
Interactive Video Cutout

Jue Wang1 Pravin Bhat1 R. Alex Colburn2 Maneesh Agrawala2 Michael F. Cohen2

1University of Washington 2Microsoft Research

Input videos Cutout objects Foreground objects composited together on new background

Figure 1: Our interactive video cutout system makes it easy to extract the foreground objects in these videos of an elephant and a skatebaorder.
We then composite these objects onto a third background video to form a new video in which the skateboarder skates on the elephant.

Abstract

We present an interactive system for efficiently extracting fore-
ground objects from a video. We extend previous min-cut based
image segmentation techniques to the domain of video with four
new contributions. We provide a novel painting-based user inter-
face that allows users to easily indicate the foreground object across
space and time. We introduce a hierarchical mean-shift preprocess
in order to minimize the number of nodes that min-cut must op-
erate on. Within the min-cut we also define new local cost func-
tions to augment the global costs defined in earlier work. Finally,
we extend 2D alpha matting methods designed for images to work
with 3D video volumes. We demonstrate that our matting approach
preserves smoothness across both space and time. Our interactive
video cutout system allows users to quickly extract foreground ob-
jects from video sequences for use in a variety of applications in-
cluding compositing onto new backgrounds and NPR cartoon style
rendering.

Keywords: Interactive video processing, min-cut, graph-cut,
mean-shift segmentation, alpha matting

1 Introduction

We have recently seen new innovations for interactively extract-
ing foreground objects from an image [Rother et al. 2004; Li et al.
2004]. The user guides these systems by painting strokes that
coarsely indicate foreground and background regions in the image.
Inspired by these techniques, we have developed an interactive sys-
tem to cutout dynamic foreground objects from a video sequence.

Operating on each frame of a video individually using the pre-
vious techniques would fail in two ways. Painting foreground and
background strokes on every frame would be tedious for the user.

In addition slight differences in the extraction from frame to frame
would lead to a lack of temporal coherence. Another difference be-
tween video and a single image is that within a single shot, each
video frame is usually highly correlated with nearby frames. We
will take advantage of this temporal coherence in constructing our
video cutout algorithm.

Building an interactive interface for extracting a dynamic fore-
ground object from a video presents two primary challenges. First,
the algorithms must be designed to efficiently process the large
number of pixels in a video sequence. In particular, the algorithms
must fast enough so that the interface appears responsive and the
user remains engaged in the extraction task. The second challenge
is to provide an intuitive interface which allows users to quickly and
easily indicate foreground regions as these regions move and de-
form through time. Our system addresses both of these challenges
and offers four main contributions over previous work:

Volumetric painting interface. We present a novel interface
that allows users to indicate foreground and background regions by
painting on surfaces within the spatio-temporal video volume.

Hierarchical segmentation algorithm. We introduce a hierar-
chical mean-shift segmentation preprocess that allows us to solve a
global min-cut optimization in interactive time – 10 to 15 seconds
for 100 to 200 frame sequences at 640x480 or 720x480 resolution.

Local color and edge costs. We define new spatially local color
and edge models within a min-cut framework to leverage the ad-
vantages video offers. We show how to combine the local models
with the global models from previous work.

Spatio-temporal alpha matting. We extend the 2D alpha mat-
ting presented in [Rother et al. 2004] to work with 3D spatio-
temporal video objects while preserving both spatial and temporal
smoothness of the alpha matte.

We demonstrate that our interactive video cutout system allows
users to quickly extract dynamic foreground objects from relatively
long video sequences. Once we have extracted the objects we can
composite them onto new background (see Figure 1) or render them
in a cartoon style (see Figure 11).

2 Related Work

The problem of extracting foreground objects from images and
video has been studied extensively over the last 20 years. We focus
on several strands of previous work that are directly related to our
interactive video cutout system.



2.1 Segmentation-Based Cutout

The simplest image cutout techniques segment the image by se-
lecting all pixels that match a user-specified image feature such
as color. Photoshop’s magic wand [INCORP. 2002] takes this ap-
proach. It lets users select pixels that match a range of colors.

Automatic image segmentation is a well-studied problem in
computer vision. Techniques such as mean-shift segmentation [Co-
maniciu et al. 2001] and min-cut optimization [Boykov et al. 2001]
use a variety of image features such as gradients, edges and texture
to divide the image into similar looking regions. Without user input,
however, it is difficult for these techniques to differentiate between
background and foreground regions. The challenge is to develop
algorithms that can accurately identify the foreground regions with
minimal user guidance.

Recently, we have seen segmentation-based image cutout sys-
tems that address this challenge. Intelligent paint [Reese and Bar-
rett 2002] first oversegments the image and then lets the user se-
lect the regions that form the foreground object. LazySnapping [Li
et al. 2004] and GrabCut [Rother et al. 2004] provide interactive
min-cut-based cutout solutions. In both systems users coarsely in-
dicate foreground and background regions with a few strokes of
the mouse and the system determines the ideal boundary for seg-
menting the image. Our work extends these techniques to the more
challenging problem of video cutout.

Mean-shift segmentation has been used in the context of video
segmentation. The Video Tooning system [Wang et al. 2004] uses a
mean-shift method to divide the video into 3D regions and then asks
the user to manually merge the regions together into semantically
meaningful regions. We replace the low-level manual region merg-
ing with user guided min-cut optimization. The Video Paintbox sys-
tem [Collomosse et al. 2003] applies mean-shift to each 2D frame
individually and then runs a heuristic matching algorithm based on
color, area, overlap and shape to associate 2D regions across ad-
jacent frames. While we borrow the idea of applying mean-shift
to 2D frames individually, we then apply mean-shift again to the
2D regions to produce 3D spatio-temporal regions. Our hierarchi-
cal mean-shift is also similar to the approach of DeMenthon and
Megret [2002]. However, we do not rely on motion vectors as part
of the feature space.

2.2 Boundary-Based Cutout

Another way to extract a foreground object is to fit a curve to its
boundary. However, precisely drawing this boundary curve by hand
can be extremely difficult. Boundary tracing techniques such as
the classic active contour models [Kass et al. 1987], intelligent
scissors [Mortensen and Barrett 1995], image snapping [Gleicher
1995], jetstream [Prez et al. 2001] and Photoshop’s magnetic lasso
use curve optimization methods to significantly reduce the accuracy
required to trace a boundary.

The process of tracking the boundary curve of an object through
a video sequence is called rotoscoping. User-guided rotoscoping
techniques [Hall et al. 1997; Luo and Eleftheriadis 1999] allow
users to trace curves every few frames and automatically interpolate
between them. More recently Agarwala et al. [2004b] have com-
bined an optimization technique [Blake and Isard 1998] with user
guidance to significantly reduce user effort. However, this tech-
nique requires that the video contain strong edges between fore-
ground and background and has difficulty with fast moving fore-
ground objects.

2.3 Matting

Pixels on the edge of a hard segmentation boundary often contain a
mixture of the foreground and background. To seamlessly compos-
ite such “mixed pixels” requires estimating an opacity (alpha) value

and foreground color for each pixel. Ruzon and Tomasi [Ruzon and
Tomasi 2000] show how to estimate the alpha matte and foreground
color using statistical methods. Chuang et al. [Chuang et al. 2001;
Chuang et al. 2002] extend this approach by using Bayesian statis-
tics to accurately estimate alpha for partially transparent foreground
objects in both images and video. The GrabCut system [Rother
et al. 2004] describes border matting which assumes a strong prior
model on alpha to quickly estimate a smooth matte. Our work pro-
vides a fast interactive means to determine the trimap needed for
Bayesian Matting. We also extend the border matting method in
[Rother et al. 2004] to the 3D video volume.

2.4 Video as 3D Object

The user interface we describe relies on the idea of treating video
at a 3D volume of data. Kwatra et al. [Kwatra et al. 2003] have
applied graph cut methods directly to a video volume for texture
synthesis. Fels et al. [Fels and Mase 1999] and Klein et al. [Klein
et al. 2002] present approaches for interactively viewing video in
the form of a 3D volume. The Proscenium [Bennett and McMillan
2003] system uses the video cube paradigm for video editing. Users
can manipulate the cube by slicing it with a cutting plane, and dis-
tort or warp the video to facilitate alignment. We leverage the idea
of manipulating the video cube and allow users to indicate fore-
ground objects by painting on arbitrary spatio-temporal surfaces in
the video volume.

3 System Overview

A block diagram of our system is shown in Figure 2. We assume
that the input video has been stabilized either by using software
stabilization tools [Lucas and Kanade 1981], or by shooting the
video with the aid of a tripod. The input video is processed in three
majors stages; automatic preprocessing, interactive segmentation
and automatic post-processing.

Automatic preprocessing. To ensure efficient updates during
the interactive segmentation stage we precompute a hierarchical de-
composition of the input video by iteratively applying a mean-shift
clustering algorithm. We also compute neighborhood information
between the clusters in the decomposition and local statistics over
the entire video sequence. We have worked with clips at (720x480)
or (640x480) resolution and of 100 to 200 frames. The preprocess
takes from 10 to 30 minutes.

Interactive segmentation. In the interactive segmentation stage
users paint pixels to indicate that they are foreground or back-
ground. Users can interactively rotate, slice and cutaway parts of
the video volume to paint on pixels inside it. At any point in the
interaction, users can run a min-cut optimization over the entire
video to compute a segmentation based on the current set of painted
hints. We have designed a new, efficient, version of the min-cut al-
gorithm that runs on the hierarchical representation created in our
preprocessing stage. Ten to fifteen seconds of computation provides
a segmentation result to which the user can add more paint strokes
as necessary to refine the segmentation.

Automatic post-processing. In the final post-processing stage
we first perform a pixel-based min-cut optimization constrained to
a narrow region around the coarse segmentation to refine the fore-
ground boundary. We then extract a spatio-temporally coherent al-
pha matte so that the foreground object can be seamlessly compos-
ited onto other backgrounds.

4 Preprocessing

Even short video sequences contain a large number of pixels (e.g.,
100M pixels in a 10 second shot). The scale of the problem makes



Figure 2: The input video is processed in three stages to extract
the foreground object. The preprocess over-segments the video and
precomputes local statistics to improve the efficiency of the interac-
tive stage. In the interactive segmentation stage the user works with
the system to extract the foreground object. The postprocessing
stage automatically refines the boundary of the foreground object.

it computationally infeasible to run a segmentation algorithm at the
pixel level. Our preprocessing stage pre-segments the video into
a hierarchical decomposition and computes local statistics. This
preprocess allows our interactive segmentation stage to operate ef-
ficiently and respond quickly to users as they paint new strokes in
the video volume.

4.1 Hierarchical Mean-Shift Segmentation

We use the mean-shift clustering algorithm to build the hierarchical
decomposition of the input video. The mean-shift algorithm clus-
ters pixels that lie near one another in some feature space; typically
the cross product of spatio-temporal position and color. Our hier-
archical algorithm first applies mean-shift segmentation to create
small 2D regions (on average 100 pixels in size) on each frame of
the input video. The complete collection of 2D regions, parameter-
ized by their mean positions and colors, are then clustered into 3D
spatio-temporal regions (see Figure 4). On average, about 20 2D
regions are merged into each 3D regions, thus a typical 3D region
contains about 2000 pixels. Figure 2 shows a pseudo-colored slice
through the 3D regions on a video depicting an elephant.

This procedure generates a strict hierarchy of regions so that each
pixel belongs to a single 2D region and each 2D region belongs to
a single 3D region. The exact coverage ensures that each pixel is
given exactly one label in the interactive min-cut optimization.

By constructing the hierarchy in this two-step manner we avoid
the prohibitive expense of running mean-shift directly on all pixels
of the video. In comparison to the ”overnight” running time of
the full 3D mean-shift procedure in [Wang et al. 2004], the first
step of hierarchical approach requires about 2 seconds per frame at
720x480 resolution to perform the segmentation. The second step
then operates on approximately 1% of the number of nodes as pixels
and thus completes in only 5 seconds per frame or about 10 to 15
minutes on a 150 frame sequence.

4.2 Neighbor Determination

In the preprocessing stage we also compute neighborhood relation-
ships between all pairs of adjacent regions in the mean-shift hier-
archy. At the pixel level, we consider each pixel to have 26 links
to its neighbors, the 8 pixels surrounding it in its own frame, and
the 9 adjacent neighbors in the frames immediately preceding and
following it. The neighboring pixel links are implicitly encoded by
the pixel ordering.

At higher levels in the hierarchy, we establish the neighborhood
relationships between all 2D and 3D mean-shift regions. Two re-
gions are neighbors if any pixel in one region is adjacent to a pixel
in the other region. For each region we record pointers to all neigh-
boring regions. We also record the number of pixels in each region,
and the number of pixel-to-pixel links between each pair of neigh-
boring regions.

4.3 Local Statistics

As we will discuss in section 5.2.2, we have developed new lo-
cal cost models for the min-cut process. To efficiently compute
these local costs, we precompute statistics on pixel-spans and link-
spans in the video. A pixel-span is defined as the set of T pixels at
some spatial location (x,y) through time (where T is the number of
frames). Similarly, a link-span is the set of links that connect two
directly linked pixel-spans. Note that the two pixel-spans may be
the same, thus such a link-span contains only the direct temporal
links between pixels in a single pixel-span. We compute the mean
and variance of the gradients across the links in a link-span in each
of the RGB color channels. We also compute and store local link
costs as will be described in section 5.2.2.

5 Interactive Segmentation

The interactive segmentation loops between two stages. In the first
stage, the user paints strokes to coarsely indicate foreground and
background. Then, a min-cut optimization is invoked to compute a
segmentation based on the strokes. The min-cut takes about 10 to
15 seconds on a 720x480x100 pixel video. The user then examines
the solution, adds more strokes if needed and repeats the process
until satisfied.

5.1 User Interface

With 2D images all the data is visible on the image plane. Users can
directly access each pixel to indicate foreground and background.
With 3D spatio-temporal video volumes, pixels in front occlude
those in back and therefore we must provide tools for interactively
accessing pixels that lie inside the volume.

As shown in Figure 3, our interface allows users to view and ac-
cess pixels in a variety of ways. We treat the video volume as a 3D
cube of data where the X- and Y-axes represent the normal horizon-
tal/vertical axes of a single frame, while the Z-axis represents time.
Users can rotate the cube to view it from any angle, cut through the
cube with cutting planes at any orientation and slice through parts



Figure 3: (a) The user rotates a video volume of skateboarder. (b)
An XZ-view of the video volume. The user draws a green curve
to extrude a surface through the volume. (c) The extruded surface
allows the user to fill the right side of the volume with background
paint (blue tint on XZ-plane). (d) Another curve drawn along the
skateboarder’s path creates an extruded surface that allows the user
to quickly mark the skateboarder with red foreground paint across
multiple frames. (e) An intermediate segmentation result (purple
tint indicates foreground object). The user touches up this result
with a little more red foreground paint on the skateboarder’s shirt.

of the cube by drawing arbitrary surfaces through it. These manipu-
lations make it easy to mark foreground (red paint) and background
(blue paint) pixels within the volume using simple paint strokes as
well as larger-scale volume fill operations.

Figure 3(a) is a screen-shot of our user interface showing a video
sequence of a skateboarder in the 3D video cube representation.
The user has rotated the video cube representation with an arcball
interface and the viewing plane is oriented parallel to the standard
XY-plane. The user can reorient the cutting plane with an arcball
interface, or switch to any orthogonal axis-aligned view, like the
top-down view shown in Figure 3(b). In this case the user is looking
at an XZ-plane passing through the volume. Interactive controls
allow sweeping any such cutting plane through the volume.

Spatio-temporal cutting planes are very useful for seeing the mo-
tion of objects over the entire video sequence in a single image.
In Figure 3(b), the blue-gray C-shaped curve shows the motion of
the skateboarder over time. The user can see that the skateboarder
never appears on the right side of this view, and can confirm this hy-
pothesis by scrolling the XZ-plane through the volume. To mark the
entire right side of the video volume as background the user simply
draws a curve (shown in green) across this XZ-plane. As shown
in Figure 3(c), the system extrudes this curve through the volume.
The user then fills the large portion of the volume to the right of the
surface with background paint (the blue tint on XZ-plane indicates
that it is marked as background). This operation is equivalent to
setting a tight bound on the right side of the skateboarder in every
frame. These large background regions are excluded from the min-
cut optimization to significantly speed up the optimization.

In Figure 3(d) we see another extruded surface. This time the
curve was drawn through skateboarder in the top-down view. As
a result he is spread out over much of the surface. By applying
red, foreground paint over the skateboarder on this curved surface,
the user quickly indicates foreground pixels across many parts of
the spatio-temporal volume. Cutting the volume with such surfaces
is especially useful for marking thin moving structures that may
be difficult to paint in a standard video frame. Moreover, because
min-cut optimization is designed to regularize the shape of regions,
such thin structure usually require more red foreground paint to be
extracted properly.

The user can invoke the min-cut optimization at any time by
clicking a button in the interface. After several seconds of com-
putation the resulting segmentation is shown with the foreground
element tinted purple. Figure 3(e) shows an intermediate segmenta-
tion result for the skateboarder (note that here again the large back-
ground regions are tinted blue, while the segmented skateboarder is
tinted purple). The user can scroll through the entire video to vi-
sually check how well the foreground object is extracted, and add
more paint as necessary. In this example, the user spots a hole on
the skateboarder’s shirt and adds red foreground paint so that the
min-cut optimization will properly include the entire shirt in the
next iteration.

5.2 Hierarchical Min-cut

We invoke a min-cut optimization algorithm [Boykov et al. 2001]
on the mean-shift hierarchy to assign each pixel in the video to be
either foreground (F) or background (B). To use min-cut for video
segmentation, we need to design two aspects of the problem; the
graph topology and the cost function to minimize.

Graph topology. The graph topology is defined by a set of nodes
and bidirectional links between the nodes. Based on the mean-shift
results, a node can be a pixel, a 2D spatial region within a frame,
or a 3D spatio-temporal region. The full collection of nodes in the
graph should exactly cover the original video with no overlapping
nodes. In other words, if a 3D (or 2D) region is selected for inclu-
sion in the graph, none of its children should be selected. Similarly



Figure 4: The hierarchical mean-shift structure of a video. Pixels
are first clustered into 2D regions which are then clustered into 3D
regions. As users mark foreground (red) or background (blue) pix-
els the labels are propagated up the trees. (a) Nodes that contain
only red or blue paint are fully constrained. (b) Mixed nodes are
left out of the graph due to conflicting paint strokes in their chil-
dren. (c) If an entire subtree is marked as background (highlighted
in gray) it is removed from further consideration. (d) The min-cut
algorithm must assign a label to each white node in the graph. Al-
though not in this diagram, these white nodes are typically the most
numerous. To apply min-cut we construct a graph containing the
highest level nodes of a single color (highlighted in yellow).

if a pixel (or 2D) node is selected, none of its ancestors should be
included. Links are created between all pairs of neighboring nodes.

Cost functions. The min-cut optimization minimizes a cost
function over the graph. Our cost function consists of two types
of costs, data costs for assigning each node to either label, F or B,
and link costs for each link. During min-cut the link cost is incurred
only if the nodes connected by the link are assigned different labels.

Given the graph topology and the data and links costs, the min-
cut algorithm chooses a set of labels (F or B) for each node that
minimizes the total labeling cost on the whole graph. Once nodes
are labeled, the labels are propagated down to pixels for the final
segmentation result.

5.2.1 Graph Topology

Figure 4 illustrates the hierarchy resulting from the mean-shift pre-
segmentation. All pixels are initially unlabeled; indicated as white
in the diagram. As the user paints pixels as either foreground (red)
or background (blue) these labels are propagated up the trees. Re-
gions above the pixel level can take on both labels if their children
are marked with conflicting labels.

At each invocation of the min-cut procedure a new graph is built
dynamically. Each tree of regions from the mean-shift procedure
is processed top down. When a region is found that has no con-
flicting labels it is added as a node in the graph so that only the
highest level regions with a single color are added to the graph.
These regions (highlighted in yellow in Figure 4) are guaranteed to
be a minimal set of consistently marked nodes that exactly covers
the video volume. In addition, to improve efficiency, subtrees that
are fully marked as background are simply removed from further
consideration (highlighted in gray in Figure 4).

All pairs of nodes in the graph are then tested to see if they are
neighbors. If so, a link is added to the graph connecting the pair.
In practice almost all nodes are the top level 3D nodes. Users only
need to break the top level 3D nodes by painting stroked when adja-
cent foreground and background regions are similar in appearance.
This process assures that the user can override any errors in the ini-
tial mean shift process.

Figure 5: Min-cut cost structure. Each symbol to the left of a box
represents an individual cost function. They are defined in Sec-
tion 5.2.2. The λ’s represent weighting parameters between the dif-
ferent cost functions.

Figure 6: Visualizations of the costs on a single frame; (a) lo-
cal background data cost (DB,l), (b) global background data cost
(DB,g), (c) global foreground data cost (DF,g),(d) local link cost
(Ll), and (e) global link cost (Lg). White represents low cost in-
dicating good places to assign label B in (a) and (b), to assign label
F in (c), and to cut links in (d) and (e). No single cost function is ac-
curate everywhere, but taken together they allow min-cut to extract
the elephant

.

5.2.2 Data and Link Costs

We define a cost function E on our graph as a combination of global
cost functions described in previous work [Rother et al. 2004; Li
et al. 2004], and new local cost functions. Figure 5 illustrates the
structure of our cost function.

The total cost is represented as a Gibbs energy

E(X ,Z,Γ) = ∑
i

D(xi,zi,γi)+λ1 ∑
nghbrs(i, j)

L(xi,x j,zi,z j) (1)

where D is the data term which assigns a cost to label node i with
label xi, that has color zi and has the user assigned label (if any) γi.
In our case xi equals either background, B, or foreground, F , and
the user labels are either foreground F (red paint) or background
B (blue paint). Unpainted nodes are marked as /0. The link term L
assigns a cost to each link between neighboring nodes i and j. This
cost is 0 if the labels xi = x j. Otherwise, the link cost is related to
the color gradient, �, between nodes i and j. Note that henceforth
for brevity, we will leave out all the arguments of these functions
unless they take on a specific value.

Higher level nodes are composed of many individual pixels. We
set the data costs to be the sum of individual pixel costs for a given
label. Thus, D(i) = ∑p∈i D(p) and the higher level nodes incur data
costs proportional to their volume. We set the link costs to the sum
of individual link costs at the pixel level over all links between the
nodes. Thus, L(i, j) = ∑l∈(i, j) L(l). The link costs are independent
of user input and are computed and stored at preprocess time. The
λ1 constant balances the data and link costs.



Data Costs. As described in section 5.1 the user paints within
the video volume to indicate specific pixels are either foreground
or background. These values are then propagated up the mean-
shift hierarchy as shown in Figure 4. If node i has been painted as
foreground γi = F , or background γi = B , then

D(xi = B,zi,γi = B) = 0 (2)

D(xi = F,zi,γi = B) = ∞
D(xi = B,zi,γi = F ) = ∞
D(xi = F,zi,γi = F ) = 0

In other words, assigning a label that matches the user’s paint
strokes is free, and violating the user’s paint strokes incurs infinite
cost. Thus, the user’s painted hints are guaranteed to be respected
by the min-cut.

The vast majority of nodes remain unpainted even after propa-
gating the paint up the mean-shift hierarchy (i.e., γi = /0). In this
case, individual data costs, DB and DF , are determined for assign-
ing a node to background or foreground. These are then normalized
as in previous work

D(xi = B) =
DB

DB +DF
(3)

D(xi = F) =
DF

DB +DF
(4)

As in [Rother et al. 2004] we use the pixels painted by the user
to build two Gaussian mixture models (GMM), one for the colors
found in the background and the other for colors found in the fore-
ground. Our models use 5 Gaussians. A color of a node, zi, (the
mean color in the case of a higher level node) is tested against each
GMM to return a likelihood of that color belonging to either the
background or foreground. The global data costs, DB,g and DF,g
are taken as the complements of the likelihoods.

DB,g(xi = B) = 1−
5

∑
k=1

wke(−(zi−µk)T Σ−1
k (zi−µk)/2) (5)

where the wk are the weights corresponding to the fraction of sam-
ples closest to the kth component of the GMM, and µk and Σk are the
mean color and covariance of the kth component of the GMM. The
same equation applies to the global foreground model, DF,g, except
that the GMM is computed from the samples marked as foreground
by the user.

Unlike previous work, we also include a local background color
model in our data cost. If a video was captured from a tripod, or
has been stabilized, the background color will often vary little from
frame to frame at any specific location. We extract a static ”clean
plate” from the video by applying temporal filters [Agarwala et al.
2004a] or using a simple median filter across all frames. However,
for most sequences, even after video stabilization, the background
is not exactly stationary due to camera shake, moving background
objects, and camera noise. Therefore, we consider the pixels from
the static clean plate as well as pixels marked by the user as back-
ground to build an additional local background color model. For a
pixel, p, our local model is given by:

DB,l(xp = B) = 1−e(−d(zp)/(2η2
cp)) (6)

where the distance function d(zp) is taken as the minimum color
difference between the pixel color, zp, and the pixel in the clean
plate or any pixel in it’s pixel span with user label B . The term
ηcp models noise and is set a priori. We have found that a value of
5 (in a 0-255 color space) to work well in practice. Since our lo-
cal background color model cannot be evaluated directly for higher

level nodes, we compute it as the sum over all child pixels. For
efficiency we pre-compute the local background term at each pixel
after generating the static clean plate.

The complete background data term is a linear combination,

DB(xi = B) = λ2DB,l +(1−λ2)DB,g (7)

where λ2 reflects the confidence in the local background model. It
is set locally based on the number, N, of B marked pixels in the
span

λ2 = 1−e(−(N+1)·100/NumFrames). (8)

Link Costs. Link costs are non-zero only when the nodes across
the link are set to opposite labels, B and F . The link costs are
designed to keep the segmentation coherent across space and time.

Previous min-cut based segmentation approaches make an a pri-
ori observation that the transitions between foreground and back-
ground will usually exhibit higher gradients than the average gradi-
ent between any two pixels. Therefore, they assign a static exponen-
tial function based on the color difference, or gradient �, between
the two nodes the link connects. We adopt this approach for our
global link cost

Lg = e(−�2/(2η2
link)). (9)

Here ηlink represents the variance of the gradients across all links
in the video. In practice we set ηlink to 20.

In complex video sequences, both the foreground and the back-
ground may have complex patterns and strong edges which will en-
courage the segmentation to cut along edges inside the foreground
object as well as within the background. We have developed de-
veloped a local link model to better handle such cases. We utilize
the mean µ� and variance σ� of the link gradients in each link-
span. Our model is independent of the user’s input and is computed
once at preprocess time. We encourage a link to be cut if it has
both a higher than average gradient in its span, and is an unusual
occurrence in the span. Thus the local link cost is computed as

Ll(xi �= x j) =
{

e((�i j−µ�i j)2/2σ2
�i j), if �ij > µ�ij

1, otherwise
(10)

The global and local link costs are also taken as a weighted average
L(x1 �= x2) = λ3 ·Lg +(1−λ3)Ll . In practice we set λ3 to 0.3.

Figure 6 shows visualizations of the various costs on a frame
of an elephant video. Note how the local costs, (a) and (d) help
to isolate the foreground and help determine the best links across
which to cut.

6 Post-processing

As shown in Figure 7(a), the interactive segmentation stage of
our system usually produces a foreground object with boundary
edges that are noisy in both space and time. The automatic post-
processing stage is designed to refine the hard foreground boundary
edges and produce a smooth spatio-temporal alpha matte.

6.1 Refinement Min-cut

To refine the foreground boundary produced by the interactive seg-
mentation we run a pixel-level min-cut optimization within a nar-
row band of the initial boundary. We first erode and dilate the initial
boundary by 3 pixels to remove small holes and thin, thread-like
structures. We then build a pixel-level graph containing all pixels
within a narrow spatio-temporal band of the boundary, as shown in
Figure 7(b). The width of this boundary band is set to 10 pixels
spatially and 1 frame temporally.

We construct the graph by treating each pixel within the band as a
node, and each node is connected to its immediate spatial/temporal



Figure 7: (a) Initial segmentation result of frame. (b) We limit our
pixel-based refinement min-cut segmentation to the boundary of the
initial segmentation and constrain the edges to be foreground (red)
and background (blue). (c) Refined foreground boundary. (d) Final
alpha matting result.

neighbors. If a pixel is on the inner boundary of the band it is set to
z = F , and likewise outer boundary pixels are set to z = B (shown
as red and blue pixels in figure 7(b)). Otherwise, we set the data
cost of each unknown pixel based on its foreground and background
likelihoods computed locally, using the Bayesian image matting ap-
proach of Chuang et al. [2001]. We sample the 16 closest known
foreground pixels from a local spatio-temporal neighborhood, and
use these pixels to estimate a Gaussian foreground color model to
compute the foreground data cost. We do the same thing to estimate
a background color model and data cost for each pixel.

The link cost is set to a constant for all links in the graph. This
encourages the min-cut optimization to cut through a small number
of links to separate the unknown region into a foreground subregion
and a background subregion as shown in figure 7(c). We use the
refined boundaries for alpha matting.

6.2 Spatio-Temporal Matting

To extract a spatio-temporally coherent matte based on the refined
boundaries, we first parameterize the boundary and build a con-
sistent 3D contour mesh across the entire video volume. We then
run a new spatio-temporal border matting algorithm to generate the
smooth alpha matte.

6.2.1 3D Contour Mesh Construction

We begin by separately parameterizing the foreground boundary for
each frame. The closed boundary for frame t is parameterized into
a set of contour points

{
c1

t , ...cn
t
}

, where the number of vertices n
is fixed for all frames. For illustration, we assume here that the
foreground object is one connected component without holes.

Next, we build correspondences between contour points across
adjacent frames using both shape and local color information. For
ci

t (the ith contour point on frame t) and cj
t+1, we compute a corre-

spondence cost as:

g(ci
t ,c

j
t+1) = gs(ci

t ,c
j
t+1)+w ·gc(ci

t ,c
j
t+1) (11)

where gs is the shape distance and gc is a local “color distance” be-
tween the two points. The shape distance gs is computed as the the
magnitude of the difference of the shape context vectors [Belongie
et al. 2002] of each point. If S(ci

t) and S(c j
t+1) are the shape context

vectors for each point, then gs(ci
t ,c

j
t+1) = ‖S(ci

t)−S(c j
t+1)‖.

Figure 8: Three corresponding portions of trimaps and contours at
three successive frames, t −1, t, and t +1. Inset: α profile.

To increase the accuracy of the correspondence we also include
a local color distance term gc in the correspondence cost. Fore-
ground colors can be expected to be more stable than background
colors in close proximity of the contour. For each contour point
ci

t , we select the 16 nearest foreground pixels and compute their
mean color M(ci

t). The color distance gc(ci
t ,c

j
t+1) is computed as

‖M(ci
t)−M(c j

t+1)‖. We normalize gs and gc to the range [0,1] and
have experimentally found that setting the weight w to 4 produces
good results.

We use dynamic programming to find the match that minimizes
the total correspondence cost; the point-wise correspondence cost
summed over all contour points, on all frames. For later use, we
also record the frame-to-frame correspondence cost for each frame,
G(t,t +1); the sum in each frame over all its contour points. Thus,
we obtain a consistent 3D surface mesh over the foreground object.

6.2.2 Spatio-Temporal Border Matting

Image matting applied frame-by-frame to a video sequence pro-
duces temporally noisy results because the small errors generated
on each individual frame are incoherent. The human visual system
is sensitive to such temporal incoherence. Therefore we extend the
border matting approach introduced in the GrabCut system [Rother
et al. 2004] to generate spatio-temporally smooth mattes.

We begin by repeating the approach we used in generating the
boundary band for the refinement min-cut to create a trimap. We
mark all pixels within 10 pixels spatially and 1 pixel temporally
of the refined foreground boundary as unknown (i.e., α ∈ [0,1]).
The pixels inside the inner boundary of this band are marked as
foreground (α = 1) and and those outside the outer boundary are
marked as background (α = 0).

Figure 8 illustrates the intuition behind our spatio-temporal bor-
der matting algorithm. In the diagram the contours from the refine-
ment step are shown in black. Border matting defines an α profile
along each normal to the contour. This contour has α = 0 along the
outside edge, and α = 1 along the inside edge and varies smoothly
in between as defined by a profile function (see inset of Figure 8).
The parameters of the α profile are given by an offset � (the dis-
tance between the pink circles, c̃, and the contour points, c) and a
width σ (shown as the pink error bars). The pink dotted line passing
through the c̃’s represents where α takes on value 0.5.

The original border matting algorithm optimizes over the �’s
and σ’s (equation (12) in [Rother et al. 2004]) to create an α matte
that best explains each pixel’s color from nearby foreground and
background pixels and the local α value. It simultaneously tries



to minimize the variation in the � values, and σ values along the
contour to maintain spatial coherence.

To achieve temporal smoothness we add a temporal term to equa-
tion (12) in [Rother et al. 2004] and optimize over all contours
across all frames. Our temporal term is defined as:

∑
t

w(t,t +1)∑
i
‖(�κ)‖2 +λ(�σ)2 (12)

�κ = (c̃i−1
t −2c̃i

t + c̃i+1
t )− (c̃i−1

t+1 −2c̃i
t+1 + c̃i+1

t+1)

�σ = σi
t −σi

t+1

Here �κ is a shape term similar to that defined in the rotoscoping
system [Agarwala et al. 2004b]. It measures the change in the cur-
vature of the contour over time. The �σ term is used to encourage
σ to change smoothly. λ is a weight which we set to 100.

w(t,t + 1) penalizes correspondence errors based on the frame-
to-frame correspondence cost, G(t,t +1), we computed earlier (see
section 6.2.1). w(t,t +1) is defined as

w(t,t +1) =

{
0 : G(t,t +1) ≥ TG

1− G(t,t+1)
TG

: G(t,t +1) < TG
(13)

where TG is a predefined threshold. If the foreground object
changes topology, the correspondence cost will be high and the
weight will decrease to zero. In this way we only apply tempo-
ral smoothness constraints within blocks of video frames where the
foreground motion and appearance is homogeneous, and do not ap-
ply smoothness constraints across frames where frame correspon-
dences are erroneous or less reliable. The approach allows our sys-
tem to produce good results even when the video sequence contains
intensive motions.

So far we have computed alpha values to create a smooth spatio-
temporal matte. We still need to estimate foreground colors for
each foreground pixel. We estimate the foreground colors using the
”pixel stealing” approach described in the GrabCut system.

7 Failure Modes and Solutions

We have exercised our system on many difficult videos. The type
of automation we provide is quite powerful, but will fail in some
cases. However, previously published work can be very helpful to
solve such problems. Here we consider several classes of failure
modes and solutions.

Video will not stabilize – Optical flow: If there is significant
camera translation in the input video, parallax will prevent it from
being stabilized. Optical flow algorithms can return the apparent
motion of each pixel from one frame to the next. The original pixel
lattice can then by modified by connecting each pixel through its
flow vector to a new pixel in the next frame. The system runs as
before except that the local data and link costs are not used. This
was used for the ”Man in Cap” sequence.

Foreground is similar to background – Rotoscoping: The
min-cut based approach has difficulties if the differences between
foreground colors and background colors are small. An example is
shown in figure 9(a), where the girl’s white shirt is ambiguous with
the white wall in the color space. In this case we can call on roto-
scoping methods [Agarwala et al. 2004b] constrained by our partial
results. As shown in figure 9(b), we first treat the girl’s skin and
hair regions as foreground and segment them from the sequence
using the min-cut based system. The user then indicates a roto-
scoping curve around the body, including the shirt. The red vertices
are attached to the boundaries of the pre-segmented regions. The
red vertices are automatically propagated across time using our 3D
contour mesh construction described in section 6.2.1. The green
vertices are ”unknown” ones corresponding to the shirt region, they

Figure 9: Amira (2): (a) Initial segmentation result on one frame.
Min-cut segmentation alone cannot robustly segment the girl’s shirt
due to color ambiguity. (b) The user segments the skin and hair
regions out, and adds a rotoscoping curve around the boundary. (c)
The rotoscoping curve has been robustly propagated to the 32nd
frame by optimizing the green vertices only based on Agarwala et
al. [2004].

are the only vertices we need to optimize, thus the optimization can
be performed more robustly, as shown in figure 9(c).

Foreground still to similar to background – Recurse: In the
ballet sequence (see Figure 10) the shoe color matches the floor
so well they were very hard to segment. In this case one can first
mark off all but the small portion of the video containing the shoes.
Operating on this subset of the video is more successful since the
foreground and background color models can much more tightly fo-
cus on the shoe and floor colors. Once done, the shoes are accepted
as foreground, effectively marking them as F . The rest of the video
is brought into consideration and the remainder of the foreground
object is segmented.

All else fails – Trust user: The beauty of an interactive system
such as the one described, is that in the worst case, the user is still
in control. In some cases when the foreground includes very thin
structures in which almost every pixel is some combination of the
foreground and background colors no system we know of will work
robustly. The tail of the elephant presented such a challenge and
required a few thin strokes on about every fifth frame to be included
in the foreground object.

8 Results

As described in Table 8, we have run our interactive video cutout
system on a number of videos, that were between 80 and 175
frames in length. Preprocessing to compute the mean-shift hierar-
chy and neighborhood relationships took 30 minutes or less. Post-
processing time including refinement min-cut and matting took
about 15 seconds per frame, or less than an hour per example.

User time depends on the complexity of the scene; more com-
plexity, thin structures, and fast motion may require more paint
strokes to guide the system. The user also has to wait for the min-
cut computation between iterations. Due to the efficiencies from
the hierarchical mean-shift, our min-cut computation took only 7
to 17 seconds, and thus fit nicely within our interactive framework.
As sessions progressed, the min-cut time increases slightly due to
the increased number of samples used to compute the color models.

The video, Amira (1) was reported to have taken about 40
minutes of rotoscoping in [Agarwala et al. 2004b]. Because of the
strong edges and almost constant colors in this sequence, we were
able to fully extract the foreground by painting only a few strokes
on a single frame of the video.

More challenging examples are shown in Figure 10. In the skate-
boarder example there are many strong edges in the background
which move slightly in the video despite its being captured with



Figure 10: Left: Original frame from four example video sequences. In order from top to bottom the sequences are named Ballet, Skate-
boarder, Man in Cap and Stairs. Right: Three frames from each sequence showing just the extracted foreground objects.

Sequence Size Preprocessing Min-cut Runtime Artist Time Post-processing
Skateboarder 720*480*175 30 min 12.50 sec 20 min 40 min
Elephant 720*480*100 20 min 9.10 sec 40 min 30 min
Man in Cap 640*480*150 30 min 16.5 sec 20 min 35 min
Ballet 640*480*150 25 min 11.5 sec 50 min (twice) 30 min
Amira (1) 640*480*100 15 min 7.05 sec 2 min 50 min (Trimap, Bayesian matting)
Amira (2 - roto) 640*480*80 12 min 5.00 sec 5 min + roto(10 min) 35 min (Bayesian matting)
Stairs 640*480*100 20 min 8.50 sec 20 min 30 min

Table 1: Video sequences and timings for each stage of the algorithm.

a tripod. The foreground character moves very rapidly across the
screen and back. Nevertheless, a successful matte is extracted with
about 20 minutes of user time. The elephant seen in Figure 1 pre-
sented special difficulty due to the similarity of the elephant’s color
with it’s background, and the presence of the relatively thin trunk
and tail structures. The high frequencies in the background coupled
with the uneven stabilization of the video also make this a challeng-
ing example. Approximately 40 minutes of user time was needed to
extract the elephant. The ballet sequence presented additional prob-
lems due to fast motion and the fact that the feet almost matched the
floor color. We completed this sequence in two passes, extracting
the feet first and then the rest of the dancer while constraining the
feet to be foreground. Each pass took about 50 minutes.

Once an alpha matted foreground object is extracted from a
video, there are a number of possible applications. The most
straightforward application is to composite the extracted fore-
ground onto a new background video. Figure 1 shows an example
of compositing a skateboarder and an elephant onto a background
video taken outside the library at the University of Washington. As
shown in Figure 11, the extracted foreground can also be stylized
into a cartoon appearance by applying the stylization approach de-
scribed in the Video Tooning system [Wang et al. 2004].

9 Conclusion

We have demonstrated an interactive system for quickly extracting
alpha matted foreground objects from videos. We have also touched
on a couple of applications for the extracted objects.

Although our system works well, as we mention, previous work

Figure 11: The skateboarder is recursively segmented into fore-
ground sub-objects. These are then stylized using the Video Toon-
ing system of Wang et al. [2004].

also is helpful in special circumstances. No single solution is likely
to work on all inputs. Thus an integrated set of tools will some-
day need to be made to fully exploit all the ideas that have been
presented.

There are other problems as well we have not tackled. One may
want to extract an object that passes behind thin structures. In this
case, one would need to extract these blocking objects and fill in
the occluded pixels with, for example, texture synthesis.

Despite the inherent difficulties of working with video, we be-



lieve our interactive video cutout system demonstrates an example
of how a well designed user interface and efficient algorithms opens
new possibilities for video editing.

Acknowledgements

The authors would like to thank Ke (Colin) Zheng for help with sta-
bilizing the hand held videos, and Aseem Agarwala for sharing his
videos and expertise. One of the authors of this work is supported
by a grant from Microsoft Research.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. In Proceedings of
ACM SIGGRAPH, 294–302.

AGARWALA, A., HERTZMANN, A., SALESIN, D. H., AND SEITZ,
S. M. 2004. Keyframe-based tracking for rotoscoping and ani-
mation. In Proceedings of ACM SIGGRAPH, 584–591.

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape match-
ing and object recognition using shape contexts. IEEE Trans. on
Pattern Analysis and Machine Intelligence 24, 4, 509–522.

BENNETT, E. P., AND MCMILLAN, L. 2003. Proscenium: A
framework for spatio-temporal video editing. In Proceedings of
ACM Multimedia, 177–183.

BLAKE, A., AND ISARD, M. 1998. Active Contours. Springer-
Verlag.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approx-
imate energy minimization via graph cuts. IEEE Trans. Pattern
Analysis and Machine Intelligence 23, 11, 1222–1239.

CHUANG, Y.-Y., CURLESS, B., SALESIN, D. H., AND SZELISKI,
R. 2001. A bayesian approach to digital matting. In Proceedings
of IEEE CVPR 2001, vol. 2, 264–271.

CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN,
D. H., AND SZELISKI, R. 2002. Video matting of complex
scenes. ACM Transactions on Graphics 21, 3, 243–248.

COLLOMOSSE, J. P., ROWNTREE, D., AND HALL, P. M. 2003.
Stroke surfaces: A spatio-temporal framework for temporally
coherent non-photorealistic animations. University of Bath,
Technical Report CSBU 2003-01 (June 2003).

COMANICIU, D., RAMESH, V., AND MEER, P. 2001. The variable
bandwidth mean shift and data-driven scale selection. In Proc.
IEEE 8th Int. Conf. on Computer Vision.

DEMENTHON, D., AND MEGRET, R. 2002. Spatio-temporal seg-
mentation of video by hierarchical mean shift analysis. In Uni-
versity of Maryland Technical Report LAMP-TR-090, CAR-TR-
978, CS-TR-4388, UMIACS-TR-2002-68.

FELS, S. S., AND MASE, K. 1999. Interactive video cubism. In
Proceedings of the Workshop on New Paradigms for Interactive
Visualization and Manipulation (NPIVM), 78–82.

GLEICHER, M. 1995. Image snapping. In Proceedings of SIG-
GRAPH 95, 183–190.

HALL, J., GREENHILL, D., AND JONES, G. 1997. Segmenting
film sequences using active surfaces. In International Confer-
ence on Image Processing (ICIP), 751–754.

INCORP., A. S. 2002. Adobe photoshop user guide.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes:
Active contour models. International Journal of Computer Vi-
sion 1, 4, 321–331.

KLEIN, A. W., SLOAN, P.-P. J., FINKELSTEIN, A., AND COHEN,
M. F. 2002. Stylized video cubes. In Proceedings of SCA 2002.

KWATRA, V., SHOEDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. In Proceedings of ACM SIGGRAPH, 277–286.

LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazys-
napping. In Proceedings of ACM SIGGRAPH, 303–308.

LUCAS, B. D., AND KANADE, T. 1981. An iterative image reg-
istration technique with an application to stereo vision. In Pro-
ceedings of the 7th International Joint Conference on Artificial
Intelligence (IJCAI ’81), 674–679.

LUO, H., AND ELEFTHERIADIS, A. 1999. Spatial temporal ac-
tive contour interpolation for semi-automatic video object gener-
ation. In International Conference on Image Processing (ICIP),
944–948.

MORTENSEN, E., AND BARRETT, W. 1995. Intelligent scissors
for image composition. In Proceedings of ACM SIGGRAPH,
191–198.

PREZ, P., BLAKE, A., AND GANGNET, M. 2001. Jetstream: Prob-
abilistic contour extraction with particles. In Proc. Int. Conf. on
Computer Vision, vol. II, 524–531.

REESE, L. J., AND BARRETT, W. A. 2002. Image editing with
intelligent paint. Proceedings of Eurographics 21, 3, 714–724.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. Grabcut
- interactive foreground extraction using iterated graph cut. In
Proceedings of ACM SIGGRAPH, 309–314.

RUZON, M., AND TOMASI, C. 2000. Alpha estimation in natural
images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, vol. I, 18–25.

WANG, J., XU, Y.-Q., SHUM, H.-Y., AND COHEN, M. F. 2004.
Video tooning. In Proceedings of ACM SIGGRAPH, 574–583.


