Orientable Textures for Image-Based Pen-and-Ink lllustration

Michael P. Salisbury Michael T. Wong John F. HughesDavid H. Salesin
University of Washington GVSTC

Abstract

We present an interactive system for creating pen-andsiylie-line
drawings from greyscale images in which the strokes of the re
dered illustration follow the features of the original inea@he user,
via new interaction techniques for editing a direction ghgeci es
an orientation for each region of the image; the computersii-
ented strokes, based on a user-speci ed set of exampleestriiat
achieve the same tone as the image via a new algorithm that com
pares an adaptively-blurred version of the current ilktsdn to the
target tone image. By aligning the direction eld with swésorien-
tations of the objects in the image, the user can creatertesxtbat
appear attached to those objects instead of merely coryéyair
darkness. The result is a more compelling pen-and-inktittion
than was previously possible from 2D reference imagery.

CR Categories and Subject Descriptorsl.3.3 [Computer Graph-
ics]: Picture/Image Generation — Display algorithms.3.dmage
Processing] Enhancement — Filtering

Additional Key Words: Controlled-density hatching, direction
eld, image-based rendering, non-photorealistic renugriscale-
dependent rendering, stroke textures.

1 Introduction

lllustrations offer many advantages over photorealisroluiing
their ability to abstract away detail, clarify shapes, aoduk at-
tention. In recent years, a number of systems have beentbuilt
produce illustrations in a pen-and-ink style. These systeam

be classi ed into two broad categories, depending on thejui:
geometry-based systerfis 2, 7, 12, 16, 17, 18], which take 3D
scene descriptions as input; aimdage-based systenj&0, 13],
which produce their illustrations directly from greyscateages.
The main advantage of geometry-based systems is that—lgecaus
they have full access to the 3D geometry and viewing infoionat

they can produce illustrations whose strokes not only cprkie
tone and texture of the surfaces in the scene, but—by placing
strokes along the natural contours of surfaces—they cancalso
vey the 3D forms of the surfaces. Existing image-based systen

the other hand, have no knowledge of the underlying geonuetry
viewing transformations behind the images they are rende&and

until now have been able to convey 3D information only by hgvi

a user draw individual strokes or specify directions forenting
particular collections of strokes across the image.

University of Washington, Box 352350, Seattle, WA 9819523
salisbur mtwong salesin @cs.washington.edu
NSF STC for Computer Graphics and Scienti ¢ Visualization,
Brown University Site, PO Box 1910, Providence, RI 02912
jfh@cs.brown.edu

Il

Figure 1 The three components of a layer are from left to right
tone, direction, and a stroke example set. An illustrati@n iGght)
is rendered based upon one or more such layers.

Loz

¥

Figure 2 A tree with curved strokes for leaves and straight strokes
for branches and trunk.

In this paper, we introduce the notion of “orientable tegiirand
show how they can be used to readily convey 3D information in
an image-based system for pen-and-ink illustration. Iniotarac-
tive system, a user creates an illustration from a referémege

by specifying three components: a greysdalget imagethat de-
nes the desired tone at every point in the illustratiordiesection

eld that de nes the desired orientation of texture at every poin
and astroke example seobr set of strokes, to Il in the tone areas
(see gures 1 and 2). Given these three components and a scale
for the nal illustration, the system creates arientable texture—
generated procedurally—that conveys the tone, texturefanus

of the surfaces in the scene. An illustration is composedefar
more such layers of orientable textures, allowing an itht#n to

be rendered with several, potentially overlapping, tydfestrokes.

The ability to generate comparable illustrations with arager
based system rather than a geometry-based system offemalsev
advantages. First, using an image-based system greatigesthe
tasks of geometric modeling and of specifying surface reaace
properties, allowing much more complicated models (sudrag
creatures and human faces) to be illustrated. Second, ageima
based system provides the exibility of usirmy type of physical
photograph, computer-generated image, or arbitrary Iscadetor,
ortensor eld as input, allowing visualization of data tighot nec-
essarily even physical in nature. Finally, image-basetkesys offer
more direct user control: the ability to much more easily ifyod
tone, texture, or stroke orientation with an interactivgitdi-paint-
style interface.

Although this paper is, to our knowledge, the rst to use ori-
entable textures for image-based pen-and-ink illustngfiio which
the strokes must convey not only orientation, but textugktane),
the idea of orienting strokes for illustration dates badkeast as far

as the seminal papers by Saito and Takahashi [11] and Hagerl
in SIGGRAPH 90. Winkenbach and Salesin [17] and Meier [9 als
make use of oriented strokes for geometry-based illustrati

Supporting orientable textures for image-based pen-akdHus-
tration requires solutions to several new subproblemschviane
discuss in this paper. These problems include: creatirgydntive
techniques that facilitate the speci cation of the kind t#qewise-
continuous vector elds required for illustration; renthey strokes
and stroke textures according to a vector eld in such a way th
they also produce the proper texture and tone; and ef gresiti-
mating tone as new oriented strokes are progressivelyabpli

The next section describes the user interface for spegifyia com-
ponents of an illustration. Section 3 discusses the renglenfiillus-
trations with oriented textures. Section 4 presents owltes

2 The interactive system

We provide an editor, similar to a conventional paint progréhat
allows the user to interactively alter the tone and directiompo-

nents of a layet.The user can view and edit arbitrary portions of a

component at varying levels of zoom, superimpose multipla-c
ponents, and paint directions directly on top of the tangeige. For
an example of the high-level control afforded by our systesfer
to gure 3.

Editing tone.Our tone editor is similar to existing paint programs.
It supports lightening, darkening, and other image-prsiogsop-
erations, as well as painting. The user can load a referenagea
and designate it as a “cloning source.” Selected portionkisfef-

erence may then be painted into a given layer's tone componen

Tone may also be transferred between layers by painting.g&-ne
tive cloning brush allows the user to freely and creativelyerse
tonal relationships in a reference image.

Editing direction. Since we represent a direction eld as a grid of
direction values, much like an image of pixels, the diractield

editor is similar to the tone editér.

The user “paints” directions on the image with a collectibtools,

a few of which we describe here. The basic tool istbmb which
changes the directions of pixels beneath the cursor to ntatch
direction of motion of the cursor. If a user wishes to smoath o
discontinuities in the direction eld, there istdending toolthat
smooths a region of directions by convolving each point urtide
brushwitha3 3 lter. 2 There are also various region- lling tools.
One tool lets the user Il a region with a constant directiémother
providesinterpolated II: the user draws two curves, after which the
region between them is lled with directions that are tarngeof
linear interpolants of the curves. A third providesurce Il, which
orients directions away from a selected point.

The current state of the direction eld is shown in two waysst,
a grid of line segment indicators covers the image and evesysv
points in the direction of the eld; second, a color-codetedtion
image is superimposed on the tone image

Applying the stroke example sef strokeis a mark to be placed
on the page. Each strokeasiented in the sense that it can be ro-
tated to any angle to follow the direction eld where it is péal.
The stroke example se¢ a collection of strokes, all drawn with
respect to the vertical orientation, that serve as pro&styfpr the
strokes in the nalimage. Each such stroke is representadcabic

1The stroke example set is created in a separate program andeca
loaded by name.

2We represent directions as values from 0 to 255, with 0 dov28, 1
up, and values increasing counter-clockwise. The reswlutf the direction
grid is the same as that of the tone image.

3We lter directions by rst converting them into unit vectsy
then performing a weighted sum of those vectors with the hisig
(1,2,1;2,4,2;1,2,1), and then converting the resultingfareback into a
direction.

T
g
T
LR
NN
L

(@)

Erla.

YRR
e
LELLLLLLYT o

i S *W“j (b)

I- G
AR

21
A

L T S T T R i U
By v
IIII"

LI LR L]
L0 0 L I R
el

Figure 3 The steps in specifying the direction eld for a paintbrush
illustration. Shown in inset at various stages during theelip-
ment of the illustration are, on the left, the user interfamed on
the right, the corresponding rendered illustration. Byadéf the di-
rection eld is oriented downward. In (a) we see the effecanfin-
terpolated Il between two lines on either side of the brusisties.
Panel (b) shows the state of the direction eld and illustrataf-
ter some irregularities were introduced to the bristlesibg goarse
strokes of the direction comb along the length of the bsstend
thirty ne strokes at the bristle tips. Panel (c) shows thetesof the
brush handle after interpolating lls between four curveawh to
re ect its surface orientation. In (d), the last section leé direction
eld covering the metal ferrule has been de ned with threeimpo-
lating lls. Panel (e) shows the completed brush illustrati

B-spline with knot sequence (0,0,0,1,2,,n 1,n,n,n), mak-
ing it endpoint-interpolating. Thus a stroke example set‘far-
allel hatching” would contain many nearly vertical line sents,
as shown in the third panel of gure 1, while for the leaves o
ure 2, the strokes are wavy to suggest the edges of masséiagéfo
When a stroke is drawn at a point in the illustration, it isatet! so
that the vertical vector in the stroke texture aligns with direction
vector at that point; it is further warped so that this relatis true
all along the stroke (see Section 3.1).

The repeated use of strokes from the example set to achieee to
with a speci ed orientation is a kind of procedural stroke-te
ture. Non-procedural stroke textures were used by Salisbtr
al. [13, 14]. In this previous work, the textures tiled the plaaed

the stroke selected for drawing at a point was the one that hap
pened to pass through that point. By contrast, in this netesythe
placement of strokes on the nal illustration is indepernidefritheir
relative position in the texture. Spacing between strokésdtead
maintained indirectly by the rendering system (see Se&)joby-
namic placement of strokes is an important feature, for ifhaee

Figure 4 Magnifying a low-resolution direction eld using (left)
a standard symmetric resampling kernel, and (right) theiedd
kernel used by Salisbust al.[14]. The same sharp tone component
was used for both illustrations.

a direction eld that diverges (say, for drawing the wateragfing
outwards from a fountain) and a stroke texture of paraliaight-
line strokes that we wish to have follow the diverging eldsian-
ple plane-tiling will not follow the eld, and an embedding the
stroke texture thadoesfollow the eld will be stretched at the di-
vergent end, necessarily causing the strokes to becomespanrse.
By contrast, our new method will insert additional strokestlze
eld widens, thus maintaining the density. In trade for thi lose
the texture-wide coherence that was available in our pusweork.

3 Rendering

Once the user has speci ed the three components of a lay®e,(to
direction, and texture) our pen-and-ink renderer combatlesf the
components of each layer to generate the pen strokes of e n
illustration. The user need only be concerned with the dMeigh-
level aspects of the illustration such as tone and strolectiim;
the system does the tedious work of placing all the strokesidgs
providing easy control over essential elements of an iaigmn,
this separation of components until rendering allows ugdolyce
illustrations at any size by rst rescaling the componentd then
rendering, as described by Salisbetyal. [14]. Figure 4 demon-
strates magni cation of the direction eld that respectgedlis-
continuities.

The rendering process is driven by a notion of “importan¥e’
de ne theimportanceof a point as the fraction of its intended dark-
ness that has not yet been accumulated at that point. By miyawi
in order of importance, we make all areas approach theietarg
darkness at the same rate. Rendering therefore consistglypof
looking for the location with greatest importance, placingtroke
there, updating an image that records the importance, pedtiag,
until the importance everywhere is below a terminationghodd.
Each step of the process has subtleties, which are dischetmel

Matching the illustration to the targetWe aim to place strokes
in the illustration so that the tone of the illustration “rola¢s” that
of the tone image. Matching is necessarily approximateaise
the illustration is purely black and white, whereas the tomage
is greyscale. To facilitate this approximate matching, hiek of
each stroke as adding darkness tegionof the illustration. More-
over, since strokes in dark areas will be closely spacedtargktin
light areas will be sparse, the size of each region must kersely
proportional to the darkness. One way of spreading the éagkn

of a stroke over a region is to blur the image of the stroke when

considering the effect of its darkness. To measure the pssgof

our illustration towards the target image, we therefore gara a
blurred version of the illustration with the tone image, whéhe

blurring consists of applying averaging lters of varialsize across
the illustration, with the size increasing with the targghtness in a
region. The diameter of the blurring lter is the same as therage

inter-stroke distance required to achieve the targetrigbd.

We record our success at matching the illustration to the ton
age by maintaining difference imageupdated after each stroke is
drawn, whose value at each pixel is the difference betweetotie
image and a blurred version of the illustration. Timportance im-
ageis derived from the difference image; its value at each paint

NL“W“\'““”‘ HWW »y\\a\\\»m‘”““

Figure 5 Stacked books (after illustration by Frank Lohan [8].)

the current difference divided by the initial value of th&etience®

Drawing strokes in the right placeOne of the basic rules of pen-
and-ink illustration is that strokes should be placed eveclbse
together in dark areas, widely spaced in light areas [8héncom-
putation of the difference image, the importance-imageeslat
points within some distance of a stroke are lowered whentthkes
is drawn, with points near the stroke being lowered moststhe
of the region affected is determined by the target tone (& S
tion 3.2). This algorithm tends to maintain stroke separati

To help determine where to draw the next stroke, i.e., thatiog
with greatest importance, we maintain a quadtree on theritapce
image, updated locally whenever a stroke is drawn.

Deciding when to stopWe do not actually try to drive the impor-
tance image to zero: even our ltered version of the stroleamot
hope to match the values in the tone image exactly. Insteadryw

to drive the importance image to within a narrow tolerancriad
zero® When the maximum value in the importance image is below
a termination threshold, the renderer declares the ifitistn com-
plete and stops drawing strokes.

3.1 Drawing a Stroke

The lowest-level activity is the actual drawing of a strokeitself

a complex task. Once the algorithm knows where to placeat, th
stroke must be oriented, bent, and drawn. It must also bpedijf
extending it further would make the illustration too darke \dis-
cuss these processes in turn.

Orienting and bending.To start, the algorithm randomly selects
a prototype stroke from the stroke example set. We wouldtlike
map this stroke into the direction eld so that, at every paitong
its length, the stroke's new angle relative to the directigid is
the same as the prototype stroke's angle with respect todtieal
direction. Since this mapped stroke is not easy to nd, weraxp
mate it by mapping the control hull of the prototype strok® ithe
direction eld in an angle-preserving way, as describedbellhis
process produces a mapped stroke that is close to our idekt st
and is easy to compute, although it is tt@ntrol hull of the stroke
that passes through the target point rather than the stisdé iThe
errors thus introduced are small as long as the control hslthe
stroke closely and the direction eld does not change tot fas

To map the control hull into the direction eld, we rst pin @an-
dom control point?; of the stroke onto the target locatiohin the

4If the initial difference is zero (i.e., if the target tonevidite), the im-
portance is set to zero.

5The storage values 0 to 255 correspond to importance vafue§.d4
to 1.0. This range is a compromise between providing enoegblution in
the positive values to distinguish differences in impoc&nand allowing
negative values so that slightly overdarkened areas cacdoerenodated.

Figure 6 A visualization of four quantities from a symmetric tensor
eld. The integral curves of the principle-direction eld-@shown
by strokes; the density of the strokes in each directionl&eé to

the magnitude of the principle value associated with thatodion. Figure 7 Hair and face (after untitied photograph by Ralph Gibsor) [3]

illustration. To nd the location of;+1, we need to map the points
along the segmer®;Pi.1 to locations i(s) in the illustration, for

0 s 1. Todene j,let ; denote the angle between the vector
Vi = P11 P; and the vertical; for each) we want the angle between
the tangent ; (s) and the direction eld at i(s), calledd(i(9)), to

be i as well. In addition, we want the arclength afs) between

the difference image. This assumption amounts to presuthiy
the blurred version of multiple strokes will be the same &ssilm
of blurred versions of the individual strokes, which is néhan
strokes do not overlap; when they do, we lighten the blured v
sion of the stroke as described below.

s=0ands = 1to be the length ofi. In summary, we want The second approximation is in our computation of the Itbi-
age of a stroke. Instead of rendering the stroke itself, welee
i(0) =X its control hull as a wide blurry line. The widtWw is computed

as & t mm, whereh is the stroke thickness (in mm) ands the
desired tone value between 0.0 (white) and 1.0 (black), bed t

angle(; (s), d(i(s))

i® = v clamped to the range 1-10 mm. We use Gupta-Sproull antgalias
)))) o line drawing [4], but we supply the algorithm with a modi ed
We solve this set of differential equations numericallyngsEuler “darkness look-up table,” whose width is as speci ed abaed
integration, and recordi(1) as the place to maBi... We repeat \ynose height is twice the reciprocal of the widtlf. the strokes
this process to place the remaining points of the hull. Bseawr are drawn with even spacing, a nearly-constant blurred tone of
strokes have many control points, this approach effegtiwelrps average valuéresults. In our Gupta-Sproull computation, we treat

the stroke so that at every point its angle to the directidd ie the neither the endpoints nor major-axis-direction changesxagp-

illustration is very similar to its angle to the vertical inet stroke tional cases. In practice, these simpli cations seem teetzad no
example set. discernible effect.

Clipping. Pen-and-ink artists have various rules for clipping Qyerlapping strokes and darkness adjustmeFobr light areas in
strokes. One widely-accepted convention is that strokemtioross the nal illustration, strokes rarely overlap, whereas ik areas

object boundaries or boundaries between semanticallgreiit they will often overlap. If each stroke in a dark region is ot
portions of objects, such as the edges of hard shadows [5§dN 55 contributing as much darkness as a comparable stroke in a
here to this convention by clipping strokes when they redabes light area, the dark-area strokes will be overcounted: tpairhere

where the direction eld turns rapidf.Strokes are also clipped strokes cross will count as having been darkened twice oe e
when continuing to draw them would over-darken some regfon o therefore compute bghtening factor which is a function of tone

the image. If a stroke is suf ciently short and has been @ipjor and the stroke example set. These lightening factors ar@wiea
this latter reason, it is removed altogether—pen-and-itiktardo in a preprocessing step: we draw many strokes into a buffér an
not generally use short strokes to Il in every little bit ofdark record the buffer's darkness after each stroke. When weh,nige
area—and the importance value there is set to “below thré$kol will know that, for instance, in an area of 50% grey, only 90% o
that no further strokes will be draw into that area. the pixels drawn end up being visible; the rest overlap witieo

black pixels. In that case, when lling a region with a targene
of 50% grey, we would reduce the darkness of the Itered stsok
to 90% before adding them to the blurred image, assumingothat
average only 90% of their area does not overlap with otheksfr
in that region and will therefore actually contribute dagks to the

After the stroke is followed as far as possible in each dioedrom
the pinned location, it is added to the illustration, anddtiference
and importance images are updated.

3.2 Updating the difference image illustration.

To quickly update the difference image with each added strale This approximation is not only faster than drawing-theuriihg,

sacri ce accuracy for ef ciency through two approximat®hat it also allows us to render a new stroke directly into theedéhce

seem to work well in practice. image without using a separate buffer. The lightening fade
L . .) scribed above is incorporated into the “darkness look-bfetaso

The rst approximation is that instead of blurring the currel- that each stroke is drawn by looking at the underlying tatgess.

lustration after adding each stroke and subtracting theltrésm These tones determine which portion of the darkness lodielie

the tone image, we subtract a blurred version of the strake fr

“For width w, heighth and distance from stroke centerthe look-up

value is (0.884f)e 23K "")Z, which is simply a bump function that tapers to
nearly zero.

6Some automated assistance in detecting object boundaciekl \we
valuable. We also intend to let the user draw into an “outiinage,” which
would be used for both drawing outlines and truncating hatchtrokes.

(a) (b)

(©

Figure 8 A teapot at three different scales (after illustration byharr Guptill [5].)

to use, and the values found there are directly incorporatedhe
difference image.

3.3 Output enhancements

The strokes to be drawn are deposited in a PostScript leyglo
with an interpreter that converts B-splines into drawalidetBcript
Bézier segments. We can also add two “stroke charactedragh
ments to the B-splines before printing (see the stroke ldatat of
Figure 9).

The rst enhancement is to render strokes with variable mfdt

Fig Content % Reduction # Strokes Time (sec)
5 Books 58 16722 258
6 \ectors 35 665 25
7 Hair/Face 79 37618 788
8a Teapot small 65 2924 50
8b Teapot 65 8361 77
8c Teapot closeup 65 13617 200
9 Raccoon 62 55893 960

Table 1 lllustration statistics and rendering timings measurecon
Silicon Graphics workstation with a 180MHz R5000 processor

Each stroke has three widths associated with it—one at eath en Figure 6 shows a way of visualizing measured or computecbvect

and one in the middle. These widths are adjustable on a per-la
basis from the editing interface, and impart subtle exjressf-
fects. Tapering the ends of strokes is ideal for renderirig bat
inappropriate for rendering hard shadows, for example.

The second enhancement is the addition of small “wiggles” to

strokes more than 5mm long, to simulate a hand-drawn appear-

ance. This effect is achieved by rst resampling the controll
(except for the endpoints, which we copy), placing pointhwan-
dom spacing of about 4mm1mm. We then randomly perturb each
interior control point slightly along the angle bisectoritsftwo ad-
jacent sides, and perturb the two end control points bothgeémd
orthogonal to the control hull segments that they terminat¢he
current system, the perturbations are uniformly distebdiietween
0.15mm and 0.15mm.

4 Results

The pen-and-ink illustration system was written in two édkparts:
the user interface was written in C++, and the renderingrengias
written in Modula-3. The interface runs at interactive shemd the
pen-and-ink renderer takes a few minutes to render thergitisns
presented here (see Table 1).

We have produced several illustrations to test the capiaiilbf our
system. Figures 5 and 8 are attempts to closely follow exasnpl
of real pen-and-ink drawings from illustration texts. FigB also
shows that our system can rescale illustrations while raaitg
the character of their texture.

8The adjustments that are made are ignored in the computafion
darkness—they are to be thought of as merely embellishments

elds using our system. It was created by bypassing the aater
tive stage of the system and feeding directions and tonestdir
into the renderer. Figures 7 and 9 show our ability to render n
smooth, dif cult-to-model surfaces such as hair and furr &moke
lengths are approximately 1-10cm in the original Post$cap-
dering. This scale is similar to that at which pen-and-irtists typ-
ically work. These artists often reduce their work for nakgen-
tation to achieve a ner, more delicate feel. We have donestimee
with our illustrations; the reductions are reported in &bl

5 Future work

Our current system suggests two principle areas for fursearch.

Interactive illustrations.Currently the user interacts with the com-
ponents of the underlying representation of the illustratit would
be nice for the user to have the option of interacting insield
the pen-and-ink illustration itself. Modi cations to th#ustration
would be immediately re ected by corresponding changeshin t
tone or direction. While previous interactive systems [A8}e al-
lowed the user to directly manipulate the illustrationytde not—
as does our system—allow the user to specify abstract higgh-le
attributes of the illustration, and thus are not requiredniake a
large number of changes as the result of a simple user agtiin.
our system, changing the directions underneath the cuesoeas-
ily require removing and reapplying hundreds of strokescMaf
the incremental update mechanism needed for such behawabr i
ready supported by our system, but we currently would reqair
considerable increase in rendering speed to make sucheafac
responsive enough to be usable.

Figure 9 Raccoon with detail inset showing stroke character.

Coherent texturesMany pen-and-ink drawings make use of tex-
tures such as bricks or shingles or fabrics that requirekesrdo
appear in locally coherent patterns. Many artists also dyanall
groups of parallel hatches together in coherent clusteenwii

ing in large areas of tone. We would like to support these «ind
of coherent textures in our illustrations. The biggest diflty is in
dealing with diverging direction elds, since it is not olovis how

to maintain local coherence and scale while following sucélc
without tearing the texture at some point.

Acknowledgments

This work was supported by an Alfred P. Sloan Research Fellow
ship (BR-3495), an NSF Presidential Faculty Fellow awar@RE
9553199), an ONR Young Investigator award (N00014-95-28)7
and Augmentation award (N00014-90-J-P00002), and anfrdus
gift from Microsoft.

References

[1] Debra Dooley and Michael Cohen. Automatic illustratioh3D ge-
ometric models: Lines. IComputer Graphics (1990 Symposium on
Interactive 3D Graphics)pp. 77-82, March 1990.

[2] Gershon Elber. Line art rendering via a coverage of isampetric
curves.|EEE Transactions on Visualization and Computer Graphics
1(3):231-239, September 1995.

[3] Ralph Gibson.Tropism: photographsAperture, New York, 1987.

[4] S. Gupta and R. F. Sproull. Filtering edges for gray-sadikplays.
Computer Graphics (SIGGRAPH '81 Proceeding$}(3):1-5, Au-
gust 1981.

[5] Arthur L. Guptill. Rendering in Pen and InkVatson-Guptill Publica-
tions, New York, 1976.

[6] Paul Haeberli. Paint by numbers: Abstract image repriagions.
Computer Graphics24(4):207—214, August 1990.

(7]

(8]
El

[20]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

John Lansdown and Simon Scho eld. Expressive renderige-
view of nonphotorealistic techniquetEEE Computer Graphics and
Applications 15(3):29-37, May 1995.

Frank Lohan. Pen and Ink TechniquesContemporary Books, Inc.,
Chicago, 1978.

Barbara J. Meier. Painterly rendering for animation.Hally Rush-
meier, editorSIGGRAPH 96 Conference Proceedingp. 477-484.
Addison Wesley, August 1996.

Yachin Pnueli and Alfred M. BrucksteinDigiDUrer — a digital en-
graving systemThe Visual Computerl0(5):277-292, 1994.

Takafumi Saito and Tokiichiro Takahashi. Comprehklesiendering
of 3-D shapesComputer Graphics24(4):197—206, August 1990.

Takafumi Saito and Tokiichiro Takahashi. NC machinwgh G-
buffer method.Computer Graphics25(4):207-216, July 1991.

Michael P. Salisbury, Sean E. Anderson, Ronen Barrel,avid H.
Salesin. Interactive pen-and-ink illustration. In Andr@hassner, ed-
itor, Proceedings of SIGGRAPH '94p. 101-108. ACM Press, July
1994.

Mike Salisbury, Corin Anderson, Dani Lischinski, andaid H.
Salesin. Scale-dependent reproduction of pen-and-ioktilitions.
In Holly Rushmeier, editorSIGGRAPH 96 Conference Proceedings
pp. 461-468. Addison Wesley, August 1996.

Gary SimmonsThe Technical PenVatson-Guptill Publications, New
York, 1992.

Thomas Strothotte, Bernhard Preim, Andreas Raaba Sdhumann,
and David R. Forsey. How to render frames and in uence people
Computer Graphics Foruml3(3):455-466, 1994. Eurographics '94
Conference issue.

Georges Winkenbach and David H. Salesin. Computeegeed pen-
and-ink illustration. In Andrew Glassner, edit®oceedings of SIG-
GRAPH '94 pp. 91-100. ACM Press, July 1994.

Georges Winkenbach and David H. Salesin. Renderirgfivem sur-
faces in pen and ink. In Holly Rushmeier, editSftGGRAPH 96 Con-
ference Proceedingpp. 469-476. Addison Wesley, August 1996.

