, wavelets. surface texture, rapid changes in specular properties, and interreflec-
tions. The specular variations occur, for example, in the gold paint

. on the tail of this porcelain fish. The tail also reflects light onto the

1 Introduction body, as indicated by the reddish hue on the side of the fish in the
left panel.

Recent advances in digital cameras, 3D laser scanners and other P

imaging technology are enabling us to capture enormous quanti-
ties of geometric and radiance data with unprecedented ease and
accuracy. These advances hold great promis@Bbphotography

the process by which both the shape and appearance of physica
objects are modeled and realistically rendered. But to make 3D
photography truly practical, quite a few open problems still need
to be solved.

ontrolsfor the rendering process, with shape and appearance under
ndependent control. Finally, just as in traditional 2D photography,
accurately capturing the real world is not sufficient for many appli-
cations; a useful representation for the results of 3D photography
should also beditable

First, we need a good representation for those 3D datasets. Th
framework described in this paper is based on sheface light
field, a term coined by Milleret al. [22]. The surface light field

is a function that assigns an RGB value to every ray leaving every Estimation/compressionOur raw data consists of a set of 2D digi-
point on a surface. When constructed from observations made oftal color photographs of an object together with a collection of laser
an object, a surface light field encodes sufficient information to range scans. To make a surface light field tractable for rendering,
construct realistic images of the object from arbitrary viewpoints. the data must fit into main memory. To this end we present two new
Surface texture, rapid variation in specularity, and global effects algorithms that simultaneously estimate and compress the surface
like interreflection and shadowing are all correctly represented. light field. The first is a generalization of vector quantization; the
Some of these properties can be seen in Figure 1. second is a generalization of principal component analysis.

8n this paper, we address each of these problems. In particular, our
contributions include:

However, a good representation by itself is only half the story. Rendering. We demonstrate an algorithm that can render our
Because the datasets acquired by 3D photography techniques arsurface light fields at interactive frame rates. Evaluation of the
so large, gooccompressioralgorithms are needed. Furthermore, surface color takes time proportional to the occupied screen space.
we need algorithms teender those datasets efficiently, ideally at  The amount of time required to render the underlying geometry
interactive speeds. To this end, we need to devidupl-of-detail is controlled using a new view-dependent level-of-detail algorithm
for meshes with subdivision connectivity. The level of geometric
approximation does not affect the sharpness of the surface texture.

Editing. Our representation of surface light fields allows editing,
using 3D analogs of image processing algorithms to filter reflected
light, and modifications of surface geometry. We can simulate
changes in the reflectance properties of the surface, and we can
generate plausible images of the object after it has been deformed
or moved relative to its environment.
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1.1 Related work projecting each image onto the mesh. Compression is achieved by
performing a principal component analysis on each set of textures.
(Interestingly, the vectors in their analysis are formed by holding
@ direction fixed and letting surface location vary. This is the
Iopposite of our analysis in Section 4.6, where, to form a vector,
we fix a surface location and let direction vary.) Their approach
successfully models objects with simple geometric structure and

; ; .;smoothly varying specularity. However, it has not been demon-
images they use, the representation of the data, the degree to Wh'C@trated on objects that exhibit both high geometric complexity and

they incorporate geometric information about the object into the . e ; ? - ;

image representation, and the compression techniques they employ@Pid BRDF variation, nor does it provide real-time rendering.

Our own approach leverages high-resolution geometry to improve |nverse renderings an alternative to generating a surface light field.
image quality while affording a compact representation. The goal of these techniques is to estimate the surface BRDF from
images and geometric data. Previous work on inverse rendering
[28, 33] has assumed that the BRDF is piecewise linear with
respect to a coarse triangulation of the surface. Our techniques
require no such assumptions, and, of course, inverse rendering
does not solve the re-rendering problem—a non-interactive global
illumination algorithm is required to produce photorealistic results.
Recent work has extended interactive rendering techniques to a
wider range of lighting models and environments. Cabtall. 3]
describe a technique for using radiance environment maps to render
objects under arbitrary lighting conditions and with any isotropic
BRDF. Heidrichet al. [13] use texture mapping hardware for the
same purpose but allow a different class of BRDFs. However,

Surface light fields fit into the broad framework hage-based
rendering schemes. Image-based methods take a collection o
photographs as input, construct a representation of the surface colo
or radiance, and use it to synthesize new images from arbitrary
viewpoints. The methods tend to differ in the number of input

Levoy and Hanrahan [17] acquire many hundreds of images, which
are resampled to lie on a regular grid in a two-plane parameter-
ization. New images are computed by interpolation between ray
samples, using essentially no geometric data. They apply vector
guantization to obtain compressed representations of light fields.
Gortleret al.[12] present a similar two-plane parameterization that
they call alumigraph in which they interpolate image samples via

a hierarchicapush-pullalgorithm. They use approximate surface
geometry derived from photograph silhouettes (or higher-resolution
geometry in the case of synthetic data) to perform a depth correction
that substantially reduces ghosting and blurring artifacts. In both
these methods, the representation restricts the viewpoint to lie -
outside of the convex hull of the object. Magnor and Girod [20, 21] these two methods do not handle global effects like shadows or
develop an MPEG-like scheme for compressing two-plane light interreflection.

fields that produces better compression ratios than those obtained

by Levoy and Hanrahan. Our approach depends on both high-1.2 Overview

resolution geometry and dense sets of images. It removes the ) o )

convex hull restriction of the two-plane light field and admits a new We have developed algorithms for acquiring light field data of real
form of compressed representation that can be rendered in real timeobjects, and for estimating, compressing, rendering, and editing
For comparable data sizes, our representation yields sharper image#heir surface light fields. We have tested these algorithms on two

and greater compression ratios than two-plane representations. ~ objects, a small ceramic fish with a shiny surface and detailed
texture, and a marble elephant with more complex geometry and

View-dependent texture mappifig 8, 26] is a kind of light field less pronounced specular highlights.

that does not require resampling the input images. This approach ) ) ) ) ) )

uses geometric information to re-project each input image into the The following sections describe these new algorithms in detail. We
desired camera viewpoint. The re-projected input images are thenPegin by describing our representation of surface light fields (Sec-
blended together using weights based on the view direction primar- tion 2). Next, we discuss our data acquisition process (Section 3).
ily, and possibly other factors such as sampling rate. Because theWe then describe our algorithms for estimating and compressing
blending in view-dependent texture mapping incorporates visibility surface light fields and compare the quality of these methods
information, this approach supports rendering within the convex t0 two-plane light fields of similar size (Section 4). Finally, we
hull of the object. In practice, view-dependent texture mapping has dlscuss our algorithms for rendeymg and editing surface light fllelds
been used with fewer images and surfaces that are less specular thatPections 5 and 6), and present ideas for future research (Section 7).
those demonstrated with two-plane light fields, though this is not a
fundamental limitation. As noted in Debevet al. [8], a surface
light field can be viewed as a distillation of view-dependent texture
mapping into a more efficient representation.

2 Representation

Roughly speaking, a surface light field is a function that associates
Miller et al. [22] use surface light fields to render solutions to @ color to every ray originating from a surface. Our algorithm for
synthetic (non-diffuse) global illumination problems. They apply constructing images from a surface light field relies on a good
JPEG-like image compression techniques to sets of texture mapsparameterization of an object’s surface méshThe methods of
Their technique achieves compression rates for surface light fields either Ecket al.[9] or Leeet al.[16] yield a parameterization

that are comparable to those of Levoy and Hanrahan'’s vector quan-

tization method. Walteet al. [31] also use surface light fields to 0:Ko—MCR, (2)
approximate solutions to global illumination problems. Their rep-

resentation involves basis functions derived from hardware lighting whose domaiio is a triangular mesh with a small number of faces,
models, which provides very fast rendering, but does not support called abase meshwe use a variant of the algorithm of Leeal.
textured surfaces, nor can it adequately model complex phenomend0 parameterize our scanned geometry.

such as rapidly varying specularity. In addition, problems exist
in the 3D photography realm that do not arise with synthetic
data: most importantly, neither a surface parameterization nor the
radiance along arbitrary rays are knoaipriori and must instead L:Ko x & — RGB, o)
be constructed.

Nishino et al. [23, 24] generate surface light fields of real objects, WhereS* denotes the sphere of unit vectors irl.RRadiance is
though their images are relatively dense in only one rotational di- represented by points in ®eorresponding to RGB triples. If is

rection. Geometric information is represented by a coarse triangulara point on the base mesh aadis an outward pointing direction
mesh. They construct a set of texture maps for each triangle by at the surface poini(u), thenL(u,w) is the RGB value of the

The parameterization allows us to represent the surface light field
as a function
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Figure 2 Representation of the surface light field. Pointson
the base meslKp, are mapped to the geometric surfadé, by
. The lumispherel,; at the grid pointu;, represents the radiance
leaving surface poinp(u;). Directions are denoted hy, or @ after
reflection through the surface nornrahs described in Section 4.4.

light ray starting atp(u) and traveling in directionv. Although
L(u, w) has no physical interpretation whenis inward pointing,
our compression, rendering, and editing techniques rely loging
defined over the entire direction sphere.

We make the simplifying assumption thh{u, w) is piecewise
linear inw. To make this more precise we have to define what we
mean by a piecewise-linear function h It is not difficult to verify
that the map

h(w) = (simtwy, sintwy, sintw,)

T |sinTuwy] + [ sinTwy| + [ sinTwy|

®)

is a homeomorphism betwe@ and the regular octahedron with
vertices (£1,+1,+1). We useh because it introduces less distor-
tion than radial projection and yet can be evaluated quickly using a

lookup table for sin?.

Composition withh induces a bijection between functions on the

are chosen so that the image@s) and(u;) of any two adjacent
grid pointsu; andy; are separated by at most one pixel in the image
plane of each camera. We denote the lumisphere at the gridypoint
by Li—that is,Li(w) = L(u;, w).

Figure 2 illustrates key aspects of our notation.

3 Data acquisition

Acquiring the raw data to build a surface light field for a real object
requires four steps: (1) range scanning the object, (2) building a
mesh to represent its geometry, (3) capturing a collection of images
of the object, and (4) registering the images to the mesh. Because
the techniques presented in this paper do not depend on the specifics
of our acquisition process, we present only a brief summary here of
the procedure that we have used successfully.

Range scanningWe took a number of range scans of each object
using a Cyberware Model 15 scanner. Glossy objects like the fish
and elephant are not ideal candidates for laser scanning. To improve
laser returns, we coated them with a removable powder. The fish
was built from 36 scans, and the elephant from 49.

Reconstructing the geometryThe scans were registered using a
small number of hand-selected point correspondences to initialize
a global iterated closest-points algorithm [2, 10]. The registered
scans were merged into a single triangle mesh using the volumetric
method described by Curless and Levoy [6]. The final meshes
representing the surfaces of the fish and elephant contain 129,664
triangles and 311,376 triangles, respectively.

Acquiring the photographsWe used a camera attached to a spher-
ical gantry arm to capture photographs from poses spaced roughly
evenly over the sphere. The camera positions were known relative
to one another, but not relative to the objects being photographed.
We took 638 photographs of the fish and 388 photographs of
the elephant, together with photographs of a calibration pattern,
which we used to determine the intrinsic camera parameters using
Tsai's method [30]. During acquisition, the camera and gantry arm
occasionally cast shadows onto the object. Because we wanted to

octahedron and functions on the sphere. We say that a functioncapture the object under fixed lighting conditions, we manually

F(w) is piecewise lineaif it is piecewise linear with respect to
an s-times-subdivided octahedrone., the mesh resulting frors
four-to-one subdivisions of the octahedron. We call a piecewise-
linear RGB-valued function &umisphere and we letC3, denote

the vector space of all lumispheres.

With these definitions, the surface light fidldcan be represented
by a function, whose domain i§, and whose range i€3,, that
sends a pointi on Ko to the lumispheré.(u, -). This definition can
be described compactly in mathematical notation as follows:

(4)

We have chosen subdivision level= 3 in all our examples. In
this case the space of lumispheres has dimensigni238 = 774.

We arrived at this value experimentally. Settiag= 2 results in
noticeable degradation in the image quality, wisite 4 gives little

improvement at the expense of higher dimension.

Ko — CfL @ u— L(u,-)

It is useful to think of a surface light field as a lumisphere-valued

texture map, which assigns a lumisphere instead of a single color to
each texel. There is one rectangular texture map for each triangle

we store pairs of texture maps interleaved in memory.) As in
conventional texture mapping, each texture map is divided into
square texels, and these texels define a partition of each fdGe of
into cells. The surface light field is thus piecewise-constant with
respect to this partition dfo. Let u; denote the center of theth

cell. Cell dimensions (correspondng to the texture map resolution)

removed photographs taken under those circumstances.

Registering the photographs to the geometkie registered the

set of photographs to the reconstructed mesh with user assistance.
By hand-selecting correspondences between points on the mesh
and points on a small subset of the photographs, we generated
a list of 3D point-to-ray correspondences. We then registered
the photographs to the geometry using an iterated closest-points
algorithm.

4 Estimation and compression

Once we have acquired the raw image and geometric data, we must
estimate a surface light field that approximates that input. This
section describes three estimation techniques; the latter two directly
create compressed representations.

4.1 Assembling data lumispheres

The first step in the estimation process is the construction of a
useful intermediate representation, consisting déta lumisphere

for each grid point in the surface light field. A data lumisphere is
a set of samples from a full lumisphere, each consisting of a color

Sand a direction corresponding to an observation of a grid point. We

use,; to denote the data lumisphere associated with pgion the
base mesh. Assembling data lumispheres is a resampling problem
that we solve separately for each grid point on the base Kgsh

Consider a fixed grid point;, and letc; denote the RGB value of
the point in thg-th photograph defined by the ray frapgu;) to the
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andAp_ denotes the umbrella Laplacian [29]. The regularized error
function is then

E)\(F, Ei) = EdisI(F, Ei) + A Ethin(F) . (8)

We use conjugate gradients to find the lumisplteteat minimizes
Equation (8). Figures 3(b) and 3(c) show the faired lumisphere
generated from the data lumisphere in Figure 3(a). The fairing

(@ (b) (© term dampens the directional variation in the fitted lumisphere. It
) ) ) ‘ has little physical significance, and our data is relatively free of
Figure 3 Lumispheres from a point under the elephant’s trunk. (The noise; we therefore choose small so thatEqs: dominates. Note

surface normal points directly out of the page.) The swath of missing that our fairing procedure assigns values (o at all directions
points were occluded by the trunk. (a) Data lumisphere. (b) Faired 9p 9 © w)

piecewise-linear lumisphere. (c) Faired lumisphere with vertices w € SZ.' inc_luding Qirectipns far away from any observations, and

shown as constant-colored Voronoi regions (used for illustration even directions pointing into the object.

only). Figure 4 illustrates the effects and the limitations of pointwise
fairing. Figure 4(a) shows one of the actual photographs of the fish,

) ) ) - and Figure 4(b) shows the same view of the uncompressed light
location of thej-th camera. The value; is computed by bilinear  field generated from all the photographs. The light field rendered in

interpolation in thej-th photograph. Some or all of thg might Figure 4(c) was generated after all photographs from viewpoints
be invalid because the poipi(Li) may not be visible from thgth inside a cone of radius f0about the viewing direction were
camera position. If(u) is visible, we find the direction vectaw; removed. There is little degradation. In Figure 4(d) the radius of
from o(u) to the location of camerpand add the paircf, wj) to the cone was increased to°2QClearly the gap in directions has
the data lumispher€; for grid pointui. Figure 3(a) shows the data  become too large for pointwise fairing to accurately approximate
lumisphere for a point on our elephant. the actual surface light field.

To determine ifp(u;) is occluded with respect to theh camera, we

render, from the perspective of that camera, both the original mesh4.3 Compression overview

M and additional geometry that conservatively bounds the platform . ) ) . o

on which the object rests. (Because the platform obscures parts ofBecauseCp, is a high-dimensional space, a complete pointwise-
the objects in some photographs, we add geometry representingfaired surface light field may be very large. To generate a more
the platform to ensure that we do not project the platform onto the compact surface light field, we will represent each lumisphere as

object.) The depth buffer gives uslapth imagewhich we compare & Weighted sum of a small number of prototype lumispheres using
to the depth of each poigi(u;) to determine if it is visible. two distinct methods, one analogous to vector quantization, and the

other analagous to principal component analysis. Each lumisphere
Li can then be replaced by an index (as in vector quantization) or
a set of coefficients (as in principal component analysis) indicating
Our first estimation algorithmpointwise fairing constructs a contributions from the prototypes.

piecewise-linear lumisphere from each data lumisphere indepen-
dently at each surface point. If the data covered the entire direction
sphere, we could estimateusing the standard least-squares proce-
dure of settind.; to be the lumisphere 63, that best approximates
the data lumisphere:

4.2 Pointwise fairing

A naive application of vector quantization or principal component
analysis might treat as input the pointwise-faired lumispheres
viewed as vectors in the spas,. Observe, however, that the
RGB values for at least half of each lumisphere—corresponding
to directions pointing into the object—are mostly fiction generated
Li = argminEgis(F, £1) (5) by the fairing process. If we were to apply vector quantization or
Fecs, principal component analysis to the pointwise-faired lumispheres,
these fabricated values would have the same influence as values in
The argmin notation evaluates to the value of its subscript that directions where we actually have data. This is clearly undesirable.
minimizes the expression to which it is applied. HeFe,s a

lumisphere, an&as(F, £;) measures how welf approximated.;: A more principled compression approach would use only observed

data. The data, however, is an irregular and incomplete sampling

1 of each lumisphere. We have therefore developed two new esti-
Egist(F, £i) = T Z |F(wij) — G |2 (6) mation/compression methodsinction quantizatiorand principal
|£il jevisible cameras function analysiswhich are similar in spirit to vector quantization

and principal component analysis, but are driven by irregularly
where |£i| is the number of observed color values in the data spaced data and avoid the intermediate pointwise-fairing step.

lumispherec;. . . . .
P ' Before discussing our compression algorithms, we present two

But the physical light field at any point on the surface is only de- transformations of the surface light field that increase spatial coher-
fined on the hemisphere of outward pointing directions. Moreover, ence among lumispheres, thereby making them more compressible.
due to self-occlusion and constraints on the camera poses, the data

samples often do not cover the entire direction hemisphere (see ; ;

Figure 3). The fitting problem (Equation (6)) is under-determined, 4.4 Median removal and reflection

and itis therefore necessary to regularize it by adding a fairing term. The first transformation imedian removalLet my denote the RGB

We use a discrete approximation to the thin-plate energy: value obtained by computing the median color of data lumisphere
N Li (separately for each color channel). We use the median rather

Ein(F) = _SZMPLF(QK)‘Z_ 7) than the mean because it is robust against outliers and more

4r X accurately represents the bulk of the data. The collection of median

values can be viewed as a texture map over the surface, roughly
The sum ranges over the vertices of thémes-subdivided octa- encoding the diffuse component of the surface light field. We store
hedron (withNs vertices, each corresponding to a directiog), this “diffuse” texture map separately and then encode the residual
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Figure 4 Analysis of estimation with missing data. (a) Photograph taken by a selected camera. (b) Faired surface light field using all
photographs. (c) Faired surface light field after first removing from the input data all photographs in a cone of radiosut@he direction

shown. (d) Faired surface light field with a cone of radius 28moved. (e) Compressed surface light field with principal function analysis of
order 3 after first removing the same cone of radius. 20ote that the compressed surface light field reproduces the specularity of the input
better than the pointwise-faired version when a significant portion of the input data is removed.

L; andL; will be the same even if the normaisandn; are different.

For an example, consider the case of a perfect mirror surface and an
environment that is infinitely far away. Ignoring non-local effects
such as occlusions and interreflections, all of the reparametrized
lumispheres will agree on their overlap because they contain parts
of the same environment map. If the surface had some roughness,
then the lumispheres would be blurred, reflected images of the
environment, but they would still roughly agree on the overlap.
@ (0) © Figure 5 illustrates the effect of reparameterization for the fish,
whose environment consists of several small light sources.

Figure 5 Increasing lumisphere coherence via reflection reparam-

eterization. (a) Surface light field. (b) Transect Iofu, w). (c) We always estimate and store median-removed and reflected lu-
Transect of (u, ). Horizontal axis shows position afalong white mispheres; however, the transformations have no effect on the
line across fish (a). Vertical axis shows position.ofb) or (c) on pointwise-fairing algorithm.

a user-selected great circle. Note that in the right panel the specular

highlights are much better aligned. 4.5 Function quantization

Function quantizationis a generalization of vector quantization

. ) : . . to the case of irregularly sampled data. The goal is to construct

surface light field after subtracting the diffuse component. This a codebookcompriged 03; a coFI)Iection of protog[ype lumispheres

serves two purposes. First, if we compress only the residual surface(codeword);{P P} and a map assigning to each grid point

light field, any diffuse texture will be exactly preserved. Second, U € Koa codoe,\'/v'o'r‘d ?nde>k@ and Ft)heret?y agcodeworlas Fgr

the residual will be more compressible if the specular behavior of ' - ' A " .

the surface is simpler than the diffused.,an object with diffuse a givenn, the codebook .and mf'ap should minimize the combined
energy over all data lumispheréss., . Ex(Px, £i). This formu-

texture and a glossy coat.) Median removal before compression is®''='dY OV 2 =AT -
analogous to mean-removed vector quantization [11]. lation is different from vector quantization in that the inputs (data
lumispheres) are not vectors.

The second transformatioreflection is a reparametrization of the . L . L o
lumispheres. Let be the unit surface normal at a surface. Then for Function quantization starts with an initial codebook consisting of
a directionw € &, let& be the reflection ofs about the norman a single lumisphere and a smathining setof randomly selected
(transformed quantities will always be denoted with a tild8: grid points. It proceeds by alternating betweedebook fittingind
codeword splittinguntil the codebook reaches a user-specified size.

w=2N - w)n-w. 9) Codebook fitting is accomplished via Lloyd iteration [11§., by
_ repeatedly applying the following two steps:
Similarly, the reflected (and median-removed) surface light field

is defined at each grid point by: 1. Projection: For each grid point in the training set, find the

indexk; of the closest codeword:
Li(@) = Li(w) —m. (10) k = argminEx (Px, £1). 11)
k

Where, l?y quatloh (9 IS".‘J refle~cted around.the surface normal, This partitions the training set into clusters of grid points that
n;, at thei-th grid point. ObviouslyL (plus the diffuse texture map) project to the same codeword.

contains the same information &s To see why we expect the

reflected reparameterization to increase spatial coherence, consider 2. Optimization: For each cluster, find the best piecewise-linear

the three elements that determine the lumisphgrat a point: lumisphere:

the incoming radiance, the BRDF and the normal. First, assume

that the incoming radiance at two poinis and u; is the same; Px = argmin Z Ex(F, L), (12)

this is approximately true for points that are nearby relative to FECE icelusterk

the sources of light illuminating them. Second, assume that the

BRDF is reflective. Areflective BRDF[3] is one that reflects the where the summation is over all of the data |Um|Sph&GS
incoming radiance through the surface normal and then convolves thek-th cluster '

with a “direction-invariant” filter {.e.,a space-invariant filter, where ’

space is restricted to the surface of the sphere of direc89ngés We perform the optimization steps using conjugate gradients. The

observed by Rusinkiewicz [27], many BRDFs are approximately iteration terminates when the decrease in error between succes-
reflective. If these two assumptions hold, the reflected lumispheres sive codebooks falls below a user-defined threshold. Then, if the
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Figure 6 Comparison of different estimation techniques applied to the fish. (a) Pointwise faired surface light field. (b) Function quantization
with 1024 codewords. (c) Principal function analysis with subspace dimension 2. (d) Principal function analysis with subspace dimension 5.

ponent analysis finds thg-dimensional affine subspace that best
approximates the data vectors in the least squares sense. As in the
case of function quantization, we must generalize this approach to
the case of irregularly sampled data.

Our goal, then, is to find the-dimensional subspacé c Cj_

that best approximates all of the data lumispheres in the training
set. Each lumispherk; is represented by the poift € V that
minimizes E(F, £;). We call F the projection of £; onto V, or
m/(Ei). OverloadingE,, we view it as a function of-dimensional
subspaces of},; it measures how well a subspace approximates
the data lumispheres in the training set,,

EA(V) = % S EA(E). L) (13)

The summation is over all grid point indices in the training set, and
T is the size of the training set.

While principal component analysis reduces to an eigenvalue prob-
lem, we have not succeeded in finding a corresponding formulation
for minimizing the functional defined in equation (13). We have
therefore taken a different approach.

Eachg-dimensional affine subspace@§, can be expressed as the

Figure 7 Comparison of compressed elephant surface light field affine span ofy + 1 prototype functions, anél, can be regarded as
with input photqgrap_hs. Left: Elephant photographs. _nght': Ele- a functional on the space af ¢ 1)-tuples of prototypes. Sindg,
phant surface light field (5.3 megabytes encoded with principal depends only on the affine span of the prototypes, minimigng

function analysis, subspace dimensipr 2). Note that the image

on the bottom right shows a part of the elephant that was occluded
in the corresponding photograph. Also note that some points onthe  To address the uniqueness problem, we consider a new functional:
very bottom of the elephant were not seen by any camera (using our

conservative approximation of the platform) and are black.
PP platform) Exu(Po,... . P =Ex(V)+1 > [IPc—Pread®  (14)

keo,...,q

will not uniquely determine the prototypes.

codebook is_ smaller tha_n desired, codeword splitting _doubles the wherePy, . .., Pq are the prototypes defining, andPmeanis their
codebook size by cloning each codeword and add_lng a small mean, and where the projectiorv(fi) of a data Iumisphereﬁi
perturbation to the clone. After a codebook of the desired size hasig agtricted to lie inside the convex hull of the prototypes. (The
been found, codewords are assigned to all grid points by projecting squared norm of a Iumispher#FHz is the sum of the squared
all the corresponding data lumispheres (not just those in the training norms of the vertex values divided by the number of vertices.) This

sample) onto the codebook. additional spring energy term penalizes widely-spaced prototypes.
L . . Minimizing it is a non-linear optimization problem, which we solve
4.6  Principal function analysis via conjugate gradients. After the subspace has been determined by
selection of the prototypes, we assign barycentric coordinates to all
a grid_points by projecting all corresponding data lumispheres (again,
not just those in the training sample) onto the subspace.

Principal function analysisbased on principal component analysis,
is an alternative to function quantization. For a given set of dat
vectors and a given approximation dimensignprincipal com-
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(d)

(d) Surface light field compressed ug
ing principal function analysis of di-
mension 5 (2.5MB). (e) Surface ligh
field compressed using function quant
zation with 1024 codewords (2.7 MB)
(f) Two-plane light field compressed
using vector quantization with 16384
codewords (8.1 MB).

Figure 8 Comparison of a surface
light field with a geometry-corrected
two-plane light field. (a) Photograph.
(b) Surface light field pointwise faired
(180 MB). (c) Two-plane light field un-
compressed (180 MB).

®

4.7 Compression results addition to the lower dimension of the subspace, the lower fidelity
may be aresult of the fact that the scanned geometry of the elephant

. L . . appeared to be of lower quality than that of the fish. Errors in the
We tested the various estimation and compression algorithms on the, bp quaity

) i ‘ . geometry, particularly the normals, adversely affect the quality of
surface light fields of both the fish and elephant. Figure 6 compares g, -, sression. Note also that, even though the bottom reconstruc-
results of the different methods. Figure 6(a) shows two views of the

T X : : tion includes the feet of the elephant, which were not visible in the
unclompressfedh (p0|_r|1t]¥wseb-fa|red) f_ll_Shh, tge entire model (tf% |3|r|]3d corresponding photograph, our compression algorithm succeeds in
afc oiseug oft Ie taé 7'r|\‘/|(B ?ttom). IS atg set CO?I&IQ_S 6(b inferring plausible shading and highlights for that part of the model.
of color data, plus 0. or geometry and normals. Figure (.) The compressed representation is essentially a learned model of
_demonsltratgstfunqtlon (?ugr;tll\z/laglorll_wnh 10?)(4 ;;ode&/v?crjt)js_,”restulttlng lumispheres; the unseen portions of data lumispheres are filled in
in a color data size of 2. . Figures 6(c) an illustrate Sh y X h .
principal function analysis with subspace dimensions 2 and 5, by finding the closest lumisphere in the model. Figures 4(d) and

resulting in color data sizes of 1.7 MB and 2.3 MB, respectively. (&) als0 show that principal function analysis can produce more
Note that the 2-dimensional principal function analysis exampie realistic highlights than pointwise fairing given incomplete data

with its total file size of 2.4 MB (1.7 MB color + 0.7 MB geometry), Umispheres.

results in more than 70:1 compression. We have done an informal comparison of image quality between
a surface light field and a two-plane light field. We constructed
a two-plane light field of the fish with six slabs arranged along
the faces of a cube. The resolution of the light field, 268 the

far plane and 8for the near plane, was chosen to approximately
match the corresponding resolutions of the surface light field: the
far-plane resolution matches the input photograph resolution, and
the near-plane resolution approximately matches the surface light
Not surprisingly, increasing the dimension of the subspace in field's directional resolution. The resulting raw data size is about
principal function analysis improves the quality of the resuéts;, 180 MB, the same size as our pointwise-fairee.(uncompressed)
dimension 5 produces highlights substantially sharper and brighter surface light field. The input images were resampled into the two-
than dimension 2. Rendering time, however, is asymptotically plane parameterization offline using the scanned fish geometry and
linear in the dimension. Currently, other costs dominate when the view-dependent texture mapping. We then compressed the data
dimension is low, and in our examples, dimensions 2 and 5 can using the vector quantization technique (and software) of Levoy and
be rendered at roughly the same speed. By contrast, the renderingdanrahan [17], using their default settings: a codebook of 16384
time for a function-quantized surface light field is independent of 2x2x2x2x3 codewordsi(e.,2x2 camera positions, 22 image
codebook size (ignoring the effect of the memory hierarchy). The pixels and 3 color channels). All of the renderings of two-plane light
complementary strengths of function quantization and principal fields use the geometry correction technique of Gosetexl. [12].
function analysis suggest a hybrid approach (see Section 7).

Overall, principal function analysis leads to smoother images than
function quantization; function quantization introduces artifacts
such as jagged edges on the fish’s tail. However, function quantiza-
tion is more accurate, better preserving the color of highlights and
effects such as interreflections that are lost during principal function
analysis.

Figure 8 compares images generated from uncompressed and com-
We achieved similar compression results with the elephant. A pressed surface light fields with corresponding images generated
pointwise-faired elephant requires 409 MB of color data and from the two-plane light field. The uncompressed data sets give
1.6 MB of geometric data. Applying principal function analysis reproductions of similar quality, although the two-plane light field’s
with a 2-dimensional subspace compresses the elephant’s color datajuadralinear interpolation has different filtering characteristics.
to 3.7 MB. When compressed, the surface light field produces more compelling

. . . . reproductions even though the compressed two-plane light field
Figure 7 compares synthesized images of the elephant with theda?a (8.1MB + geometry?) is more than 3 times the size of the

photographs. The compressed surface light field captures most of : -
the features of the input data, but the highlights are less bright. In compressed surface light field (2.5MB + geometry).
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In the second pass, we scan the frame buffer. For each pixel in
the virtual camera we incrementally compute the directiof

the incoming (viewing) ray using a single 3-vector addition at each
pixel. We computeo by reflecting through the surface nornmi)
atp(u). Finally, we evaluaté (u;, @) by looking up the lumisphere
associated withy and evaluating the piecewise-linear function in
direction space. These operations can be done quickly with just a
few floating-point operations.

5.2 View-dependent refinement of geometry

One feature of the surface light field representation is the de-
coupling of the surface geometry from the light field. For best
results, we can render the surface geometry at the highest resolution
during the first pass of the rendering algorithm, but this can be
costly. Alternatively, we can render a simplified meshg(, the
embedding of the base mesh triangles if) Bnd still achieve a
compelling result because surface light fields, like bump-mapped
lighting, suggest more geometric detail than is actually present.
; However, this simplified mesh introduces some distortion; more-
top | uniform 102,400 0.36 0.59 over, the coarse silhouettes are often objectionable. Instead, we
bottom | LOD 5823 0.07 0.31 have explored a middle ground between those two extrevims:
dependent refinemeat the subdivision-connectivity surface mesh.

AT &
e

24

5%
o

.
<

‘ False color Ligtfield
i Model Faces (secs/frame) (secs/frame)

Figure 9 View-dependent level-of-detail. Left: Geometry visualiza-

tion. Right: Surface light field. Top: Uniform subdivision, = 4. Most current methods for real-time, view-dependent simplification

Bottom: View-dependent level-of-detail with error terms chosen to of geometry, such as those presen_ted by Hoppe [15] r?md Xia
match the uniform subdivision. Shown in the table, very bottom, and Varshney [32], employ progressive mesh representations and
are rendering times, first for false color only (the step that uses adapt the level of detail using edge collapses and vertex splits.
geometry), and second for the entire surface light field rendering For a texture-mapped surface, however, these operations can cause
algorithm. considerable parametric distortion, especially near the boundaries
of parameter domains, placing significant constraints on the simpli-
fication [5]. Therefore, we restrict the mesh used for rendering to
have four-to-one subdivision connectivity [18], and refine the mesh
by adding and removing lazy wavelets [4]. This allows us to modify
the geometric detail almost independently of the parameterization.

The near-plane resolution of the two-plane light field we con-

structed, though comparable in angular resolution to our surface

light field, is lower than those demonstrated by Gortitral.

and Levoy and Hanrahan. We have observed that lowering this e approximate the map : Ko — M c R® by a piecewise-

resolution results in artifacts such as erroneous interpolation amongjinear mapg;r : K: — R® on the simplicial complex; obtained

rays that strike quite different surface points due to occlusion. by applyingrr .fourr-to-one subdivisions to the baser compkéx

Azuma [1] discusses this effect and other difficulties inherent in and settingor(v) = o(v) for each vertex of K;. The subdivision

reduction of the near-plane resolution. level r is a user-defined parameter € 4 in Figure 9). We then
compute the lazy-wavelet expansionaf, expressing it as a sum

5 Rendering of hat functions. Adapting the mesh can now be formulated as
finding a partial sum of those hat functions, satisfying a set of view-

In this section we present an interactive surface light rendering al- dependent properties.

gorithm. Our implementation runs entirely in software and achieves

interactive rates on PC-class hardware without 3D acceleration. (@) wavelet (b)
] ] addition A
5.1 Basic algorithm P
Rendering a surface light field from an arbitrary viewpoint is —
conceptually straightforward. Each pixel in the image plane of the wavelet
camera defines an incoming ray in some directiorSuppose the subtraction
ray intersects the mesh at a poipfu;), corresponding to a point
U € Ko. Then the RGB value of the pixel is(ui, w). Since we Figure 10 (a) Lazy wavelet addition and subtraction. The support

of the added hat function is shown in blue. (b) T-vertices (circled in

actually encode the reparameterized surface light fiélgl @) at red) are eliminated by adding edges.

each point, we must reflect the viewing ray about the normal before
looking up the RGB value. To facilitate this process, we compute
and store aormal mam(u) over the surface, so that we can quickly
determine the normail(u;) at a grid point.

The retriangulation procedure is an incremental algorithm that ex-
ploits frame-to-frame coherence, similar to algorithms described by
Hoppe [15] and Xia and Varshney [32]. To compute the approxima-
We render the surface light field in two passes. In the first pass tion for a frame, we begin with the approximation computed for the
we determine, for each pixel of the virtual camera, the paint previous frame and modify it by applying thezy-wavelet addition
corresponding to the surface poipfu;) seen at that pixel, encoded andlazy-wavelet subtractioaperations, illustrated in Figure 10(a),

as a face ID and barycentric coordinates. We do this efficiently by according to view-dependent criteria. To reduce the appearance of
rendering the mesh in false color with Gouraud shading, using two “popping,” we spread the visual effect of each operation over time
of the framebuffer’s four color channels to encode the index of the by geomorphing [14]. In a second quick pass over the mesh, we
base mesh face, and the remaining two to encode the barycentricadd temporary edges to eliminate cracks caused by “T-vertices,” as
coordinates within the face. shown in Figure 10(b).
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Our criteria for wavelet addition and subtraction are the same
three view-dependent refinement criteria described by Hoppe [15]:
(1) removing wavelets that are completely backfacing, (2) removing
wavelets lying completely outside the view frustum, and (3) main-
taining a screen-space error bound. To accelerate computation of
screen-space error, we construct, in preprocessing, a bounding
volume around the set of geometric error vectors associated with
a wavelet addition. We have found that an ellipsoid aligned to
the surface normal generally provides a tighter bound than the
shape used by Hoppe, while not adding significantly to the cost
of projecting the error volume. Because coarse silhouettes tend
to be more noticeable than interior distortion, we use a smaller
error tolerance near the silhouette [19]. Finally, to reduce the
number of wavelet addition and subtraction operations that must
be considered, we enforce one additional property: A hat function
at level? < r, centered at an edge Kf_1, may appear in the sum
only if the hat functions centered at the endpoints of the edge appear
in the sum.

The results of view-dependent level-of-detail are illustrated in Fig-
ure 9, showing a close-up of the elephant’s trunk. While achieving
high accuracy, the top renderings using uniform subdivision render
fairly slowly due to the large number of triangles. The bottom
renderings, using the view-dependent level-of-detail algorithm with
error threshholds set to match the fine geometry renderings, are
obtained with far fewer triangles yielding moderately improved ~ Figure 11 Editing operations applied to the elephant. (a) Original

frame rates with little visual difference elephant. (b) Sharper and brighter highlights. (c) Environment ro-
’ tated. (d) Environment rotated to another position.

The close-up views shown in Figure 9 benefit greatly from the view
frustum test, which causes a considerable fraction of the model to
be coarsened. In the other common case, where the entire model
is visible, using view-dependent level-of-detail does not give as
significant of a performance benefit, but it does no worse than a
static model. Of course, if the model is very distant, the level-of-
detail algorithm will generate a very coarse approximation.

6 Editing

Just as the decoupling of surface geometry and the light field allows Figure 12 A volumetric deformation applied to the fish. (Original on left.)
us to refine the geometry independently, we are now able to perform

editing operations that are not commonly possible in an image-

based rendering context. In this section we describe three suchrelative to its environment. Figure 12(a) shows the fish as it was
operations: lumisphere editing, rotating the object relative to its originally; Figure 12(b) shows it after deformation, with its head
environment, and deforming the geometry. bent to the side.

By performing simple image processing directly on the lumi- Our method for computing the new surface light fidltl from
spheres, we can simulate changes in surface properties, such athe originall is justified if the environment is infinitely far away,
sharpening of specular highlights. We demonstrate this particular if there is no occlusion, shadowing or interreflection, and if the
operation in Figures 11(a) and (b), where the highlights in the BRDFs for all surface points are reflective. These are the same
original rendering (a) have been brightened and sharpened (b). Weassumptions that motivate our reflection transformation described
achieve this effect by applying Perlin’s bias function [25] to the val- in Section 4.4. Even if all of these requirements are met, there is
ues of every lumisphere. For compressed surface light fields, we canan additional problem. For any grid point € Ko, the camera
quickly approximate this by adjusting the prototype lumispheres. directions represented in the data lumisphere fall inside a hemi-
(For principal function analysis, this is only an approximation sphere. After editing, however, there will in general be viewing
because the bias function is non-linear.) directions that require values bf(u;, w) for directions outside this
hemisphere. In fact, if we rotate the object by 180 degrees, we
will need values exactly on the opposite hemisphere. Operationally,
however, inferring these values is not a problem. The estimation
OIechniques guarantee that lumispheres are well-defined everywhere,
albeit not necessarily realistic.

The other two editing operations we illustrate, rotation of geometry
relative to its environment and general deformation, fit into one
conceptual framework: a transformation is applied to define a
new surface. The new surface can be represented by a modifie
embedding of the base mest : Ko — R®. (Rotation is just a
special case of general deformation.)

_ _ _ . 7 Future work
Our goal then is to compute the corresponding surface light field
L'(u, w), and our solution is operationally very simple. We compute \We envision a number of areas for future work:
the new surface normal fietd(u) and then set’ (u, w) = L(u, &’),

whered' is the reflection otw through the new normal. Combining function quantization and principal function analy-

sis. Our two compression methods can be considered extrema of
Figures 11 and 12 demonstrate the geometric edits. Figure 11(a)a spectrum: Function quantization fits the data by a collection of
shows the original elephant; (c) and (d) show the elephant rotated O-dimensional spaces, whereas principal function analysis uses a
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single higher-dimensional space. We could do both: fit a collection [14]
of higher dimensional spaces. That approach might work well if

the data lumispheres lie on a low-dimensional curved manifold in [15)
lumisphere space.

Wavelet representation of a surface light fiel@Constructing a
wavelet expansion of the surface light fieldu,w) might re-

sult in better compression than function quantization or principal
function analysis, and would support progressive transmission and
performance-tuned rendering [4].

[16]

17
Hole filling using texture synthesisWe have no method for 1l
assigning lumispheres to surface points not visible in any of the
cameras, like those on the bottom of the elephant in Figure 7. [1g]
A texture synthesis algorithm, suitably extended to operate on
lumispheres instead of colors and with textures defined on general

surfaces instead of the plane, could be used to fill these holes. [19]
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