
Scale-Dependent Reproduction of Pen-and-Ink Illustrations

Mike Salisbury Corin Anderson Dani Lischinski David H. Salesin

Department of Computer Science and Engineering
University of Washington

Abstract

This paper describes a representation for pen-and-ink illustrations
that allows the creation of high-fidelity illustrations at any scale or
resolution. We represent a pen-and-ink illustration as a low-reso-
lution grey-scale image, augmented by a set of discontinuity seg-
ments, along with a stroke texture. To render an illustration at a par-
ticular scale, we first rescale the grey-scale image to the desired size
and then hatch the resulting image with pen-and-ink strokes. The
main technical contribution of the paper is a new reconstruction al-
gorithm that magnifies the low-resolution image while keeping the
resulting image sharp along discontinuities.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation — Display algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques — Device indepen-
dence; I.4.3 [Image Processing]: Enhancement — Filtering.

Additional Key Words: discontinuity edges, image magnification,
image resampling, non-photorealistic rendering, scale-dependent
rendering, stroke textures.

1 Introduction

The medium of pen and ink offers many advantages for visu-
ally communicating ideas. Pen-and-ink illustrations can be easily
printed alongside text, using the same ink on the same paper, without
degradation. Moreover, good reproduction quality can be obtained
on commonplace 300 or 600 dot-per-inch laser printers as well as
on lower-resolution monochrome displays. Although pen-and-ink
illustrations allow only monochromatic strokes of the pen, the re-
sulting illustrations are often striking in their beauty and simplic-
ity [11, 24].

While the areas of photorealistic rendering and paint systems have
received considerable attention in the literature, creating pen-and-
ink illustrations on a computer is a relatively new area. Recently,
Winkenbach and Salesin [27] described an automated rendering sys-
tem that produces pen-and-ink illustrations from 3D polyhedral ar-
chitectural models. This system can render an illustration of a model
at different scales and resolutions by applying procedural stroke tex-
tures to an analytic representation of the image. Concurrently,
Salisbury et al. [23] proposed an interactive system that allows the

University of Washington, Box 352350, Seattle WA 98195-2350�
salisbur � corin � danix � salesin � @cs.washington.edu

user to “paint” an image with prioritized stroke textures. This sys-
tem is particularly useful for applying stroke textures to a scanned
or synthetic image, effectively creating an “artistically-halftoned”
monochrome version of the original. The user creates the pen-and-
ink illustration on the screen, and the illustration is saved as a long
list of Bézier strokes. One problem with this straightforward WYSI-
WYG approach is that illustrations represented in this manner can-
not be reproduced at different scales or resolutions without signifi-
cantly changing their overall appearance.

By way of example, consider the three illustrations shown in Fig-
ure 1. Figure 1(b) shows the original illustration at the size for which
it was designed by the artist. If we wish to double the size of the
illustration, we cannot merely scale it by a factor of two; such a
scaling lightens the tone by spreading the same number of strokes
over a larger area as demonstrated by Figure 1(c). While this ef-
fect could be mitigated by thickening the strokes in the scaled-up
version, the character of the illustration would be considerably al-
tered. Conversely, scaling the illustration down darkens the tone as
the density of strokes increases (Figure 1(a)). We would instead like
computer-generated illustrations to maintain the thickness and den-
sity of their strokes when they are rescaled. Changing resolutions
could also produce unwanted effects. For instance, all three illustra-
tions in Figure 1 would look darker on a 300 dot-per-inch printer as
they use strokes that are too thin for that resolution.

Another problem with storing illustrations as Bézier strokes is that
the sheer number of strokes can make such a representation expen-
sive to store, slow to transmit, and cumbersome to include in elec-
tronic documents. For example, the size of each illustration in Fig-
ure 1 is about one megabyte in PostScript [1].

In this paper, we extend the work of Salisbury et al. by proposing an
alternative representation for pen-and-ink illustrations that is scale-
and resolution-independent as well as compact. Instead of storing
each of the individual strokes comprising an illustration, we keep
an underlying grey-scale image for each stroke texture in the illus-
tration along with a pointer to the stroke texture itself. To render the
illustration at a particular scale and resolution, the grey-scale images
are first rescaled and then hatched with strokes.

The proposed image-based representation is quite simple; however,
maintaining true scale- and resolution-independence also requires
solving an interesting related problem whose solution is not so
straightforward. Since pen-and-ink illustrations hatch an image with
strokes, they tend to be insensitive to fine texture detail. Thus it is
often sufficient for the underlying grey-scale image to have a rela-
tively low resolution. However, magnifying a low-resolution image
for reproducing a large illustration on a high-resolution output de-
vice typically results in undesirable blurring of the hard edges, or
discontinuities, in the image.

The question, then, is how to resample images while preserving cer-
tain discontinuity edges. In order to be able to produce crisp edges
in illustrations at all possible output scales and resolutions, we need
to maintain information about discontinuity edges in the underly-
ing image and explicitly take these edges into account in the resam-
pling process. In this paper, we describe a new resampling algo-



pepper5cm.ps

pepper5cm.ps

pepper5cm.ps

(a) (b) (c)

Figure 1 The same illustration at three different scales: (b) is the original; (a) and (c) demonstrate that naive rescaling changes tone and character.

rithm to implement this process. This algorithm, which is essentially
a discontinuity-sensitive reconstruction filter, is the main technical
contribution of the paper.

1.1 Related work

Line-art illustration has been explored previously by a number
of authors. Elber [9], Saito and Takahashi [21], Winkenbach and
Salesin [27], Strothotte et al. [?], and Lansdown and Schofield [14]
all use 3D models to generate illustrations. Pneuli and Bruck-
stein [20] and Salisbury et al. [23] both generate illustrations starting
from grey-scale images. However, neither of these last two works
addresses the problem of rescaling such illustrations.

There are several paint systems that offer a measure of resolution-
independence. Paint By Numbers [12] stores images as collections
of resolution-independent strokes, Live Picture [16] represents the
operations on images as a resolution-independent history, and Live-
Paint [19] provides resolution-independent procedural ink. How-
ever, none of these approaches provides any means of magnifying
scanned images beyond their original resolution while preserving
discontinuities. The resampling algorithm described in this paper
could conceivably be used for this purpose in any of these systems.

The idea of making explicit use of discontinuities in functions, sur-
faces, and images is not new. Discontinuities have been used to
construct good meshes for radiosity [13, 15] and to fit piecewise-
cubic interpolants for radiance functions [22]. Franke and Nielson
described several methods for surface reconstruction from scattered
data with known discontinuities [10]. Zhong and Mallat [30] pio-

neered work in image compression by storing edges detected at mul-
tiple scales. Yomdin and Elichai [29] also describe an image com-
pression algorithm that locates and utilizes various types of edges
in images to obtain a lossy compression scheme that avoids recon-
struction artifacts in the vicinity of edges.

1.2 Overview

In the next section we describe in more detail our proposed represen-
tation scheme for pen-and-ink illustrations, and we present a new al-
gorithm for image rescaling that preserves the discontinuities of the
original image. Section 3 describes how pen-and-ink illustrations
are created and viewed in our illustration system. Section 4 presents
several examples of illustrations and describes our experience with
the proposed technique. We conclude and offer directions for further
research in Section 5.

2 Reconstructing images with discontinuities

This section describes the core of our pen-and-ink illustration sys-
tem: an image-based representation for illustrations, and a new re-
construction algorithm for resampling images with discontinuities.

We have two major requirements of our representation. First, it
should allow us to produce pen-and-ink illustrations at any scale and
resolution without changing the tone or character of the illustration.
Second, the resulting illustrations must keep “sharp features” sharp
and “smooth features” smooth. By “sharp features” we mean abrupt
changes in intensity along certain prescribed boundaries of the im-



age, which we refer to as discontinuities. While we want our illus-
trations to exhibit crisp edges along discontinuities, we would like
the tone to change smoothly everywhere else. In particular, it is im-
portant that the rescaling algorithm not introduce any spurious dis-
continuities.

One could imagine several possible representations that would meet
our requirements. For example, we could maintain a history of all
the operations performed on an image, along the lines of Live Pic-
ture [16], and then simply replay the history at the desired resolu-
tion when rendering the output. Although this approach is simple
and basically sound, it has two main disadvantages. First, the repre-
sentation’s size and rendering time grow with the number of editing
operations, and not necessarily with the complexity of the image.
Second, this approach does not allow scanned or rendered images to
be magnified beyond their original sizes without blurring their sharp
features.

Another alternative is to use a collection of polynomial patches in
order to construct an explicit image function that interpolates the
image sample values. One difficulty with this representation is the
problem of handling discontinuities, since it is not obvious how to
modify a smooth patch representation to incorporate arbitrary ar-
rangements of discontinuities. Another difficulty is the problem of
determining control points so that the surface accurately approxi-
mates an arbitrary target image without introducing ringing artifacts
from maintaining the smoothness constraints.

For our representation, we have chosen to use a combination of
uniformly-spaced image samples and piecewise-linear discontinu-
ity curves called discontinuity edges. Any arrangement of discon-
tinuity edges is allowed, provided they intersect only at their end-
points. Thus, discontinuity edges are not constrained to form closed
regions. Instead, we allow “open” discontinuities that have dangling
edges not connected to any other. We would like the tone to change
smoothly around the open end of such a discontinuity but change
sharply across the discontinuity edge. It is crucial to allow open dis-
continuities, as they frequently arise in images, especially when dis-
continuity edges are obtained by performing edge detection on a
scanned image (see Figure 6(b)).

In the rest of this section, we’ll describe the algorithm we use to pro-
duce an image of arbitrary scale and resolution from our represen-
tation.

2.1 Problem statement

The problem that we would like to solve can be stated formally as
follows:

Given: A set of uniformly-spaced discrete sample (pixel) locations�
xi � , a set of corresponding intensity values

�
fi � , and a set of line

segments
���

i � (the discontinuity edges);

Find: A function f (x) that is smooth everywhere except across the
discontinuity edges, such that f (x) interpolates the values fi.

The reconstructed function f (x) can then be resampled at a higher
rate than the original image, resulting in a magnified version of the
image, or it can be resampled at a lower rate after band-limiting,
yielding a minified version of the image.

2.2 Reconstruction algorithm

Reconstruction of a continuous signal f (x) from uniformly-spaced
discrete samples

�
(xi, fi) � may be performed by convolving with a

reconstruction kernel k(x):

f (x) = � fi k(x � xi). (1)

x

a

b

Figure 2 Several discontinuity edges (shown as thick lines) intersect
the support of a 4 � 4 kernel centered at x. The dashed line indicates
the shortest unobstructed path from x to b.

A variety of reconstruction kernels are available, including several
interpolation kernels that effectively fit interpolants of various de-
grees to the input samples [28]. In this section, we describe a mod-
ification to the standard convolution framework that will cause the
reconstructed function to be discontinuous across the discontinuity
edges while preserving smoothness everywhere else.

In order to reconstruct the value at point x, we first check whether
there are any discontinuity edges that cross the support of the kernel
centered at x. If no such discontinuities exist, the reconstructed value
f (x) is given by equation (1).

Things become more interesting when one or more image samples
under the kernel’s support are separated from x by a discontinuity
edge. Consider, for example, the situation in Figure 2. The thick
solid lines indicate discontinuity edges that intersect the square sup-
port of the kernel centered at x (marked by a black dot). Input sam-
ples such as a cannot be reached from x without crossing a disconti-
nuity edge. Clearly such samples should not have any effect on the
value of f (x). Input samples such as b cannot be “seen” directly from
x; however, they can be reached by going around the discontinuities.
To ensure that f (x) changes smoothly as x moves around these dis-
continuities, the sample b should have some effect on the value f (x).
Intuitively, this effect should be commensurate with the “ease” of
reaching b from x without crossing discontinuities.

Thus, in order to preserve discontinuities in the reconstructed func-
tion f (x), we replace the reconstruction kernel k with a modified ker-
nel k̃, which attenuates k’s entries according to each entry’s reacha-
bility. To describe our new kernel, we must first define some terms.

Let d(x, xi) be the Euclidean distance between x and xi, and let
sp(x, xi) be the length of the shortest unobstructed path between the
two points (see Figure 2). We define the detour cost between x and
xi as:

detour(x, xi) = sp(x, xi) � d(x, xi) (2)

Our modified kernel k̃ thus attenuates k:

k̃(x � xi) = � (x, xi) k(x � xi) (3)

where the attenuating function � (x, xi) is defined as:

� (x, xi) =

�				
 				�
1 if detour(x, xi) = 0

(i.e., if xi is visible from x)
0 if detour(x, xi) � r

(i.e., if xi is too “far”)
1 � 3t2 + 2t3 if detour(x, xi) 
 r,

where t = detour(x, xi) � r

(4)

The constant r above is the detour cost beyond which a sample has
no effect on x. We have found that a value of r = 1 works well for



our 4 � 4 filter. The cubic polynomial in the third case above was
chosen in order to ensure that � (x, xi) is C1 continuous.

Note that the modified kernel k̃ no longer has the property that its
weights at the sample points sum to one. To compensate, we turn the
convolution in equation (1) into a weighted-average convolution:

f (x) =

�
fi � (x, xi) k(x � xi)� � (x, xi) k(x � xi)

(5)

This form of convolution has been used previously for filtering non-
uniform samples [7, 8, 18].

The kernel modification described above is applicable to any recon-
struction kernel. In our implementation, we chose the cubic convo-
lution kernel described by Wolberg [28]. This kernel has negative
lobes, as do all smoothly interpolating kernels. This property intro-
duces a slight complication into our reconstruction algorithm, as it
is possible for the magnitude of the sum in the denominator of equa-
tion (5) to become very small. Dividing by small numbers magnifies
any noise in the calculation, causing visible bright “speckles” in the
reconstructed image. To overcome this difficulty, we switch to the
entirely non-negative B-spline kernel [28] whenever the denomina-
tor in equation (5) falls below a certain threshold. To avoid introduc-
ing a discontinuity at places where the switch occurs, we smoothly
blend between the two kernels as the denominator approaches zero.
A precise definition of these two kernels is given in Appendix A.

Our resampling algorithm resembles the Distance Penalty Fault
method described by Franke and Nielson for surface reconstruction
from scattered data with known discontinuities [10]. However, our
algorithm is specialized to uniform grid data, and by using the gen-
eral notion of detour cost it can handle arbitrary arrangements of dis-
continuity edges. Another difference is that, unlike Franke and Niel-
son’s algorithm, ours is not restricted to positive weighting func-
tions, allowing better frequency response.

Computing shortest paths

To complete the description of our reconstruction algorithm, it re-
mains to explain how we compute the length of the shortest path
between two points. We will refer to an endpoint of a discontinu-
ity edge as a discontinuity vertex. If a discontinuity vertex is in the
middle of a chain of discontinuity edges and is thus reachable from
multiple sides, we consider each side of the vertex to be a distinct
discontinuity vertex for the purposes of this minimum distance al-
gorithm. As a preprocessing step, we compute the distance between
all pairs of discontinuity vertices using Dijkstra’s all-pairs shortest
paths algorithm [2]. Then, during reconstruction, to compute the
shortest path between two particular points x1 and x2 that cannot
“see” each other, we find the sets V1 and V2 of discontinuity vertices
directly visible to x1 and x2, respectively, within a certain ellipse that
surrounds them both. This ellipse has foci at x1 and x2 and contains
all points x such that

d(x, x1) + d(x, x2) � d(x1, x2) + r (6)

Any discontinuity vertex beyond this distance would make the de-
tour cost larger than the maximum detour cost r, thereby forcing the
sample’s attenuation � (x, xi) to zero.

Given the sets V1 and V2, the length of the shortest path between
points x1 and x2 is simply

sp(x1, x2) = min
v1 � V1 ,v2 � V2

�
d(x1, v1) + sp(v1, v2) + d(v2, x2) � (7)

In order to rapidly determine the set V for any point x we first con-
struct a constrained Delaunay triangulation (CDT) [6] containing

all of the discontinuity edges in the image as a preprocessing step.
Then, given the point x we locate the CDT face containing x. Start-
ing from this face, we recursively visit all nearby faces that are
reachable without crossing discontinuity edges. The vertices of all
visited faces are tested to see if they are visible from x. To test the
visibility of vertex v, we march from x towards v in the CDT and stop
either when a discontinuity edge is crossed (in which case v is not
directly visible), or when v is reached (in which case it is visible).

It costs O(n3) to compute the shortest paths between all pairs
of n discontinuity edge vertices. The CDT can be constructed in
O(n log n) time. Both of these computations are performed only
once, in the preprocessing stage. For each point x at which the func-
tion is reconstructed (i.e., for each pixel location in the resampled
image), we need to compute the detour cost for as many as sixteen
pixels in the original image, as described above. The cost of this
computation is at worst quadratic in the number of discontinuity ver-
tices within the kernel’s support, but this number is typically small.

3 Creating and printing illustrations

To create an illustration, we start from a grey-scale image. This im-
age can be generated by rendering, digitally painting, or scanning
in a printed image. We find discontinuity edges using Canny’s edge
detector [5]. Then we compute one sample value at each pixel cen-
ter. For most pixels, the source image pixel value is a good approxi-
mation to the sample value. However, for pixels containing discon-
tinuities, the pixel value typically corresponds to an average of the
image function on both sides of the discontinuity and is thus unsuit-
able as a sample value. In this case we extrapolate the sample value
from nearby “uncontaminated” samples that are reachable without
crossing discontinuities.

Once this process is completed, we reduce the resolution of the im-
age as much as possible while maintaining enough detail to create a
satisfactory result. If too few samples remain, some areas bounded
by discontinuities may not contain any reachable sample values. In
this situation we must allow the reconstruction filter to cross dis-
continuities. Thus, reducing the resolution too much may have the
effect of blurring or eliminating small features altogether, even if
their edges are part of the representation. Determining the appro-
priate reduction factor automatically is an interesting problem for
future work.

Once the image has been reduced, we assign to it a stroke texture
along with an optional set of outline strokes used to surround se-
lected regions of the image. The outline strokes can be chosen from
the set of discontinuity edges. To make use of multiple stroke tex-
tures, the image can be separated into grey-scale overlays, each of
which is associated with its own stroke texture.

In order to view or print an illustration, we first produce a grey-scale
image of the desired size with the algorithm described in Section 2.
Since we want to avoid unnaturally sharp edges in the final illus-
tration, we only magnify the image to one half of the desired size
with our reconstruction algorithm, after which we expand the im-
age by an additional factor of two using a standard separable recon-
struction filter which can be applied much more quickly in a separate
stage. This technique generates just enough blurring along the edges
to give the illustrations a hand-drawn feel.

We finally re-render the illustration with a prioritized stroke texture
in an automatic process called blasting. The blasting algorithm takes
a grey-scale image and a stroke texture as input and creates an illus-
tration with strokes, which, when taken together, produce the same
tone as was present in the underlying image. We use the same ap-
proach as Salisbury et al. [23] for producing strokes and placing
them into an illustration. This approach consists of repeatedly se-



ikeys.ps

Figure 5 Keys. Original photograph by Randy Miller [17].

lecting a stroke from the stroke texture and computing the tone in the
vicinity of the stroke that would result if it were added. The stroke is
rejected if it makes the illustration darker than the tone of the under-
lying image anywhere along its length. Whereas the system of Sal-
isbury et al. generates candidate strokes only underneath the user’s
brush, we automatically place strokes that cover the entire illustra-
tion.

4 Results

We present several illustrations that demonstrate the various capa-
bilities of our representation.

Figure 3 shows an illustration rendered at three scales. Each of these
scales maintains the correct tone and gives the same overall texture
effect. Note that different collections of actual strokes were used to
generate the illustration at the various sizes. Compare these illustra-
tions to those in Figure 1, where the same set of strokes was used
for each scale, resulting in undesirable alterations in tone and over-
all effect.

Figure 4 demonstrates the advantage of maintaining and respecting
discontinuities. Figure 4(a) is an illustration produced by blasting an
image that was rescaled without maintaining discontinuities. The il-
lustration in 4(b) is the same as 4(a) except that it was rescaled us-
ing our magnification algorithm. Notice that the outline edges do not
align with the edges of the fingers in illustration 4(a). Also of inter-
est is the use of multiple textures in both Figures 4 and 5.

The illustrations in Figures 6 and 7 are close-ups of the lower-right-
hand corner of Figure 5 and show the potential for using our rep-
resentation to generate poster-sized illustrations. Figure 6(a) shows
the pixel values stored by the representation, which along with the
discontinuity edges in 6(b) can be used to generate 6(d) and, in
turn, 7(b). The images in 6(c) and 6(d) are the grey-scale images that
were used to blast the illustrations in 7(a) and 7(b). All of the edges
in these and the other illustrations we present were found automat-
ically with our edge detector.

Notice in Figure 6(b) that the key is not completely surrounded by

gskeys-closeup-pixel.psdkeys-closeup.ps

(a) (b)

gskeys-closeup-blurry.psgskeys-closeup.ps

(c) (d)

Figure 6 Close-ups of Figure 5: (a) the underlying low-resolution
grey-scale image; (b) the discontinuity edges used; (c) the grey-scale
image produced using standard magnification; and (d) the image pro-
duced by our resampling algorithm.

edges. In places where no discontinuity edges are present, our recon-
struction produces smooth changes in grey-scale, even in the vicin-
ity of discontinuity endpoints.

Table 1 gives the storage requirements and reconstruction times re-
quired for the illustrations in this paper. The REPRESENTATION col-
umn gives the number of pixels stored on disk, the number of dis-
continuities used, and the total size of both in kilobytes. The OUT-
PUT column gives the size of the reconstructed grey-scale image that
was used for blasting, and the size, in megabytes, of the PostScript
file used for printing. Finally, the TIME column gives the time re-
quired to pre-process, enlarge, and blast the image with strokes.
These times were measured on a Silicon Graphics workstation with
a 250MHz R4400 processor. To summarize the table, our represen-
tation reduces the storage requirements of these illustrations by a
factor of 100–1000, and it takes from 1–7 minutes to render them.

5 Future work

Our experience with the proposed technique suggests several areas
for future research:

� PostScript renderer. The reduced size of our representation cur-
rently offers no practical advantage in transmission to printers or
web browsers because they do not recognize our representation.
One solution is to write rendering code in the languages that these
devices do understand. For example, a PostScript printer could be
sent illustration rendering code written in PostScript along with
several standard stroke textures. This code could then generate an
illustration at any requested scale and resolution directly on the
output device. Similar programs could be written in Java or Ac-
robat to allow web browsers to render illustrations.

� Scalable textures. Currently our stroke textures are applied at a
single scale: if the illustration is magnified, the texture shrinks
relative to the image. While this effect is acceptable for uniform
textures, it could be objectionable for textures with recognizable
patterns. It might be better to have a multiresolution stroke tex-



ipepper.1.ps

ipepper.2.ps

ipepper.3.ps

(a) (b) (c)

Figure 3 A pepper at three different scales. Original photograph by Edward Weston [26].

iegg-blurry.ps iegg.ps

(a) (b)

Figure 4 An illustration with standard filtering (a) and with our algorithm (b). Both illustrations were produced from images of the same reso-
lution. Original photograph by Walter Swarthout [25].



ikeys-closeup-blurry.ps ikeys-closeup.ps

(a) (b)

Figure 7 Illustrations produced from Figures 6(c) and 6(d).

REPRESENTATION OUTPUT TIME
Fig Content ImgSize # Edges Storage ImgSize PS Size PreProc Enlarge Blast

(pixels) (KB) (pixels) (MB) (sec) (sec) (sec)

3a Pepper 102 � 128 270 10.5 204 � 256 0.2 39 3 5
3b Pepper 102 � 128 270 10.5 408 � 512 1.0 39 35 11
3c Pepper 102 � 128 270 10.5 816 � 1024 3.8 39 108 35
4a Hand 64 � 64 — 1.2 1024 � 1024 1.0 — 3 45
" Egg 128 � 128 — 1.4 1024 � 1024 1.0 — 4 128
4b Hand 64 � 64 237 2.3 1024 � 1024 1.0 19 130 41
" Egg 128 � 128 143 1.9 1024 � 1024 1.0 8 41 134
5 Keys 128 � 128 504 7.9 1024 � 1024 2.4 220 142 43
" Shadow 64 � 64 111 1.5 1024 � 1024 2.4 3 100 120
7a Key closeup 27 � 22 — 0.7 864 � 704 1.9 — 2 29
" Shadow 27 � 22 — 0.2 864 � 704 1.9 — 2 88
7b Key closeup 27 � 22 107 1.0 864 � 704 2.0 8 195 27
" Shadow 27 � 22 6 0.3 864 � 704 2.0 1 30 84
8 Billiard 71 � 61 326 5.4 568 � 488 1.3 47 81 19

Table 1 Illustration sizes and speeds.

ture that could change scale with the illustration. Then, as the
scale of the texture increased, finer resolution strokes could au-
tomatically be added to the illustration.

� Combining with multiresolution images. Our representation and
resampling algorithm are currently limited to traditional unires-
olution images. We would like to extend our technique to handle
multiresolution image representations, such as the one described
by Berman et al. [4]. In this case, we would also want to develop
a multiresolution discontinuity representation in which different
discontinuities could be present at different scales.

� Image compression. Given our algorithm’s ability to reproduce
large images from a compact representation, it is natural to con-
sider the possibility of using it as a more general image compres-
sion mechanism. One complication with such an approach may
be the lack of texture detail in the reconstructed images.

Acknowledgments

We would like to thank Sean Anderson for his help with the blasting
procedure and his input on illustration production.

This work was supported by an Alfred P. Sloan Research Fellow-

ship (BR-3495), an NSF Postdoctoral Research Associates in Ex-
perimental Sciences award (CDA-9404959), an NSF Presidential
Faculty Fellow award (CCR-9553199), an ONR Young Investigator
award (N00014-95-1-0728), a grant from the Washington Technol-
ogy Center, and industrial gifts from Interval, Microsoft, and Xerox.

References

[1] Adobe Systems Incorporated. PostScript Language Reference Man-
ual. Addison Wesley, Reading, Massachusetts, 2nd edition, 1994.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data
Structures and Algorithms. Addison-Wesley, Reading, Massachusetts,
1987.

[3] Arthur Beck. Photograph. In Photographis 81, The International An-
nual of Advertising and Editorial Photography, p. 151. Graphis Press
Corp., 1981.

[4] Deborah F. Berman, Jason T. Bartell, and David H. Salesin. Multireso-
lution painting and compositing. In Computer Graphics Proceedings,
Annual Conference Series, pp. 85–90. ACM Press, July 1994.

[5] John Canny. A computational approach to edge detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 8(6):679–698,
November 1986.



[6] L. Paul Chew. Constrained delaunay triangulations. Algorithmica,
4:97–108, 1989.

[7] Robert L. Cook. Stochastic sampling in computer graphics. Transac-
tions on Graphics, 5(1):51–72, January 1986.

[8] Mark A. Z. Dippé and Erling Henry Wold. Antialiasing through
stochastic sampling. Computer Graphics, 19(3):69–78, July 1985.

[9] Gershon Elber. Line art rendering via a coverage of isoparametric
curves. IEEE Transactions on Visualization and Computer Graphics,
1(3):231–239, September 1995.

[10] Richard Franke and Gregory M. Nielson. Surface approximation with
imposed conditions. In R. E. Barnhill and W. Boehm, editors, Surfaces
in CAGD, pp. 135–146. North-Holland Publishing Company, 1983.

[11] Arthur L. Guptill. Rendering in Pen and Ink. Watson-Guptill Publica-
tions, New York, 1976.

[12] Paul E. Haeberli. Paint by numbers: Abstract image representations.
Computer Graphics, 24(4):207–214, August 1990.

[13] Paul Heckbert. Discontinuity meshing for radiosity. In Third Eu-
rographics Workshop on Rendering, pp. 203–226, Bristol, UK, May
1992.

[14] John Lansdown and Simon Schofield. Expressive rendering: A review
of nonphotorealistic techniques. IEEE Computer Graphics and Appli-
cations, 15(3):29–37, May 1995.

[15] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. Discon-
tinuity meshing for accurate radiosity. IEEE Computer Graphics and
Applications, 12(6):25–39, November 1992.

[16] T. Marshall. Lively pictures (Power Mac image editing). BYTE,
20(1):171–172, January 95.

[17] Randy Miller. Photograph. In Photographis 77, The International An-
nual of Advertising and Editorial Photography, p. 72. Graphis Press
Corp., 1977.

[18] Don P. Mitchell. Generating antialiased images at low sampling den-
sities. Computer Graphics, 21(4):65–72, July 1987.

[19] Ken Perlin and Luiz Velho. Live Paint: painting with procedural mul-
tiscale textures. In Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 153–160. ACM Press, August 1995.

[20] Yachin Pnueli and Alfred M. Bruckstein. Digi
Dürer — a digital en-

graving system. The Visual Computer, 10(5):277–292, 1994.

[21] Takafumi Saito and Tokiichiro Takahashi. NC machining with G-
buffer method. Computer Graphics, 25(4):207–216, July 1991.

[22] David Salesin, Daniel Lischinski, and Tony DeRose. Reconstructing
illumination functions with selected discontinuities. In Third Euro-
graphics Workshop on Rendering, pp. 99–112, Bristol, UK, May 1992.

[23] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David H.
Salesin. Interactive pen-and-ink illustration. In Computer Graph-
ics Proceedings, Annual Conference Series, pp. 101–108. ACM Press,
July 1994.

[24] Gary Simmons. The Technical Pen. Watson-Guptill Publications, New
York, 1992.

[25] Walter Swarthout. Photograph. In Photographis 75, The International
Annual of Advertising, Editorial, and Television Photography, p. 133.
Graphis Press Corp., 1975.

[26] Edward Weston. Aperture Masters of Photography, Number Seven,
p. 29. Aperture Foundation, Inc., New York, 1988.

[27] Georges Winkenbach and David H. Salesin. Computer-generated pen-
and-ink illustration. In Computer Graphics Proceedings, Annual Con-
ference Series, pp. 91–100. ACM Press, July 1994.

[28] George Wolberg. Digital Image Warping. IEEE Computer Society
Press, Los Alamitos, California, 1990.

[29] Y. Yomdin and Y. Elichai. Normal forms representation: a technology
for image compression. In Image and Video Processing, volume 1903
of Proceedings of the SPIE — The International Society for Optical
Engineering, pp. 204–214. SPIE, February 1993.

[30] S. Zhong and S. Mallat. Compact image representation from multi-
scale edges. In Proceedings. Third International Conference on Com-
puter Vision, pp. 522–525. IEEE Computing Society Press, December
1990.

iballs.ps

Figure 8 Billiard balls. Original photograph by Arthur Beck [3].

Appendix A: Kernel definitions

The cubic convolution kernel we used is a member of the following
family of kernels [28]:

k(x) =

�
(a + 2) � x � 3 � (a + 3) � x � 2 + 1 0 ��� x � 
 1
a � x � 3 � 5a � x � 2 + 8a � x � � 4a 1 ��� x � 
 2
0 2 ��� x � (8)

We chose the value a = � 0. 5, which makes the Taylor series ap-
proximation of the reconstructed function agree in as many terms
as possible with the original signal.

The non-negative B-spline kernel we used is defined as follows:

k(x) =
1
6

�
3 � x � 3 � 6 � x � 2 + 4 0 ��� x � 
 1��� x � 3 + 6 � x � 2 � 12 � x � + 8 1 ��� x � 
 2
0 2 ��� x � (9)

This kernel is called the Parzen window.


