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Abstract

We present a technique for analyzing a set of animal gaits to predict
the gait of a new animal from its shape alone. This method works on
a wide range of bipeds and quadrupeds, and adapts the motion style
to the size and shape of the animal. We achieve this by combining
inverse optimization with sparse data interpolation. Starting with
a set of reference walking gaits extracted from sagittal plane video
footage, we first use inverse optimization to learn physically moti-
vated parameters describing the style of each of these gaits. Given
a new animal, we estimate the parameters describing its gait with
sparse data interpolation, then solve a forward optimization prob-
lem to synthesize the final gait. To improve the realism of the re-
sults, we introduce a novel algorithm called joint inverse optimiza-
tion which learns coherent patterns in motion style from a database
of example animal-gait pairs. We quantify the predictive perfor-
mance of our model by comparing its synthesized gaits to ground
truth walking motions for a range of different animals. We also ap-
ply our method to the prediction of gaits for dinosaurs and other
extinct creatures.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: character animation,optimization,locomotion

Links: DL PDF

1 Introduction

The animals seen in nature come in a great variety of shapes and
sizes, and move in a similarly diverse range of ways. Although the
availability of video footage and motion capture data makes it easy
to see how these animals locomote, natural curiosity compels us to
wonder beyond this data to the motions of other creatures. How
might animals which we don’t have data for move? Can the gaits
of living animals be used to guess at the gait for a dinosaur?

Our approach to gait synthesis takes a step toward answering these
questions by using a database of real-world gaits captured from 2D
sagittal plane video data to learn a model of how different animals
walk. We can then synthesize physically valid (sagittally domi-
nant) walking gaits for other animals according to the similarity of
their shapes to the different animals in the database. This form of
generalization is made difficult by the fact that many of its most
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interesting applications are on to creatures (such as dinosaurs) with
a shape substantially different than anything currently living. This
necessitates a method which not only captures the salient aspects of
the gaits for the animals for which we do have data, but which is
also well-suited for generalizing these gaits to new creatures.

Our approach to addressing these issues is based on a combination
of inverse optimization and sparse data interpolation, and in partic-
ular upon a novel algorithm called joint inverse optimization which
unifies these two concepts. The term joint in this case does not refer
to the animal’s joints, but rather to the fact that this technique solves
an inverse optimization problem jointly across multiple animals si-
multaneously. This method takes as input a database of animal gaits
extracted from video footage, and processes it into a compact form
describing the style of each gait. This style is captured with a set
of biologically meaningful parameters describing, for instance, the
relative preference for using different joints, the stiffness of these
joints, and the preference for avoiding motions likely to cause the
animal to trip. Unlike approaches such as [Liu et al. 2005] rely-
ing on traditional inverse optimization, our joint inverse optimiza-
tion approach ensures that the learned parameters are well-suited to
generalization onto new animals. Thus, instead of learning specific
values of these parameters from a single motion, we learn coherent
patterns between the parameters for an entire set of different mo-
tions. These coherent patterns in style are then used to guess the
manner in which a new input animal should move. To the best of
our knowledge this is the first method attempting to synthesize real-
istic motions across a wide range of both bipedal and quadrupedal
animals. This allows the synthesis of visually plausible gaits for
a wide range of extinct animals, and is validated to be more accu-
rate than several potential alternative approaches at reproducing the
gaits of a range of living animals for which we do have data.

2 Related Work

The synthesis of realistic legged locomotion is a well-studied but
difficult problem in character animation. Although part of this dif-
ficulty is inherent in the synthesis of locomotion (realistic or oth-
erwise) for complex characters, synthesizing realistic locomotion
presents the particular challenge in that it requires a precise defini-
tion of what constitutes “realistic”. Although this problem can be
addressed by relying on an artist or expert in the creation of the mo-
tion [Raibert and Hodgins 1991; Yin et al. 2007; Coros et al. 2010;
Kry et al. 2009; de Lasa et al. 2010], the most common method for
realistic locomotion synthesis is probably to rely on motion capture
or video data as a guide. This use of real-wold motion data is seen
in methods which directly rearrange and replay existing motions
[Bruderlin and Williams 1995; Witkin and Popović 1995; Lee et al.
2002; Arikan and Forsyth 2002; Kovar et al. 2002] or which take
a set of related motions for a character and use these to create new
motions for the same character [Safonova et al. 2004; Wei et al.
2011].

The reliance of many methods on pre-existing motion data poses
a special problem when it comes to the synthesis of realistic loco-
motion for animals. Not only is it substantially harder to acquire
motion data for animals than for humans, but there is also the more
fundamental problem that acquiring motion data for extinct or fic-
tional animals is impossible even in principle. Thus while some
techniques have been developed to successfully synthesize animal
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locomotion, most existing approaches either rely on motion data
or artist interaction in specifying the style of the motions [Coros
et al. 2011; Nunes et al. 2012], apply only to non-legged locomo-
tion [Sims 1994; Wu and Popović 2003; Tan et al. 2011], or do
not focus on generating realistic motions [Fang and Pollard 2003;
Wampler and Popović 2009; Mordatch et al. 2012].

When it comes to the synthesis of realistic animal motions, one
approach which has been taken is to increase the realism of the
synthesized gaits by using a more faithful biomechanical model of
an animal. This approach as been applied to humanoid bipedal lo-
comotion by the modeling of soft tissue deformations in the feet
[Jain and Liu 2011] or by including a more accurate biomechani-
cal and metabolic modeling of leg muscles for humans [Wang et al.
2012; Mordatch et al. 2013] or general bipedal animals [Geijten-
beek et al. 2013]. Although these approaches have shown impres-
sive results, our work differs in a few key ways. Firstly, while cur-
rent approaches have only been shown to work on bipedal charac-
ters and do not focus on animals with highly different sizes, our
approach can be applied equally to both bipeds and quadrupeds and
gives plausible results on a very wide range of animals (covering
factor of ten difference in height or factor of two hundred differ-
ence in mass) with no per-animal tuning. Secondly, our approach is
simpler to apply to the synthesis of new animals since it does not re-
quire any specification of the system of muscles the animal uses to
locomote. This makes, for instance, the addition of a tail or arms in
order to synthesize a dinosaur gait a trivial task. Still, this flexibility
comes at a cost in that our method requires a database of real-world
animal motions as input to a preprocessing step. Once this data is
collected and processed, however, our method can synthesize gaits
for a wide range of new animals without any additional input other
than the shapes of these animals.

On the other hand, one might attempt to synthesize an animal’s
gait by forgoing any consideration of the principles underlying the
motion and instead attempting to directly match the appearance of
motions for which data does exist. The approach has the potential
to work well when one has data for animals with shapes similar to
the one to be synthesized, but it is not clear how well this sort of ap-
proach can work when this is not the case. Indeed, the primary suc-
cessful application of this approach to creatures with diverse shapes
has thus far been limited to highly stylized motions [Hecker et al.
2008]. Unfortunately, these cases where the animal is relatively
unlike anything one could obtain data for cover some of the most
interesting applications of computational locomotion synthesis. A
restriction to synthesizing gaits only for animals similar to those
that exist would preclude the generation of gaits for most dinosaurs
and many other extinct animals.

Our method (first described in the dissertation [Wampler 2012])
takes a middle ground and combines data-based interpolation with
biologically and physically motivated factors. An instance of this
type of ‘middle ground’ approach has been previously applied to
human locomotion [Liu et al. 2005; Lee and Popović 2010] by
learning the passive actuation characteristics at a character’s joints
from a sequence of motion capture and then using this information
to create new motions for the same character. Although these pas-
sive actuation characteristics are relatively simple biologically mo-
tivated entities approximating the nature of tendons and ligaments,
their particular values were derived from a sequence of motion cap-
ture data. Our method is in the same spirit of these approaches,
but applies to the analysis of a set of gaits for animals with widely
varying shapes. The primary complication that arises in doing so is
that in order to synthesize motions for new creatures, the parame-
ters used to represent the style of each animal’s gait must be suited
to interpolation on to animals for which there is no motion capture
data available.

3 Algorithm Overview

Our approach to gait synthesis rests upon three primary compo-
nents. As input we require a motion database, and a generative
model. Given these inputs, we then employ an algorithm for tun-
ing the generative model to agree with the motion database which
we call joint inverse optimization. The motion database consists
of a set of pairings (A1,M1), . . . , (An,Mn), each of which asso-
ciates the shape of an animal Ai with its ground-truth gait Mi as
extracted from real-world video data. While this motion database
covers a set of known animal motions, the synthesis of new mo-
tions is handled by a generative model, denoted f . This generative
model takes as input an animal A and a vector of parameters φ de-
scribing the style of the motion to be synthesized, and outputs an
associated gait f(A, φ). The goal of our gait synthesis technique
can be summarized as follows: given a new animal Anew, find the
parameters φnew of the generative model such that the style of the
resulting motion f(Anew, φnew) matches what would be expected
given the motion database.

Intuitively this approach mimics that which an artist might take
when animating an animal for which they do not have any video
footage – try to guess the the motion for the new animal by appeal-
ing to animals for which the artist does have video footage. Synthe-
sizing locomotion in this manner requires that several sub-problems
be addressed:

Motion Database Creation The motion database contains
ground-truth motions for a wide range of different animals.
This database is created by tracking a set of points in
a real-world sagittal plane video of the animal walking,
then solving a spacetime constraints optimization to fit a
physically realistic cyclic gait to the motion of these points.

Generative Model The generative model f(A, φ) is used to syn-
thesize new motions. In keeping with many existing loco-
motion synthesis techniques and literature on the underlying
principles of animal locomotion [Alexander 1996], we base
the generative model on an optimization. That is, given an
animal A, the motion f(A, φ) is chosen so as to minimize
some objective function which is itself parameterized by φ.
A key ingredient in the definition of f lies in choosing a set
of parameters φ which is expressive enough to capture the
variations in style between the different animals in the motion
database.

Joint Inverse Optimization The core of our algorithm uses the
motion database and the generative model to synthesize gaits
for new animals. This is achieved by estimating a φi for each
(Ai,Mi) in the motion database, and performing sparse data
interpolation on these φi values to predict what φ should be
for a new input animal. We do this by solving an inverse opti-
mization problem jointly across all of the animals in the mo-
tion database. This optimization estimates a vector of param-
eters φi for each (Ai,Mi) in the motion database such that
f(Ai, φi) ≈ Mi and such that the φi parameters are well-
suited for generalization onto new animals by a simple sparse
data interpolation technique.

With these three components in place, a motion for a new animal
Anew can be synthesized by first interpolating φnew from the φi
parameters associated with similar animals in the motion database,
then solving for the final motion with f(Anew, φnew). The follow-
ing three sections will cover each of these components in further
detail.
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Figure 1: The six bipeds in the motion database along with their
associated heights and masses.

4 Motion Database Creation

The motion database is used to define a mapping from the shape
of an animal to the way that animal moves in the real world. Each
entry associates a particular animal Ai with a cyclic gait Mi pre-
scribing the animal’s ground truth walking motion. Although in
principle our approach is applicable to non-walking gaits, all of the
gaits in a motion database should be of the same type (i.e. all walks,
or all runs, etc). As a practical matter, we have focused only on
sagittally dominant walks due to the relative ease of obtaining 2D
sagittal plane video data of walks for a wide range of different an-
imals, but expect our approach to be applicable to 3D motion data
with little modification. In synthesizing a gait for a new animal
(described later in section 6) this motion database is used as a refer-
ence to estimate what parameters of the generative model are likely
to result in a realistic motion for a new animal.

An animal A is represented as a kinematic tree of limbs connected
by joints. Each joint describes a parameterized rotation from its
parent limb to its child limb, and each limb has an associated length
and mass. In addition, each animal’s representation marks the limb
corresponding to the head and the position of each foot. A pose for
an animal is described by a vector giving the rotational parameters
of each of its joints, the global translation and rotation of the animal,
and the ground reaction forces and torques at each foot in contact
with the ground. A sequence of such poses concatenated into a
single vector forms a motion M , and the pose associated with a
particular frame at time t in M is denoted M(t).

Although an ideal motion database would be constructed using 3D
motion capture and force plates, this sort of data is currently diffi-
cult to obtain for a wide range of different animals. Instead, each of
the Mi motions in our motion database is created by fitting a cyclic
3D motion to standard 2D sagittal plane video footage of the animal
walking. We have obtained this data from online video sharing sites
such as YouTube and Flickr Video, as they represent the most easily
accessible resource for such video footage. Each video consists of
a side-on view of the animal walking with only rotational camera
motion so as to avoid parallax.

Our motion database consists of six bipeds and twelve quadrupeds
spanning a wide range of animal shapes and sizes as shown in fig-
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Figure 2: The twelve quadrupeds in the motion database along
with their associated heights and masses.

ures 1 and 2. For each of these animals we determine the relative
lengths and masses of the animal’s limbs by manually constructing
a crude 3D model from a selected frame in the video, then uni-
formly scaling each limb’s length and mass so that the animal’s
height and total mass match the values in figures 1 and 2. For
each video we also remove the effects of any camera motion by
translationally stabilizing based on SURF features [Bay et al. 2008]
tracked between the frames in the video.

Next, a number of points on the animal are manually tracked across
the video. These points vary somewhat from animal to animal, but
always include at least two points on the torso, at least one on the
head, as well as points on the knees and feet. Each of these points
gives a 2D trace of some point on the animal tracked through each
frame in the video. A sub-segment of the frames in the video rep-
resenting a single gait cycle is also selected. In order to match each
2D point trace with the motion of a 3D point on the animal, a few
frames are chosen on which a 3D model for the animal is superim-
posed over the video. Using this superposition, each 2D point is
attached to one of the animal’s limbs, allowing coordinates for each
point to be determined in a coordinate system local to the point’s as-
sociated limb. The local coordinates of these points combined with
their associated 2D trajectories from video form the input required
to solve a fitting problem matching a physically accurate 3D gait to
the motions in the video.

The final step is to solve for a cyclic gait M for each animal A
such that the motion of this gait matches that of the 2D point traces
extracted from the animal’s associated video. For a given frame
at time ti in the video let dj(ti) denote the 2D position of the jth
point in the extracted traces, and let pj(M(ti)) denote the 2D X-Y
projection of the associated point on the animal in a motion M .

If M were a perfect fit to the data then it would hold that dj(ti) =
pj(M(ti)) for each frame i and point j. Since in general a perfect
fit to the data will not be possible, the degree to which a motion
M matches the data is quantified independently at each frame with
a sum of squared distances between each point in the traces ex-
tracted from video and the associated point on the animal in the



pose M(ti):

fit(M(ti)) =
∑
j

wj‖dj(ti)− pj(M(ti))‖22 (1)

Here wj is a weight assigned to each point on the animal to give
preference to a more accurate fit of the knee and foot positions
(weight of 3) while allowing greater errors in the fit of points on
the torso (weight of 0.5), all other points having weight 1.0.

The motion M used to represent the ground truth gait for the an-
imal in the motion database is then solved for with a spacetime
constraints optimization. This generates a 3D gait closely matching
the data to as the solution of the nonlinear programming problem:

M = argmin
∑
i

[fit(M(ti)) + α · cost(M(ti))]

s.t. gkeq (M(ti)) = 0 ∀keq , i
hkieq (M(ti)) ≤ 0 ∀kieq , i

(2)

where cost(M(ti)), gkeq (M(ti)), and hkieq (M(ti)) are all defined
to match the objective, equality, and inequality constraints respec-
tively described in [Wampler and Popović 2009]. This definition of
cost(M(ti)) penalizes high-energy motions, while gkeq (M(ti)),
and hkieq (M(ti)) enforce the laws of Newtonian mechanics. Some
contribution of cost(M(ti)) is included in the objective as a regu-
larization term and helps to avoid overfitting to the data. The term
α controls how strongly minimizing cost(M(ti)) is weighted ver-
sus minimizing the data fit error. Larger values of α tend to lead
to smoother motions at the cost of a poorer data fit. Although
α is occasionally altered on a per-animal basis, a value of 10−5

works well for most of the animals in the database, with other
values ranging from 10−3 to 10−8. In a few cases we were un-
able to choose a value for α which avoids both oversmoothing and
‘glitches’ from undersmoothing. In these situations, we prefer a
slightly undersmoothed motion since the inverse optimization and
regression steps employed later will introduce a small amount of
additional smoothing.

5 Generative Model

While the motion database represents the gaits of a set of animals as
extracted from video footage, the synthesis of new gaits is handled
by a generative model f , taking as input the shape of an animal
A and a vector φ parameterizing the style of the gait to be gen-
erated. This generative model is capable of synthesizing gaits for
animals with greatly different shapes and sizes, as well as for ex-
tinct or imaginary creatures. The remainder of this section will be
concerned with the definition of f and φ, while section 6 will ad-
dress which particular value of φ should be used for a given input
animal.

A good generative model should be flexible enough so that for any
of a wide range of different input animals, it is possible to synthe-
size a realistic gait of that animal by an appropriate choice of φ.
More concretely, for each Ai and Mi in the motion database there
should be some φi such that Mi ≈ f(Ai, φi). In addition, when
synthesizing motions for new animals it will be useful for the val-
ues of φ to be both relatively compact and coherently interpolable
between different animals.

Our generative model f is based on the spacetime constraints opti-
mization described by [Wampler and Popović 2009] because of its
ability to automatically and relatively quickly synthesize motions
for a wide range of different animals. In this approach, a motion is

synthesized by finding the minimum of a large nonlinear program-
ming problem:

f(A, φ) = argmin
M

∑
i

cost(M(ti), φ)

s.t. gkeq (M(ti)) = 0 ∀keq , i
hkieq (M(ti)) ≤ 0 ∀kieq , i (3)

Where gkeq and hkieq are again the equality and inequality con-
straints enforcing the physical validity of the resulting motion as
described by [Wampler and Popović 2009]. In our implementation,
this optimization is initialized with the animal in a default stand-
still pose and is solved with the SNOPT nonlinear programming
library [Gill et al. 2005].

The objective function used in equation 3 dictates which sorts of
gaits should be preferred over others, and thus altering this objec-
tive function allows different gaits to be synthesized for the same
animal. In previous work by [Liu et al. 2005] this idea has been
used to synthesize different styles of human locomotion by choos-
ing φ to represent to passive actuation characteristics at the charac-
ter’s joints. For our task we extend this set to include parameters
describing the strength and coactuation of different joints, the un-
certainty of interaction with the ground, and the relative preference
for low-torque, low-impact, and smooth motions.

5.1 Generative parameters

The elements of φ serving as parameters to our generative model
are listed in table 1 and are used to alter the per-frame objective
function cost(M(ti), φ) in equation 3. To facilitate easily spotting
these parameters in the following equations, all variables represent-
ing elements in φ have been colored dark blue. Adjusting the value
of φ thus provides a means by which the style of a synthesized
gait can be controlled. Our choice of generative parameters and
the associated objective function were found by starting with an
objective function based purely on torque-minimization, and itera-
tively adding terms until the gaits of the animals within the motion
database could be reproduced. The result is a combination of six
terms:

cost(M(ti), φ) = costtorque(M(ti), φ)

+ wf costforce(M(ti), φ)

+ wa costsmooth(M(ti), φ)

+ (ewh − 1) costhead(M(ti), φ)

+ costcoactuate(M(ti), φ)

+ (ewg − 1) costground(M(ti), φ) (4)

There are several sub-quantities which must be used to calculate
these components, all of which are computed as a function of
M(ti). For notational cleanness, however, we will leave this de-
pendence on M(ti) implicit and write for instance τ instead of the
more explicit τ(M(ti)). Accordingly, τ , f , and q will respectively
represent a vector of the concatenated torques, forces, and joint ro-
tation angles at each of the character’s joints at the frame M(ti).
The quantities Rh, ph, and θ̈h will refer to the rotation matrix, posi-
tion, and angular acceleration for the limb representing the animal’s
head as measured about its center of mass. Similarly, pf represents
the position of a foot. Any temporal derivatives represented by a
superscript dot are computed using finite differences.

The first three components of the objective function in equation 4
penalize torques, forces, and angular accelerations at the animal’s



name biped description
hg X falloff of ground uncertainty distribution
wg X weight for vertical ground penalties
wv X weight for horizontal ground penalties
hw X maximum height of near-ground drag
dw X drag coefficient for near-ground drag
cl X weight on knee-ankle coactuation
rl X target ratio for knee vs. ankle velocities
ca weight on elbow-wrist coactuation
ra target ratio for elbow vs. wrist velocities
th X scaling for torques exerted at the hip
tk X scaling for torques exerted at the knee
ta X scaling for torques exerted at the ankle
ts scaling for torques exerted at the shoulder
te scaling for torques exerted at the elbow
tw scaling for torques exerted at the wrist
wf X scaling for joint-force penalties
wa X scaling for joint-acceleration penalties
wh X scaling for head stability penalties
kh X spring constant for hip
q̄h X spring rest angle for hip
dh X damper coefficient for hip
kk X spring constant for knee
q̄k X spring rest angle for knee
dk X damper coefficient for knee
ka X spring constant for ankle
q̄a X spring rest angle for ankle
da X damper coefficient for ankle
ks spring constant for shoulder
q̄s spring rest angle for shoulder
ds damper coefficient for shoulder
ke spring constant for elbow
q̄e spring rest angle for elbow
de damper coefficient for elbow
kw spring constant for wrist
q̄w spring rest angle for wrist
dw damper coefficient for wrist

Table 1: A table of the inverse parameters used to specify the style
of an animal’s gait. Quadrupedal animals make use of the whole
set of parameters, while bipeds make use only of those marked.

joints:

costtorque(M(ti), φ) = wj · τ (5)
costforce(M(ti), φ) = wj · f (6)

costsmooth(M(ti), φ) = ‖q̈‖2 (7)

where wj is a vector of weights with elements equal to eth − 1,
etk−1, eta−1, ets−1, ete−1, or etw−1 at indices corresponding
to the hip, knee, ankle, shoulder, elbow or wrist joints respectively.
All other elements in wj are fixed equal to 1. Lower settings of
an element in w approximates the effect of ‘stronger’ joints, which
are actuated by stronger muscles and better able to withstand large
forces.

The term costhead(M(ti), φ) penalizes motion in the animal’s head
and is computed as the sum of four sub-terms respectively penaliz-
ing the rotation of the head away from forward, its velocity, linear
acceleration, and angular acceleration:

costhead(M(ti), φ) = (8)

100‖Rh − I‖22 + 2.5‖ṗ2
hyz
‖22 + ‖p̈h‖22 + ‖θ̈h‖22

The weights 100 and 2.5 scaling the first two sub-terms where cho-
sen empirically. Although costhead(M(ti), φ) does not depend on

φ, the strength with which it factors into equation 4 is scaled by
(ewh − 1). The term ṗhyz represents the motion of the head in the
vertical and lateral directions. The function costhead is useful in
modeling the fact that animals often attempt to stabilize their head
motion to help with visual perception [MacIver et al. 2010].

The standard spacetime constraints formulation used to synthesize
motions treats each joint in the animal as being capable of moving
entirely independently of all the other joints. In reality, however,
some pairs of joints exhibit a tendency to be coactuated such that
their motions occur in concert rather than independently. Rather
than directly modeling the muscles responsible for this as in [Wang
et al. 2012; Mordatch et al. 2013; Geijtenbeek et al. 2013], we take
a simplified approach where costcoactuate(M(ti), φ) penalizes de-
viations of the relative velocities of the animal’s knee and ankle
joints from rl:

(ecl − 1)(rlq̇k − q̇a)2 (9)

Where q̇k and q̇a are the rotational velocities at the knee and ankle
respectively. For a quadruped the parameters ca and ra are used to
add an analogous additional penalty related to the relative velocities
of the elbow and wrist joints.

In the optimization defined by equation 3, the animal is implicitly
assumed to have perfect knowledge of its environment. In real-
ity this is of course not the case, and in order to avoid tripping an
animal will often lift its feet higher than is strictly energetically op-
timal. We use the term costground(M(ti), φ) to penalize motions
where the animal’s foot moves quickly while too close to the ground
as:

costground(M(ti), φ) =
∑
f

pcx‖ṗfxz‖2 + max
{

0,−pcy ṗfy

}
(10)

where the sum is taken over each of the animal’s feet and ṗfxz and
ṗfy represent the horizontal and vertical components of the foot’s
velocity. The values pcxz and pcy approximate the probability of
an ‘unexpected’ contact between the foot and the ground due to the
foot’s horizontal and vertical motion respectively, calculated as:

pcx = wv(1− e−hgpfy ) (11)

pcy =
e
−hgp

t+1
fy − e−hgpfy

1− e−hgpfy
(12)

The value pt+1
f indicates the position of the foot in the next frame

in the motion, i.e. pf(M(ti+1)).

In addition to the term costground(M(ti), φ) directly penalizing
motions where the foot skirts too close to the ground, we also indi-
rectly penalize such motions by approximating the resistive forces
on the leg resulting from walking through shallow water or near-
ground vegetation. For each foot f , we add a force f resisting the
foot’s velocity based on the speed of the foot and its depth below
the height defined by hw:

f = −ṗf‖ṗf‖2 max
{

0, hw − pfy

}
edw (13)

In practice, we have found the effects of this near-ground resistance
are useful in conjunction with those from costground(M(ti), φ) to
shape the trajectory of the animal’s feet during their air phases.

Finally, we include a number of parameters modeling the passive
actuation characteristics of the animal’s leg joints. For each of
the hip, knee, ankle, shoulder, elbow, and wrist joints we include
three parameters specifying a spring rest length, spring constant,
and damper coefficient for the joint. The use of these parameters is
identical to that in [Liu et al. 2005], where they were successfully
used to capture stylistic variations in human locomotion.



6 Joint Inverse Optimization

The motion database provides a reference for the real-world gaits of
a number of different animals, but to create gaits for new animals it
is necessary to generalize beyond those contained within the motion
database. While the generative model f(A, φ) described in section
5 is capable of synthesizing new motions given an animal A and a
vector of parameters φ, it remains to be determined which value of
φ is likely to lead to a realistic motion for a given animal.

We achieve this by fitting a vector φi of parameters to each Mi in
the motion database, then interpolating between these parameters
to estimate φ for a new animal. Although reasonable results can
sometimes be obtained by fitting each of the φi independently, we
find that interpolation between the φi found in this manner is often
difficult. Instead, we propose a new algorithm termed joint inverse
optimization which jointly learns all of the φi together. The result-
ing parameters are constructed to better allow φ to be determined
for a new animal by simple interpolation. In the remainder of this
section we will first look more closely at the naı̈ve case of indepen-
dently fitting each φi. We will then introduce our algorithm of joint
inverse optimization, followed by details on its implementation.

6.1 Independent Inverse Optimization

As its name implies, joint inverse optimization is based on the ap-
proach of inverse optimization that has been previously employed
in character animation [Liu et al. 2005; Lee and Popović 2010].
One possible formulation of an inverse optimization problem as ap-
plied to animal gaits would determine the φi parameters for each
(Ai,Mi) in the motion database by solving:

φi = argmin
φ

D(f(Ai, φ),Mi) (14)

Where the function D(Ma,Mb) defines a distance metric repre-
senting in the error in how closely the motion Ma matches Mb

(see section 6.2.1 for the specifics of the distance function used in
our implementation). Essentially, for each animalAi this optimiza-
tion solves for the vector of parameters φi such that the motion
f(Ai, φi) synthesized by the generative model with these parame-
ters best matches the ground truth motion Mi for the animal.

The problem with using a standard inverse optimization formula-
tion to determine the φi parameters for each entry in the motion
database comes when trying to estimate the φnew which will lead
to a realistic motion for a new animal. In particular, since equation
14 solves for each φi independently, there is no guarantee of any
consistency of these parameters between different animals. Indeed,
as illustrated in figure 3 the φi parameters found using this method
do not form any easily describable coherent pattern. In general this
makes the use of sparse data interpolation to determine which φnew

should be used to synthesize a gait for a new animalAnew problem-
atic, and better results can be obtained by incorporating a notion of
sparse data interpolation directly into the inverse optimization prob-
lem.

6.2 Joint Inverse Optimization

Because the end goal of our approach is to use the examples in
the motion database to determine how a new animal should move,
our technique of joint inverse optimization explicitly incorporates
this requirement into its formulation. The result is an optimization
which not only attempts to fit each φi with its associated motion
Mi, but which also minimizes a term ensuring that the result is

Figure 3: Plots of the te parameter (see table 1) for the quadrupeds
in the motion database against the log of the animal’s mass. The
parameters found by joint inverse optimization are better suited to
regression. Note that distances along the x-axis are only an ap-
proximation to the similarity of the animals as measured by equa-
tion 21, so a perfectly smooth curve should not be expected in the
lower plot.

well-suited to sparse data interpolation:

argmin
θ,φ1,...,φn

∑
i

[
D(f(Ai, φi),Mi) + β

(
‖φi −R(Ai, θ)‖22 + r(θ)

)]
(15)

This formulation differs from traditional inverse optimization
(equation 14) by the addition of two functions: A regression func-
tion and a regularization function. The regression functionR(A, θ)
takes as input an animal A (not necessarily in the motion database)
and a vector of regression parameters θ, and returns a vector of
generative parameters φ suitable for using to synthesize a gait for
A. The regularization function r(θ) is then used in preventing an
overfitting of the regression parameters θ. It is the vector of re-
gression parameters θ that determines the motion of a new animal
Anew, by first calculating φnew = R(Anew, θ), then solving for the
final motion with f(Anew, φnew).

Intuitively, the goal of a joint inverse optimization is to find a value
of the regression parameters θ which simultaneously accurately re-
produces each motion in the motion database via minimizing each
D(f(Ai, R(Ai, θ)),Mi), and which avoids overfitting by mini-
mizing r(θ). Unfortunately, the optimization resulting from at-
tempting to directly minimize this quantity is extremely brittle due
to the compounding factor that the generative function f is not guar-
anteed to converge to a physically valid result, and thus for many
values of θ there are some animals in the motion database for which
D(f(Ai, R(Ai, θ)),Mi) is impossible to evaluate.

The formulation for joint inverse optimization given in equation 15
provides a more robust and efficient approach. In this approach,
the φi parameters used to solve for an animal’s motion are allowed
to differ from the parameters resulting from the regression function
R(Ai, θ). In essence, although the φ parameters used to synthesize
a gait for a new animal will be found via φnew = R(A, θ), this is
treated as a soft constraint for the purposes for fitting θ to the motion
database. We also note that in the case where the motion database
contains only a single animal, equation 15 reduces to standard in-
verse optimization (equation 14) for most sensible choices ofR and
r, including ours described in section 6.2.2.

When accounting for the possibility that f(Ai, φi) might fail to
converge to a physically valid result, note that in equation 15 the
only term which relies on the result of the generative model is
D(f(Ai, φi),Mi). The fact that this term can be computed in-



dependently for each animal makes it substantially easier to create
an optimization which solves equation 15 by simply discarding any
failed evaluations of f(Ai, φi). Our approach for achieving this
(including the values used for the term β) is described in section
6.2.3, but we will first provide the specific definitions of D, R, and
r which we employ.

6.2.1 Gait distance metric

Solving the joint inverse optimization problem defined by equation
15 requires a definition of D(Ma,Mb), describing a distance met-
ric between different gaits. Although a simple sum-of-squared dif-
ferences in the rotational degrees of freedom of the animal’s joints
over the course of the two gaits gives reasonable results, we have
found that more visually pleasing results can be obtained with a
slightly more involved definition. Intuitively, this is because some
aspects of a motion, such as the height by which the feet are raised
or the stability of the head, are more visually important than the
precise angles of rotation for the animal’s joints. We compute
D(Ma,Mb) as a sum of per-frame costs, each computed as:

D(Ma(ti),Mb(ti)) =

‖0.25w · (q(Mb(ti))− q(Ma(ti))) ‖22+ (16)

‖0.6w · (q̇(Mb(ti))− q̇(Ma(ti))) ‖22+ (17)

‖0.5w · (q̈(Mb(ti))− q̈(Ma(ti))) ‖22+ (18)

2.25
∑
f

(pf (Mb(ti))y − pf (Ma(ti))y)2+ (19)

3.25
∑

h∈{h1,h2}

‖p̈h(Mb(ti))− p̈h(Ma(ti))‖22+ (20)

Where q(M(ti)) is a vector of the rotational degrees of freedom
inM at frame i, and ph1(M(ti)), ph2(M(ti)) give the position of
the front and back of the head at frame i. Similarly, for each foot
f , pf (M(ti)) gives the position of the foot at frame i. The vector
w is used to scale the weight given to differences in the rotations at
different joints. For bipeds w is 2 for the knee and 3 for ankle joints
while for quadrupeds w is 3 for the knee/elbow joints and and 10
for the ankle/wrist joints. All other elements in w are set to 1.

6.2.2 Regression and Regularization Functions

A joint inverse optimization additionally requires definitions for the
regression and regularization functions R(Ai, θ) and r(θ). We ini-
tially experimented with a regression function which estimated pa-
rameters of physically-motivated scaling functions in the spirit of
[Hodgins and Pollard 1997]. We were not able to achieve good
results with this approach, and instead settled on a relatively sim-
ple formulation based on regression with radial basis functions and
regularization with quadratic smoothing [Boyd and Vandenberghe
2004]. This approach employs a definition of θ which concatenates
θ1, . . . , θn for each of the n animals in the motion database, where
each θi has the same dimension as the generative parameters φi.

The distance metric underlying the radial basis function interpola-
tion measures the dissimilarity between two animals Aa and Ab
with a weighted combination of the difference of the log-masses of
the two animals and the difference in the lengths of their various
limbs normalized by the total size of each animal:

d(Aa, Ab)
2 =∑

i

(
lai∑
j laj

− lbi∑
j lbj

)2

+ 0.002(ln(ma)− ln(mb))
2

(21)

where laj and laj are the lengths of the jth limbs in Aa and Ab
respectively, and ma and mb are the total respective masses of Aa
andAb. The logarithmic scaling of the masses captures the fact that,
for instance, a 10kg difference in mass is much more meaningful
between a 10kg and a 20kg animal than between a 1000kg and a
1010kg animal.

Using this distance metric, the regression function is then defined
in a manner similar to [Zhang et al. 2004] as:

R(A, θ) =

∑
i θie

−d2i∑
i e
−d2i

(22)

where di = d(A,Ai)
dmin

with dmin = min
i

d(A,Ai). Here θi are the

regression parameters directly associated withAi (which in general
need not be equal to φi due the decoupling of θ from φ1, . . . , φn in
equation 15).

To avoid overfitting, we employ a regularization function based on
quadratic smoothing:

r(θ) =
∑
i

‖R(Ai, θ
′)− θi‖22 (23)

where θ′ are the regression parameters omitting the θi parameters
associated with Ai, so this regularization function essentially com-
putes a sum of leave-one-out errors.

Finally, the period pi of an animal’s gait cycle and the speed vi at
which it should move are determined with a separate method by:

pi = αpmi
βp (24)

vi = αvllegi
βv (25)

In these equations mi is the total mass of Ai and llegi is the aver-
age length of the legs of Ai. Additionally, αp and βp are parame-
ters used to model the relationship between an animal’s mass and
the period of its gait cycle, while αv , and βv are parameters mod-
eling relationship between the length of the animal’s legs and its
speed. The parameters αp, βp, αv , and βv are found from the mo-
tion database using a least-squares fit. Because the animals in our
motion database do not exhibit significant differences in the timings
for their foot contacts once normalized for period and speed, we fix
the relative timings for the foot contacts in all synthesized gaits to
match those of a default walk.

6.2.3 Numerical Solution

In order to solve the joint inverse optimization problem defined by
equation 15, we first note that the optimization is in a form which is
partially decoupled. In particular, only the ‖φi−R(Ai, θ)‖22+r(θ)
regression error term relates the different animals to each other
(via θ), and that remaining termD(f(Ai, φi),Mi) can be indepen-
dently evaluated for each φi. This leads to an optimization tech-
nique in which a series of otherwise independent optimizations for
each φi are coupled together by the regression function R(Ai, φ)
and the regularization function r(θ). This is achieved in a manner
reminiscent of coordinate descent by alternating between minimiz-
ing θ and minimizing φ1, . . . , φn.

Our approach to minimizing equation 15 involves a set of cou-
pled instances of the covariance matrix adaptation (CMA) algo-
rithm [Hansen et al. 1996]. We maintain a separate mean and co-
variance matrix to solve for for each φi, denoted µi and Ci re-
spectively. At the beginning of each iteration a fixed number of
samples φi,1, . . . , φi,m (we use m = 64 in our tests) is drawn
for each φi distributed according to µi and Ci. Treating these



method mean error median error
default 0.495 0.435
kinematic interpolation 0.451 0.387
independent inverse interpolation 0.473 0.360
joint-inverse interpolation 0.327 0.245
(base inverse fit) 0.142 0.127

Table 2: The mean and median errors over the combined biped and
quadruped motion databases of leave-one-out tests in which one
animal was excluded and its gait synthesized based on the other
animals. The errors are measured using metric given by equations
16-20. Note that the cat and emu were excluded from these statis-
tics because the ‘independent inverse interpolation’ spacetime con-
straints optimization failed to converge for them.

samples as the current estimates for each φi, equation 15 is min-
imized for θ while holding all φi,1, . . . , φi,m fixed. As only the
‖φi −R(Ai, θ)‖22 + r(θ) term depends on θ, solving for θ reduces
to a straightforward regularized least-squares optimization and can
be solved relatively efficiently with an off-the-shelf unconstrained
optimizer (our choices of R and r actually allow a solution with a
single linear least squares solve, but we use LBFGS instead since it
allows increased flexibility in the code and is sufficiently efficient).
This yields a new estimate for θ, and allows the cost associated
with each φi,j sample to be computed as defined by equation 15,
after which the mean µi and covariance Ci associated with eachAi
are independently updated using the standard CMA update [Hansen
et al. 1996] omitting any samples for which f(Ai, φi,j) fails.

Solving a joint inverse optimization problem also requires a setting
for the parameter β used to weight the terms in the objective func-
tion resulting from how closely each φi matchesR(Ai, θ). Because
lower values of β tend to converge more quickly, a continuation is
performed where β is started out at a low value and then gradually
increased over the course of the optimization. For quadrupeds we
set the value of β in iteration i to βi = 0.01 + 0.02 i over a total of
50 iterations while for bipeds we use βi = 0.001 + 0.004 i over a
total of 35 iterations.

7 Results

We demonstrate our approach of animal gait synthesis using joint
inverse optimization on a motion database of walking gaits for six
bipeds and twelve quadrupeds as illustrated in figures 1 and 2. Al-
though in principle we could use both the bipeds and quadrupeds
simultaneously, for simplicity we automatically select whether to
synthesize a motion using only the bipeds or only the quadrupeds
depending of whether the input animal is a biped or a quadruped.
Processing this motion database with the joint inverse optimization
algorithm takes several days when run on a cluster of 96 computers,
but need only be done once. The main computational bottleneck in
this preprocessing lies in the use of the generative model in the in-
ner loop of the optimization, since each evaluation involves solving
an expensive spacetime constraints problem. In practice this means
that, the time to run the joint inverse algorithm described in sec-
tion 6.2.3 scales approximately linearly with the number of animals
in the motion database, limiting its application to databases with
at most a few dozen animals, although a more efficient generative
model could in principle substantially improve on this. Synthe-
sizing a gait for a new animal once the motion database has been
preprocessed takes only a few minutes on a single core.

In order to quantitatively compare our approach with other alterna-
tives, table 2 shows the result of a leave-one-out cross-validation
for several potential synthesis techniques, including ours:

default The gait is synthesized using a fixed hand-chosen default
value of φi for all animals.

kinematic interpolation The gaits in the motion database are di-
rectly interpolated weighted according to equation 22. The
resulting motion will generally not satisfy the laws of physics,
so a final spacetime constraints optimization is performed
which attempts to match the kinematic interpolation as closely
as possible while satisfying the laws of physics.

independent inverse interpolation The gait is synthesized using
parameters interpolated using equation 22, but without any
joint inverse optimization (i.e. the generative parameters for
each animal are optimized independently). We note that be-
cause the main computational bottleneck in joint inverse op-
timization is in the evaluation of the generative model rather
than in fitting the regression parameters, an independent in-
verse optimization is not significantly more efficient to solve.

joint-inverse interpolation Our proposed approach in which a
gait is synthesized using parameters interpolated using equa-
tion 22 with joint inverse optimization.

(base inverse fit) For comparison, each gait is synthesized using
the optimal independently-fit inverse parameters. In contrast
to the other approaches listed here this one does make use of
the ground-truth motion of the animal and is thus analogous
to the approach of [Liu et al. 2005]. Although this approach
gives the least error, it is fundamentally incapable of synthe-
sizing motions for new animals.

As shown in table 2, these other potential approaches are outper-
formed by joint inverse optimization. We also illustrate a compari-
son of the values of the foot height and several DOFs for the ground
truth and leave-one-out synthesized gaits for the Thomson’s gazelle
in figure 4. Additional examples to allow a more qualitative com-
parison can be found in the accompanying video, with additional
detail provided in the supplemental video and PDF. In general, we
find that the gaits we synthesize often form a close visual match
with the animal’s ground truth motion.

It us useful to contrast the approach of independent inverse opti-
mization with that of joint inverse optimization. Sometimes, the
independent inverse optimization approach performs moderately
well, and often outperforms kinematic interpolation. We suspect
that this is because our generative parameters are are in general
better suited for smooth interpolation onto new animals than are
kinematic parameters. It is this interpolability which is exploited
by joint inverse optimization to achieve higher quality results. In
addition to improving on the quality of the results, joint inverse
optimization has a secondary advantage over independent inverse
optimization in that it is more robust. Because the algorithm in sec-
tion 6.2.3 ignores samples of φi,j for which f(Ai, φi,j) fails, these
failing samples are essentially assigned infinite cost. This automati-
cally guides the algorithm to values of the inverse parameters which
robustly allow successful synthesis. Independent inverse interpola-
tion, on the other hand occasionally fails badly, and for instance was
unable to synthesize leave-one-out gaits for the emu or cat due to
the resulting spacetime optimization not converging to a physically
valid result.

We have also tested our approach on synthesizing gaits for a number
of extinct animals, including land-birds, mammals, and dinosaurs.
Even when the shape of the animals differs significantly from any-
thing in the motion database (or even from anything currently liv-
ing) the gaits appear to be visually reasonable. A snapshot of these
motions appears in figure 5. We also have found that the synthe-
sized gaits adjust in a visually reasonable manner to the size of
the animal. For example, figure 6 shows gaits for two dinosaurs



Figure 4: From top left to bottom right: plots of the hip angle, knee angle, ankle angle, and foot height over the frames in gaits for a
Thomson’s gazelle.

with the same relative shape but different total sizes. The synthe-
sized gaits are significantly different, and on a qualitative level cap-
ture the sort of differences which would be expected considering
the triceratops’ substantially greater size and mass. Of course in
these cases there is no possibility of a ‘ground truth’ motion to val-
idate these synthesized gaits against. Nevertheless, the synthetic
gaits still provide visually compelling hypotheses for the motions
of these creatures.

There are a couple of situations where our proposed method does
not perform as well. The first of these situations is when little data
exists for a type of animal in the motion database. For instance, our
motion database contains only three cats, and the the leave-one-out
cross-validation for these motions shows an error greater than for
the other animals in the database. The second situation in which
this method can perform poorly is when large extrapolations are
used. For instance the motions synthesized for a paraceratherium
(four times the mass of an elephant) or for argentinosaurus huincu-
lensis (4.5 times the mass of an elephant) display some moderately
serious artifacts. Extrapolating further to the motion of a amph-
icoelias fragillimus (20 times the mass of an elephant) essentially
fails, yielding clearly unrealistic results. The amount of extrapola-
tion allowed before the synthesized gait deviates from the true gait
in a visually obvious way depends on the animal. For instance,
the gazelle’s gait begins to show artifacts if we exclude the three
most similar animals from the motion database (the gazelle, steen-
bok, and antelope, with the most similar remaining animal being
the cat). The giraffe’s gait, on the other hand, is relatively insen-
sitive to variations in the inverse parameters and remains visually
plausible for even wide extrapolations. Nevertheless, when used on
animals with a size near those in the motion database, the method
given here performs well, and yields visually plausible results over
a wide range of dinosaurs and other animals with a shape relatively
unlike anything currently living.

8 Conclusion

We have presented a technique for learning a model representing
the style of walking gaits for a range of different animals, then us-
ing this model to synthesize gaits for new animals. Our method is
based on a novel algorithm called joint inverse optimization which
learns coherent patterns underlying the gaits of different animals.

This allows the synthesis of visually plausible gaits for a variety of
different extinct creatures, and has been verified to be superior to
several other potential techniques at estimating the gaits of a range
of animals for which we do have data.

Although this paper applies the joint inverse optimization algorithm
to animal gait synthesis using a specific choice of generative model
and motion database, the joint inverse optimization algorithm at the
core of our approach is more general as well as relatively simple.
Once the motion database and generative model have been speci-
fied, a basic implementation can be written in a few hundred lines
of code. An interesting avenue for future research is thus to ap-
ply joint inverse optimization with an improved motion database or
generative model. One simple and obvious extension would be to
construct a richer motion database including a wider range of ani-
mals and gaits. A more involved but exciting extension would be
to combine this work with recent research synthesizing gaits using
a model of an animal’s musculature [Wang et al. 2012; Mordatch
et al. 2013; Geijtenbeek et al. 2013]. The more biologically realis-
tic generative model of this approach could potentially allow for the
synthesis of highly realistic gaits across a very wide range of ani-
mals by estimating how different biological properties change with
the shape and size of the animal. Although what properties are most
useful is a question for future research, possibilities include the per-
centage of the body devoted to muscle vs. other elements such as
skeletal structure and internal organs, the tendency to adopt gaits
which minimize the possibility of injury, or selecting gaits which
are suited to agility versus metabolic efficiency. Finally, since joint
inverse optimization is not limited to animal locomotion, its po-
tential application to other areas is an interesting avenue for future
work.

Another interesting area for future work is in the development of
a better regression function. As mentioned in section 6.2.2, we
initially experimented with a regression function capturing physi-
cal scaling laws in the spirit of [Hodgins and Pollard 1997]. It is
worth considering why our attempts to use these scaling laws were
unsuccessful. One reason likely lies in the fact that our genera-
tive model does not capture all aspects of a real animal which are
relevant to its motion. For instance, since our generative model
goes not accurately model muscles nor the possibility of the ani-
mal breaking a bone or otherwise injuring itself, we cannot directly
model certain scaling laws relating cross-sectional muscle area of



Figure 6: A comparison of the gait cycles of two dinosaurs with identical shapes but different sizes. The top shows a triceratops, while the
bottom shows the same animal shape scaled down to the size of a protoceratops (one-fifth the height of a triceratops).

safety factors in bone sizes to the animal’s mass [Alexander 1996].
Our nearest-neighbor based regression function, however, still al-
lows the effect of these scaling laws to be approximately modeled,
even when the available generative parameters only indirectly re-
late to the true scaling laws. A more fundamental issue with syn-
thesis based on physical scaling laws stems from the difficulty in
capturing the more subtle stylistic elements of an animals gait. For
instance, the cheetah and antelope in our motion database have very
similar masses, yet significantly different motions. In order to cap-
ture this distinction, the regression function must capture more as-
pects of an animal’s form than just its overall size. Our regres-
sion function achieves this by incorporating the relative lengths of
an animal’s limbs into the nearest-neighbor interpolation (figure 7).
Furthermore, while it is easy to imagine still further features which
may impact an animal’s motion (for instance, the type of terrain the
animal lives in), it is not always clear what the appropriate scaling
laws should be. That said, we do think that biomechanical scaling
laws have the potential to be useful, and a regression function com-
bining the strengths of these laws with those of nearest-neighbor
interpolation could potentially allow more accurate results in the
case of large extrapolations.

On a more theoretical level, our approach captures variations in
style between different animals, but cannot account for the multi-
tude of different motions often performed by a single animal. This
is because we treat the style of an animal’s gait as fixed by the
shape of the animal. Instead, it would be fruitful for future tech-
niques to be able to model the set of styles likely to be exhibited in
the motions of an animal with a given shape. Even further in this di-
rection, an ideal method would not be limited to just gait synthesis,
but would be able to produce a diverse range of realistic motions,
or even control strategies, which accurately depict how an animal
might move.
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