
The Cartoon Animation Filter

Jue Wang1 Steven M. Drucker2 Maneesh Agrawala3 Michael F. Cohen2

1University of Washington 2 Microsoft Research 3 University of California, Berkeley

Figure 1: A punch. Left: before filtering. Right: after filtering.

Abstract

We present the ”Cartoon Animation Filter”, a simple filter that takes
an arbitrary input motion signal and modulates it in such a way that
the output motion is more ”alive” or ”animated”. The filter adds a
smoothed, inverted, and (sometimes) time shifted version of the sec-
ond derivative (the acceleration) of the signal back into the original
signal. Almost all parameters of the filter are automated. The user
only needs to set the desired strength of the filter. The beauty of the
animation filter lies in its simplicity and generality. We apply the
filter to motions ranging from hand drawn trajectories, to simple an-
imations within PowerPoint presentations, to motion captured DOF
curves, to video segmentation results. Experimental results show
that the filtered motion exhibits anticipation, follow-through, exag-
geration and squash-and-stretch effects which are not present in the
original input motion data.

1 Introduction

Cartoon animation is the art of manipulating motion to emphasize
the primary actions while minimizing irrelevant movements. Expert
animators carefully guide the viewers’ perceptions of the motion in
a scene and literally bring it to life. Some of the principles of car-
toon animation are well known. As outlined in Thomas and John-
ston’s ”The Illusion of Life” [1995] and repeated by Lasseter [1987],
skilled animators add features not seen in the real world, including
anticipation and follow-through to the motion with related squash
and stretch to the geometry. Yet, most of us do not possess the time
and skills necessary to keyframe such effective animated motion by
hand. Instead, we create very basic 2D motion paths in tools like
PowerPoint or we rely on recording devices such as video cameras
or motion capture (MoCap) systems to faithfully recordrealisticmo-
tion. However, such motions often appear disappointingly wooden
and dead in comparison to good cartoon animation.

In this paper we present a simple yet generalcartoon animation
filter that can add both anticipation/follow-through, and squash and
stretch, to a wide variety of motion signals. Mathematically, the
filter can be described as:

x∗(t) = x(t)− x′′(t) (1)

Figure 2: The cartoon animation filter.

wherex(t) is the signal to be filtered, andx′′(t) is a smoothed (and
possibly time shifted) version of the second derivative with respect
to time ofx(t). This approach is equivalent to convolving the motion
signal with an inverted Laplacian of a Gaussian (LoG) filter.

x∗(t) = x(t) + x(t)⊗−LoG (2)

The filter provides both simplicity and speed. While the filter cannot
always produce the exact motion a skilled animator would create,
it provides a tool that can be coded quickly and then applied to a
broad class of existing motion signals. It is fast enough for online
applications such as games.

Although the idea of enhancing animation by filtering the motion
signals [Unuma et al. 1995; Bruderlin and Williams 1995] is not in
itself new, our work extends these previous techniques and makes
three novel contributions:

Unified approach. We use the same filter to produce antici-
pation, follow-through and squash and stretch. Anticipation and
follow-through are a natural byproduct of the negative lobes in the
LoG filter. Applying the filter with spatially varying time shifts
across objects generates squash and stretch.

One parameter interface. We automatically generate good de-
fault values for almost all of the parameters of our filter, leaving the
user to specify only the overall strength of the exaggeration. Our
approach allows novice users to easily enhance and enliven existing
motions.

Variety of motion signals. We demonstrate that our filtering
approach can enhance several types of motion signals including
video recordings, MoCap, and simple path-based motions created
with PowerPoint.

The cartoon animation filter is simple enough to operate on mo-
tion curves in real time, thus motions designed for games, such as

Figure 3: Left: (a). A simple 1D translational motion on a ball. (b). Filtered motion on the centroid of the ball, the filter adds anticipation and
follow-through effects to the motion. (c). By applying the filter on the outline vertices with time shifts, the ball exhibits the squash and stretch
effects. Right: Two superimposed frames of a PowerPoint animation after the animation filter is applied. The dotted lines show the original
path.

Figure 4: A ball starts at rest, then spins, then stops. The filter creates an anticipatory pull back before the spin and a follow-through rebound.

the boxer in Figure 1, could be modified programmatically by dy-
namically adjusting the filter strength to convey the apparent energy
level of the character.

There are many interactive animation design systems to construct
an initial animation ranging from professional tools to informal sys-
tems designed for quickly creating animation, such as the Motion
Doodles system [Thorne et al. 2004]. Our work would serve as a
complement to such systems.

2 Related Work

While the importance of cartoon style exaggeration is well recog-
nized, none of the previous techniques combine a single unified ap-
proach with a simple one parameter user interface. For example,
simulation, both physically-based [Faloutsos et al. 1997] and styl-
ized [Chenney et al. 2002; Igarashi et al. 2005], as well as surface
deformation [Wyvill 1997] are common techniques for generating
squash and stretch. These techniques do not handle anticipation and
follow-through. They also force users to set many parameters and
are complicated to implement. Moreover these techniques require
an underlying 2D or 3D model and therefore cannot be directly ap-
plied to some types of motion signals including video.

Motion signal processing is another approach for exaggerating
motion that applies signal processing techniques to motion curves.
Our methods lie in this class of techniques. Unuma et al. [1995]
introduced the approach and used it to interpolate and extrapolate
between MoCap walking sequences (e.g. brisk, tired, fast, ...) in
the frequency domain. Bruderlin and Williams’ [1995] also process
MoCap data in the frequency domain. Adopting the user interface
of a graphic equalizer they provide slider controls over gains of fre-
quency bands for joint angles. While they demonstrate that carefully
adjusting particular frequency bands can generate anticipation and
follow-through, the controls are extremely low level and unintuitive.
Users must mentally map controls over frequency bands into effects
in the time domain. They also limit their techniques to MoCap data
only and do not address squash and stretch effects.

Collomosse’s VideoPaintbox [2004] includes a combination of
techniques for genereating cartoon style animation from video. Af-
ter segmenting the video into individual objects, a complex case-
based algorithm with several (4 to 6) user set parameters is used
to modify the motion curves and generate anticipation and follow-

through. A completely separate deformation-based approach is used
to squash and stretch the objects. While the VideoPaintbox can
generate nicely stylized video motions, the complexity of both the
implementation and interface make it difficult to enhance motion
quickly. Campbell et al [Campbell et al. 2000] show examples of
adding flexibility to animated objects.

In an inspiration for this work, Liu et al. [2005] demonstrate a mo-
tion magnification system to extract small motions from video and
multiply the magnitudes of the motion by a constant for re-rendering
an exaggerated video. We show that applying our filters on video
objects create similar exaggeration with additional effects such as
anticipation and follow-through.

3 Motion Filtering

3.1 The Filter

The cartoon animation filter, as defined in the introduction, subtracts
a smoothed (and potentially time shifted) version of the motion sig-
nal’s second derivative from the original motion. More specifically,
the second derivative of the motion is convolved with a Gaussian and
then subtracted from the original motion signal.

x′′(t) = x′′(t)⊗ Ae(−(((t/σ)±∆t)2)) (3)

wherex′′(t) is the second derivative ofx(t) with respect to time,
and the amplitude,A, controls the strength of the filter. A second
parameter,σ controls the Gaussian standard deviation, or width, of
the smoothing kernel. As we will show, the time shift,∆t, can be
used to create stretch and squash effects by applying the filter shifted
forward in time for the leading edge of the acceleration and shifted
backward in time for the trailing edge.

Equation 2 provides a more compact and efficient filter based on
the (Laplacian) of the Gaussian,LoG. We implement the cartoon
animation filter as such. The inverted LoG filter, is similar to the
unsharpfilter1. in the image domain. As with any sharpening fil-
ter, it produces aringing which is often considered an undesirable
artifact in images. In our case, the same ringing produces a desired
anticipation and follow-through effect.

1The unsharp filter is often defined as the difference of Gaussians, or DoG
filter, which is similar is shape and effect to the LoG.

Figure 5: By dynamically adaptingσ the animation filter is able to
exaggerate all parts of the motion.

Figure 3 shows an example of applying the filter to a simple trans-
lational motion. In this example a ball stands still, then moves with
constant speed to the right, then stops. By applying the cartoon ani-
mation filter with no time shift, to the centroid of the ball we add an-
ticipation and follow-through to the motion (i.e., it will move slightly
to the left of the starting location before going right, and will over-
shoot the stop point). These effects are due to the negative lobes
on the inverted LoG filter that precede and follow the main positive
lobe in the center of the filter (see Figure 2).

In principle an expert user could manually set any of the para-
meters (A, σ, ∆t) of the filter, we have developed automated algo-
rithms for settingσ and∆t so that novice users can simply specify
the strength of the filterA.

3.2 Choosing the Filter Width

The width of the filter is defined by the standard deviation,σ, of the
Gaussian. Intuitively, we would like the dominant visual frequency,
ω∗, of the motion to guide the frequency response of the filter. As
the frequency changes, we would like the filter width to change as
well. To do this we use a moving window over 32 frames centered
at t and take the Fourier transform of the motion in the window. We
then multiply the frequency spectrum by the frequency and select
the maximum as the dominant visual frequency,ω∗.

ω∗(t) = maxω |X(ω)|ω (4)

Or equivalently, we can take the maximum of the Fourier transform
of the velocityx′(t).

ω∗(t) = maxω |F(x′(t))| (5)

Equation 5 expresses the fact that we are concerned with the domi-
nant frequency in the velocity changes. The width of the LoG filter
thus varies over time and is defined byσ(t) = 2π/ω∗(t).

Figure 5 illustrates how the dynamically modifiedσ is able to ex-
aggerate all parts of the motion in a uniform way. The blue curve
shows the Z-component of hip motion of a ”golfswing” MoCap se-
quence. As we can see the dominant frequency of the motion dy-
namically changes overtime. A fixed width LoG filter (the green
curve) exaggerates the latter part of the motion but fails to consis-
tently modify the earlier portion. By dynamically settingσ our filter
exaggerates the motion throughout the animation.

3.3 Squash and Stretch

Deformation is another important effect in animation to emphasize
or exaggerate the motion. Squash and stretch is achieved by slightly
time shifting the same LoG differentially for the boundary points of
the object.

We use the ball shown in Figure 3 to illustrate the idea, and the
same approach can be applied to more complicated shapes. Instead
of representing the object using its centroid, we represent it by a set
of vertices along its outline, as shown in Figure 3c. For a vertex
p, we calculate the dot product of a vector from the centroid to the
vertex, ~Bp, normalized by the maximum length vector, and the ac-

celeration direction assp = ~̃Bp · | ~x′′|, and time shift the LoG filter
based onsp as

LoGp(t) = LoG(t−∆t) (6)

where

∆t = sp · σ(t) (7)

~̃Bp = ~Bp/maxpB (8)

Whensp > 0 (the red vertex in 3c), the vertex is on the leading
edge of the acceleration will anticipate the upcoming acceleration.
On the contrary, ifsp < 0 (the purple vertex in 3c), the vertex is
on the trailing edge of the acceleration thus it will be effected later.
Since we add time shifts differentially to each vertex, the object will
deform, as shown in Figure 3c. Rotational acceleration is treated
similarly by tessellating the shape and applying the time shift to both
internal and external vertices resulting in a twisting anticipation and
follow-through (see Figure 4).

3.4 Area Preservation

At each point in time, the difference in the deformation between the
leading and trailing vertices will create a stretch or squash effect
along the line of acceleration. To approximately preserve area we
scale the object in the direction perpendicular to the acceleration
inversely to the squash or stretch.

4 Results

The cartoon animation filter is independent of the underlying rep-
resentation of the motion, and can be applied to a variety of mo-
tion signals. We demonstrate the filter on three types of motions:
hand drawn motion trajectories, segmented video objects and Mo-
Cap DOF curves of linked figures.

4.1 Filtering Hand Drawn Motion

Basic animation can be created by hand drawing a 2D motion curve
and having a 2D object follow the path. For example, PowerPoint
allows users to attach motion curves (hand drawn or preset) to an
object. The same filter can be applied to these objects as shown on
the right side of Figure 3.

The cartoon animation filter provides an easy method to enliven
such a simple motion. As shown in Figure 3, our filter can simulta-
neously add anticipation, follow-through and deformation effects to
a simple translational motion. The centroid, and each vertex defining
the moving shape are filtered independently. We describe in the next
section how to carry the object texture along the modified motion.

4.2 Filtering Video Objects

To apply the filter to the motion presented in a video sequence, we
first extract video objects using the interactive video cutout system

Figure 6: Applying the filter to two MoCap sequences: walk(left), and golfswing(right). Top: original motion. Bottom: filtered motion.

[Wang et al. 2005]. Once we segment out the object region on each
framet, we parameterize the outline into a polygonSt and use the
set of polygons as the representation of the motion, as shown in Fig-
ure 8. We then apply the animation filter to the centroid of the poly-
gons, and the time shifted filter to each vertex based on acceleration
of the centroid and the vector from the centroid to the vertex.

Maintaining constraints. This simple application of the anima-
tion equation will often result in deviations from sematic constraints.
For example, the skateboarder may no longer be standing on the
skateboard. To maintain constraints, we specify that the vertices on
the bottom of the feet must retain their original paths. For each con-
strained vertex, the difference between the constrained position and
the position after filtering is spread to the other vertices with weights
inversely proportional to the distance from the constrained vertex.

Texturing deformed objects. To texture a deformed video ob-
ject, we first triangulate the original outline to create a 2D object
mesh [Shewchuk 2002]. For each vertex inside the object, we com-
pute a mean value coordinate [Floater 2003] based on its relative
location to the vertices on the outline. Once the outline is deformed,
we use the calculated mean value coordinates to re-locate each ver-
tex inside the object, resulting in a deformed object mesh (Figure
8d). We then perform linear texture mapping to create a deformed
object based on the deformed mesh.

The filter stretches the skateboarder when he jumps onto the chair,
and squashes him when he lands on the ground. These squash and
stretch effects significantly exaggerate the motion and make it more
alive. Figure 7 shows another example of filtering a video object in
which the girl stretches on the downswing and compresses on the
upswing.

4.3 Filtering MoCap Data

The same animation filter works well when applied independently to
the individual degree-of-freedom(DOF) motion curves from a Mo-
Cap session. The human skeleton model we use has 43 degrees of
freedom and we apply our filter independently to each DOF except
the translation of the root node in the directions parallel to the ground
plane. Figures 1 and 6 show the results of applying the filter to three
different MoCap sequences. In all the examples we set the ampli-
tude of the filter to be 3 andσ is dynamically adjusted for each DOF
throughout the sequence. The filter is fast enough to be applied in
real-time, thus the amplitude of the filter can be modified in online
settings such as games to reflect the character’s momentary energy
level.

Maintaining constraints. Motion captured data implicitly ex-
hibits constraints such as the fact that feet do not (generally) slide

Figure 7: Applying the filter to the monkeybar sequence. Top: orig-
inal frames. Bottom: corresponding frames with filtered motion.

Figure 8: Illustration of deforming video objects. (a) Extracted ob-
ject. (b) Parameterized object mesh. (c) Deformed object mesh. (d)
Deformed object by texture mapping.

when in contact with the floor. Much like the constraint mainte-
nance for video objects we add inverse kinematic constraints when
applying the cartoon animation filter to MoCap data. We have only
implemented the simplest of inverse kinematics that translates the
root node to maintain constraints. For example, at foot down we
record the foot position and assure the foot stays put by adjusting
the root translation at each frame. Ideally, one should use more mod-
ern inverse kinematic methods after filtering to generate a smoother
result.

Squash and stretch. For the motion capture sequences, we do
not have only a single shape to deform. For simplicity, we choose
to only examine the vertical motion of the root to create squash and
stretch. Filtering the root’s vertical motion places the root at times
higher and lower than in the unfiltered motion. We simply scale the
whole figure vertically based on the ratio of the filtered height from
the floor vs. the unfiltered height.

5 Conclusion

We have demonstrated a simple, one parameter filter that can si-
multaneously add exaggeration, anticipation, follow-through, and
squash and stretch to a wide variety of motions. We have tried to
maintain a balance between simplicity and control that favored sim-
plicity. Thus, the application of the cartoon animation filter prob-
ably is not satisfactory for hand crafted off-line animation systems
although it may be useful for previews. We believe the value of
such a simple approach will be in either realtime applications such
as games, or in less professional settings such as a child focused
animation tool, or in 2D presentation systems such as PowerPoint.

Acknowledgements
The authors would like to thank Bill Freeman, Brian Curless, and

Simon Winder for valuable discussions, and Keith Grochow for his
help on the MoCap data and system. The first author was supported
by Microsoft Research.

References

BRUDERLIN, A., AND WILLIAMS , L. 1995. Motion signal process-
ing. In Proceedings of SIGGRAPH 95, 97–104.

CAMPBELL , N., DALTON , C., AND MULLER, H. 2000. 4d
swathing to automatically inject character into animations. In
Proceedings of SIGGRAPH Application Sketches 2000, 174–174.

CHENNEY, S., PINGEL, M., IVERSON, R., AND SZYMANSKI , M.
2002. Simulating cartoon style animation. InNPAR 2002: Second
International Symposium on Non-Photorealistic Rendering, 133–
138.

COLLOMOSSE, J. 2004. Higher Level Techniques for the Artistic
Rendering of Images and Video. PhD thesis, University of Bath.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
1997. Dynamic free-form deformations for animation synthesis.
IEEE Transactions on Visualization and Computer Graphics 3, 3
(July - September), 201–214.

FLOATER, M. S. 2003. Mean value coordinates.Computer Aided
Geometric Design 20, 1, 19–27.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005.
As-rigid-as-possible shape manipulation.ACM Transactions on
Graphics 24, 3, 1134–1141.

JOHNSTON, O., AND THOMAS, F. 1995. The Illusion of Life:
Disney Animation. Disney Editions.

LASSETER, J. 1987. Principles of traditional animation applied to
3d computer animation. InComputer Graphics (Proceedings of
SIGGRAPH 87), 35–44.

L IU , C., TORRALBA, A., FREEMAN, W. T., DURAND, F., AND
ADELSON, E. H. 2005. Motion magnification. InProceedings
of SIGGRAPH 2005, 519–526.

SHEWCHUK, J. R. 2002. Delaunay refinement algorithms for tri-
angular mesh generation, computational geometry: Theory and
applications.Computational Geometry: Theory and Applications
22, 1-3, 21–74.

THORNE, M., BURKE, D., AND VAN DE PANNE, M. 2004. Mo-
tion doodles: an interface for sketching character motion.ACM
Transactions on Graphics 23, 3 (Aug.), 424–431.

UNUMA , M., ANJYO, K., AND TAKEUCHI , R. 1995. Fourier prin-
ciples for emotion-based human figure animation. InProceedings
of SIGGRAPH 95, 91–96.

WANG, J., BHAT, P., COLBURN, A. R., AGRAWALA , M., AND
COHEN, M. F. 2005. Interactive video cutout. InProceedings of
SIGGRAPH 2005, 585–594.

WYVILL , B. 1997. Animation and Special Effects. Morgan Kauf-
mann, ch. 8, 242–269.

