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Abstract. We show that, under spatially varying illumination, the light
transport of diffuse scenes can be decomposed into direct, near-range
(subsurface scattering and local inter-reflections) and far-range trans-
ports (diffuse inter-reflections). We show that these three component
transports are redundant either in the spatial or the frequency domain
and can be separated using appropriate illumination patterns. We pro-
pose a novel, efficient method to sequentially separate and acquire the
component transports. First, we acquire the direct transport by extend-
ing the direct-global separation technique from floodlit images to full
transport matrices. Next, we separate and acquire the near-range trans-
port by illuminating patterns sampled uniformly in the frequency do-
main. Finally, we acquire the far-range transport by illuminating low-
frequency patterns. We show that theoretically, our acquisition method
achieves the lower bound our model places on the required number of
patterns. We quantify the savings in number of patterns over the brute
force approach. We validate our observations and acquisition method
with rendered and real examples throughout.

1 Introduction

Image-based acquisition of light transport in real scenes poses significant chal-
lenges despite the parallelism afforded by cameras and projectors. Efficient acqui-
sition of the light transport in a projector-camera system is particularly difficult
since the illumination is spatially varying at the scene points and the transport
does not lend itself to simple mathematical models (Figure 1). Furthermore, the
acquired light transport simply gives a relationship between the light source and
camera and does not provide insight into different physical phenomena such as
inter-reflections and subsurface scattering.

In this paper, we propose a technique to decompose and efficiently acquire
the light transport under spatially varying illumination. We show that the light
transport can be decomposed into three physically meaningful component trans-
ports: direct, near-range (sub-surface scattering and local inter-reflections) and
far-range (diffuse inter-reflections). Since the three component transports dif-
fer in their response to different frequencies of sinusoidal illumination patterns,
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Fig. 1. Spatially varying illumination at the scene using a projector-camera system.
Camera pixel c is lit directly by projector pixel q. The near-range effects (subsurface
scattering and local inter-reflections) at c are caused by a neighborhood of size W
around q. The far-range effects (diffuse inter-reflections) at c are potentially due to all
projector pixels [0, P − 1]. We implement a non-coaxial projector-camera system and
acquire the transport of a diffuse scene. A 2-D slice of the transport matrix in log-
scale at the blue row shows a diagonally dominant, dense matrix with slowly decaying
singular values.

we show that they can be separated through appropriate choice of these pat-
terns. We also show that compared to the full transport, each of the component
transports can be modeled parsimoniously, enabling their efficient acquisition. In
Figure 2 we show an example decomposition and acquisition of the full transport
with a projector-camera system.

We build on the observation that at a camera pixel, the three components
of the light transport are influenced by an increasing range of projector pixels
as illustrated in Figure 1. The direct component at a camera pixel is due to a
single projector pixel which is localized in the projector’s spatial domain. The
light received at the same camera pixel due to subsurface scattering and local
inter-reflections is due to projector pixels in the small neighborhood of the direct
projector pixel. Finally, the diffuse inter-reflection component at a camera pixel
is due to projector pixels spread over a wider area. Hence, we term the component
effects direct, near-range and far-range.

Since the component effects at a camera pixel have increasing support in the
projector’s spatial domain, the opposite holds true in the projector’s frequency
domain. The far-range transport has been observed to be a low-frequency phe-
nomenon in previous work [1],[2]. Near-range transport responds to a wider range
of frequencies but does not respond to the highest frequency illumination [3]. The
direct transport responds to the entire frequency spectrum of illuminations. But
these observations have not been used for light transport acquisition. We validate
these observations in Figure 3(4) through frequency analysis of the transport ma-
trix of a rendered scene. We also observe that at a camera pixel, the component
transports are redundant either in the projector’s spatial or frequency domain.
The direct and near-range transports have small support in the spatial domain
and the far-range transport has small bandwidth in the frequency domain.
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Fig. 2. 16384 × 16384 transport matrix of a real Cornell box like scene is acquired
using 1060 illumination patterns, a 15.4× saving. We acquire the full transport by
decomposing it and acquiring the component transport matrices: direct, near-range
and far-range. The acquired component and full transports are visualized by relighting
with all-white floodlight (top row) and a penguin image (bottom row) and compare well
to the images of the scene lit with the same illumination (last column). Note that the
direct lighting and inter-reflections (far-range) are well separated and the near-range
transport captures the subsurface effects of the candle.

Based on the above observations, we choose illumination frequencies which
allow us to decompose the transport into its components and acquire them in-
dividually with only a few patterns as illustrated in Figure 3(5). We propose
a method where using highest frequency sinusoidal illumination, we first sepa-
rate the direct transport and estimate it in the spatial domain. Then we use
sinusoidal patterns sampled uniformly in the frequency domain to separate the
near-range transport and estimate it in the spatial domain as well. Finally, we use
a small number of low-frequency sinusoidal patterns and estimate the far-range
transport in the frequency domain.

Our key insight is that sampling the near-range transport in frequency do-
main as opposed to spatial domain enables almost perfect separation of near and
far-range effects. Hence, theoretically our method can acquire the light transport
and its components using as few patterns as permitted by our model.

Contributions:

1. We show that the light transport under spatially varying illumination can
be decomposed into physically meaningful component transports.

2. We propose a method to separate and efficiently acquire the component
transports based on our observation that each component has varying band-
width in the projector’s frequency domain.

3. We show that by sampling the near-range component in frequency domain,
our method acquires the full transport using minimal number of patterns.
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Fig. 3. (1) We render the full, direct, near-range and far-range transports with a coax-
ial projector-camera setup and include only subsurface scattering in the near-range.
(2) 128 × 128 slice of the transport matrix is generated along the dashed line. The
component matrices have diagonal, banded-diagonal and small magnitude off-diagonal
structure. (3) Compare the rows of the transport matrices at camera pixels c1 and c2 lit
directly by projector pixels q1 and q2. At all camera pixels c, a window of size W around
q describes the near-range. (4) Compare Fourier transforms of the two rows of the trans-
port matrix. The bandwidth of direct, near and far-range obeys 2P

2
> 2knear > 2kfar.

(5) We acquire the matrix with sinusoidal illumination patterns. Direct is separated
and acquired with illumination frequencies |k| = P

2
, near-range with frequencies spaced

uniformly at P
W

and far-range with frequencies from its entire bandwidth.
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2 Related work

Direct-global separation: Nayar et al. [4] proposed a method using high-
frequency illumination to separate the direct from the indirect component under
flood light. But [4] does not apply to other light patterns or the full transport.
Our work is inspired by [4] but it differs in two significant ways. First, we ac-
quire the full transport via decomposition, enabling separation under any light.
This implies selective component transports in a scene can be edited and en-
hanced under any lighting. Second, we decompose the global transport further
into mathematically parsimonious near and far-range, making the acquisition
efficient. Gu et al. [5] extended the direct-global separation in [4] to multiple
light sources achieving savings in the number of necessary illumination patterns.
Light transport acquisition: Previous methods on efficient light transport
acquisition focused on distant lighting case whereas we focus on spatially vary-
ing illumination. Different mathematical models of redundancy in the transport
matrix were proposed to acquire it efficiently. Fuchs et al.[6] adaptively chose the
lighting direction based on the properties of the reflectance fields. Both Wang
et al. [7] and O’Toole and Kutulakos [8] assumed that the transport matrix is
low rank. In compressive light transport (CLT) acquisition [9], the rows of the
matrix are assumed to be sparse in the wavelet basis.
Spatially varying illumination: Previous methods on light transport acquisi-
tion under spatially varying illumination either used brute force or used simple
models which ignored diffuse inter-reflections. Masselus et al. [10], acquired the
6-D reflectance field through brute force by capturing 2-D images with a 4-D in-
cident light field. Sen et al. [11] exploited Helmholtz reciprocity and parallelized
the acquisition by assuming only near-range effects. Garg et al. [12] captured
the entire 8-D transport by adaptively projecting hierarchical patterns designed
to estimate diffuse components modeled as rank-1 off-diagonal submatrices. Our
approach treats the near-range effects as mathematically different from the far-
range effects and achieves efficiency in acquisition.
Separation of component transports: Previous work on light transport sep-
aration focused on extracting the multiple bounces of light [13] and formulated
the light transport inversion as canceling of these bounces [14]. Recent meth-
ods have focused on separating components of the global transport. Wu et al.
[15] use expensive time-of-flight imaging to decompose the transport into direct,
subsurface scattering and inter-reflections. O’Toole et al. [16] proposed a novel
matrix probing technique to highlight selective components of the transport in
a single image. We focus not just on separation of the component transports
but also their efficient acquisition. Also, our method uses a regular non-coaxial
projector-camera system with sinusoidal illumination patterns.

3 Light Transport Modeling

Let the C × P matrix T denote the light transport. T(c, p) is the transport
between the projector pixel p and the camera pixel c. In practice, C > P but
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for analysis we assume square T with one-one correspondence between the C
camera pixels and P projector pixels i.e. C = P . We present our idea on a 1-D
projector and camera and extension to 2-D is straightforward. Under projector
lighting lk, the camera image bk is given by

bk(c) =
∑
p

T(c, p)lk(p). (1)

We use discrete Fourier transform (DFT) basis illumination lk(p) = e−j2π
k
P p

of frequency k
P cycles/pixel where k ∈ {−P2 , . . . ,−1, 0, 1, . . . , P2 }. Under novel

illumination l =
∑
k αklk, the image is given by b =

∑
k αkbk. In this paper, we

treat each camera pixel independently. Hence, we drop index c and write (1) as

bk =
∑
p t(p)lk(p)

= t · lk
(2)

where bk = bk(c) and t(p) = T(c, p).
Transport matrix T can be reconstructed row-wise by reconstructing t at

each camera pixel from measurements bk as

t(p) =
1

P

∑
k

bkl
∗
k(p) (3)

where l∗k(p) = ej2π
k
P p is the inverse DFT basis. In general, we need all P measure-

ments {bk : k = −P2 , . . . ,−1, 0, 1, . . . , P2 } to reconstruct t. The same P patterns
are sufficient to acquire the matrix T as well since the camera pixels are acquired
in parallel and processed independently. We show that, under spatially varying
illumination, T can be decomposed into physically meaningful components, each
of which can be acquired row-wise using many fewer illumination patterns.

3.1 Light transport decomposition

Under spatially varying illumination, the transport matrix T exhibits full-rank.
The matrix has a dominant diagonal corresponding to direct illumination and
significant energy in off-diagonal elements corresponding to global illumination
as shown in Figure 3. The matrix is neither sparse nor low rank making its
analysis and acquisition difficult. But T can be decomposed into component
transport matrices D, N and F corresponding to direct, near-range and far-
range effects. We validate this observation by rendering a synthetic scene with
subsurface scattering and diffuse inter-reflections as shown in Figure 3.

T = D + N + F.
t = d + n + f.

(4)

Accordingly, we decompose the camera pixel intensity bk into component inten-
sities bdk, bnk and bfk respectively. The direct transport D is diagonal and full-rank.
The near-range transport N is sparse, banded diagonal and high rank. Conven-
tionally this is interpreted column-wise as the response in a camera region to
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a projector pixel’s illumination. We interpret this row-wise as the influence of
a projector region on a single camera pixel. The far-range transport matrix F
exhibits a dense structure but also has rapidly decaying singular values consis-
tent with the previous observations that F is low rank [1],[2]. In comparison to
other components, F has small magnitude entries which cumulatively contribute
significant energy to the final image.

3.2 Spatial domain modeling

The support of row t indicates the projector pixels illuminating the camera
pixel either directly or globally (Figure 3(3)). In the direct component, a sin-
gle projector pixel q influences a camera pixel in correspondence, resulting in a
diagonal transport matrix D. This implies d(p) = 0,∀ p 6= q and only a single
value d(q) needs to be acquired in each row. In the absence of other compo-
nents, turning on q and measuring intensity at c gives us d(q). Since the camera
pixels are acquired in parallel, in the absence of near and far-range effects, a
single illumination pattern, such as floodlight, is sufficient to acquire all rows d
simultaneously i.e. acquire D.

In the near-range component, a small neighborhood of projector pixels around
q influence the camera pixel resulting in a banded diagonal transport matrix N.
The support set of these projector pixels is given by PW = [q− W

2 , q+ W
2 ] 1 i.e.

a window of size W � P centered at q. W is user defined and we use a single
global value at each camera pixel. In practice, W is set sufficiently large to ac-
count for the near-range effects at all camera pixels. Since n(p) = 0,∀ p /∈ PW , it
is sufficient to acquire W non-zero entries of n. Though W is the same at every
camera pixel, note that the set PW is distinct.

Although the support PW changes at each camera pixel, in the absence of
other components, only W illumination patterns in all are sufficient to acquire n
at every camera pixel i.e. acquire N. We show in Section 4.2 that projecting W
sinusoidal patterns with frequencies spaced uniformly in the spectrum as shown
in Figure 3(5c) enables better separation of near and far-range components.

The far-range effect is exhibited over a much wider range of projector pixels
as illustrated in Figure 1 and validated in Figure 3. We assume that the support
set includes all the projector pixels [0, P − 1]. Note that f has a large number of
low magnitude entries compared to d and n. While the exact nature of influence
of projector pixels is dictated by the form factor and BRDF of scene points, we
observe that this effect is primarily low frequency for diffuse scenes as shown in
Figure 3 (4). Hence only a few low-frequency illumination patterns are sufficient
to acquire f in the absence of other components.

3.3 Frequency domain modeling

We denote the DFT of t, d, n and f by t̂, d̂, n̂ and f̂ respectively and make
the following observations. Since d(p) = d(p)δ(p− q), its DFT is given by d̂k =

1 For simplicity we consider even W and show a symmetric PW with W + 1 elements.
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d(q)lk(q) where lk(q) is the phase. The magnitude |d̂k| = d(q) is a constant
independent of k implying the bandwidth of the direct transport is kdir = P

2 as
shown in Figure 3(4b). We acquire d by illuminating the scene with the highest
frequency |k| = P

2 as shown in Figure 3(5b) and discussed in Section 4.1.
The near-range n has finite support PW but exhibits smoothness over the

support as shown in Figure 3(3c). As a result, its frequency response is bandlim-
ited approximately to knear i.e. n̂k = 0,∀ |k| > knear. Typically, n is parsimo-
nious in the spatial domain compared to the frequency domain i.e. 2knear > W .
Hence, we reconstruct n by exploiting its sparsity in the spatial domain but ob-
tain the measurements by illuminating W sinusoidal patterns whose frequencies
are uniformly spaced as shown in Figure 3(5c) and discussed in Section 4.2.

The far-range f is a low-frequency effect [1],[2] and we validate this observa-

tion in Figure 3(4d). f is bandlimited approximately to kfar i.e. f̂k ≈ 0,∀ |k| >
kfar. In practice, setting kfar = P

20 (10% of the spectrum) is sufficient.
The far-range transport f has wider spatial support compared to near-range

transport n and varies smoothly implying kfar � knear. Similarly, n has wider
support compared to d and hence knear <

P
2 . This fact enables us to choose

illumination lk which separates one component from the other. Since the com-
ponents are redundant in either projector’s spatial or frequency domain, only a
few of these discriminant illumination patterns also suffice to acquire them.

4 Light Transport Acquisition

Based on the spatial and frequency domain models of Sections 3.2 and 3.3, we
make the following observations critical to our method.

1. We can pick an illumination lk of frequency k such that if knear < |k| ≤ P
2

then bfk = 0, bnk = 0 and if kfar < |k| ≤ knear then bfk = 0. This allows us to
selectively suppress component transports with our choice of illumination.

2. Each component transport is parsimonious either in spatial or frequency
domain. d has 1 unknown in spatial domain, n has W unknowns in spatial
domain and f has kfar unknowns in frequency domain.

3. For acquiring the W entries {n(p) : p ∈ PW } at every camera pixel, the
illumination patterns must satisfy the following conditions
a) be well-conditioned over the support PW at all camera pixels
b) have minimal response from the far-range component.
A key contribution of our paper is that we pick W basis illumination patterns
{lk : k = P

W ∗ [−W2 , . . . ,−1, 0, 1, . . . , W2 ]. We show that these patterns are
well conditioned over PW at all camera pixels and only a small number of
them have far-range response i.e. satisfy |k| < kfar.

4.1 Direct transport acquisition

We choose the highest frequency basis illumination lk, k = P
2 shown as two

impulses in Figure 3(5b). Since, bnk = bfk = 0, we have bk = bdk = d(q)lk(q).
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Since q is known at each camera pixel after correspondence, d is simply given
as d(q) = bdkl

∗
k(q). We denote the acquired direct transport as d̃. Like Nayar et

al. [4], we pick k = P
2 but we acquire the direct transport whereas [4] estimates

the direct image under flood light.

4.2 Near-range transport acquisition

Uniform sampling in the Fourier domain: We pick W illumination patterns
lk, k ∈ KW = P

W ∗ [−W2 , . . . ,−1, 0, 1, . . . , W2 ]. The sampling pattern is shown in

Figure 3(5c). The frequencies of the patterns lk are { kP = 1
W ∗ [−W2 ,

W
2 ]}. Note

that this is the same set of frequencies as those in the DFT basis e−j2π
k′
W p′ of a

length W signal. The only difference is that lk is length P and hence periodic
with period P

W . It is easy to show that over any window PW of size W , the
patterns in KW are orthonormal i.e.∑

p∈PW

l∗k1(p)lk2(p) =

{
W : k1, k2 ∈ KW , k1 = k2
0 : k1, k2 ∈ KW , k1 6= k2

(5)

This implies that the W patterns in KW are well-conditioned over any window
PW . They are sufficient to estimate n robustly at any camera pixel.
Removing the direct component: Since bdk 6= 0, we remove the contribution

d̃ from the pixel intensity.

b̃k = bk − d̃ · lk = (t− d̃) · lk
b̃k ≈ n · lk + f · lk

=
∑
p∈PW

n(p)lk(p) + bfk .

(6)

Reconstructing n: Since {lk : k ∈ KW } form an orthonormal basis over PW , n
can be reconstructed from {b̃k : k ∈ KW } through simple inversion of the basis.
Equation (5) implies that the inversion is nothing but a linear combination of
basis {l∗k : k ∈ KW } with {b̃k : k ∈ KW } as the coefficients.

1

W

∑
k∈KW

b̃kl
∗
k(p′) =

1

W

∑
k∈KW

∑
p∈PW

n(p)lk(p)l∗k(p′) +
1

W

∑
k∈KW

bfkl
∗
k(p′) (7)

ñ(p′) = n(p′) + nerr(p
′). (8)

Removing far-range effect: Note that bfk 6= 0 for |k| ≤ kfar and the estimate
ñ is corrupted by far-range effect at these frequencies. Since, the set KW ∩ {k :
|k| ≤ kfar} is small, the error nerr is small as well. In Figure 3(5), this set is
the intersection of the red and the blue samples. Since kfar = 0.05P , if W < 20
then only the DC (k = 0) is common to both sets. Even when W ≥ 20, only a
small number of frequencies are in common. More importantly, the fact that only
a small number of patterns in KW have a response from far-range component
enables almost perfect separation between near and far-range effects. It also
provides the flexibility to drop the frequencies KW ∩ {k : |k| ≤ kfar} from
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KW . In practice, we eliminate the error nerr by only considering frequencies
KW \{k : |k| ≤ kfar}. Then we have bfk = 0, ∀k and

b̃k =
∑
p∈PW

n(p)lk(p). (9)

Reconstructing n with a prior: Since the equations (9) are now under-
determined by a small number, we impose a prior on n. We found the sparsity
prior on n to be robust on real data and we solve

ñ = arg min
n

∑
p∈PW

|n(p)| s.t.
∑

KW \{k:|k|≤kfar}

|b̃k−
∑
p∈PW

n(p)lk(p)|2 ≤ ε. (10)

where ε is the noise variance noise across all measurements at a camera pixel.
The main contribution of our work is the choice of illumination frequencies

which allow near-range to be acquired with little interference from the far-range
effects. Our approach is significant since it allows the separation of near and
far-range effects through a simple choice of illumination frequencies.

4.3 Far-range transport acquisition

We pick illumination patterns {lk : k = [−kfar, kfar]}. Since bnk 6= 0 and bdk 6= 0,

we remove their contribution d̃, ñ from the pixel intensities.

b̃k = bk − d̃ · lk − ñ · lk = (t− d̃− ñ) · lk (11)

b̃k ≈ f · lk (12)

Since bfk = f ·lk = 0, ∀|k| > kfar, we have acquired the entire frequency spectrum
of f and f is reconstructed through a simple inverse DFT.

4.4 Theoretical analysis of savings

The transports d and n are parameterized by 1 and W values in projector’s
spatial domain and f is parameterized by 2kfar values in projector’s frequency
domain. In total, the number of parameters in 1-D are 1 + W + 2kfar. In 2-D,
assuming a P × P projector, the corresponding number of parameters are 1,
W 2 and 4k2far with sum total 1 + W 2 + 4k2far parameters. We have shown in
Sections 4.1-4.3 that the components d, n and f can be acquired using exactly
1 + W + 2kfar illumination patterns which is just the number of parameters
(equivalently, 1 +W 2 + 4k2far in 2-D). This shows that theoretically our method
achieves the lower bound placed by our model on the number of measurements
needed to acquire the transport matrix T. Assuming W = αP and 2kfar = βP ,
the savings in number of measurements in 2-D over the brute force is

τ =
P 2

1 + α2P 2 + β2P 2
≈ 1

α2 + β2
. (13)

Typically, we pick α = 0.15 and β = 0.1 giving us a theoretical saving of τ ≈ 31.
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5 Results

5.1 Implementation details

Hardware setup: We acquire the transport of a real, diffuse scene with a
Canon 5D Mark II and a 50mm f1.4 lens at exposure 1/10sec. We use an Op-
toma TX779P operating at 120Hz for projecting sinusoidal illumination. We use
real-valued, DC offset illumination patterns (in 1-D) 0.5 + 0.5 cos(2π kP p) and

0.5 + 0.5 sin(2π kP p) in place of complex lk and l−k. To accurately account for

the DC offset of the projector, we project a pattern 0.5 + 0.5 cos(2π kP p) and its

inverse 0.5− 0.5 cos(2π kP p), resulting in half the savings suggested by theory.
Projector-camera correspondence: For correspondence, at each camera pixel
c we determine the projector pixel q directly lighting it. We create a square
transport matrix T , by averaging the intensity of all camera pixels lit by the
same projector pixel q. Under global illumination, we establish correspondence
by scanning the scene with horizontal and vertical black stripes [4].
Savings in measurements: Equation (13) suggests theoretical savings of τ ≈
31× but practically the savings are halved to τ ≈ 15.5×. In our acquisition,
we achieve savings of τ = 15.4× in Figure 2 and τ = 20.8× in Figure 4. Note
that as a pre-capture process, the projector-camera correspondence requires 2P
projections which is linear in P and a small fraction of P 2.
Reconstruction: We set W sufficiently large, typically W ∼ 0.15P , to model
the near-range accurately at all camera pixels. This implies the entries of n in
PW are sparse. If W ∼ 0.15P and kfar ∼ 0.05P , the set KW∩{k : |k| ≤ kfar} has
only a small fraction of patterns compared to W 2 and Equation (9) is slightly
under-determined. We reconstruct n robustly in practice by solving (10) for
sparse n at each camera pixel independently using a Bayesian algorithm [17].

We quantify the reconstruction accuracy of relighting by the signal-to-noise

ratio SNRb = 20 log10
‖Tl‖

‖(T−T̃)l‖ where b = Tl is the image of the scene under

lighting l and T̃l is the image under relighting. Additionally, the reconstruction

accuracy of row t of a camera pixel is quantified by SNRt = 20 log10
‖t‖

‖(t−t̃)‖ .

5.2 Experimental results

Acquisition of light transport: We acquire the transport matrix of the scenes
shown in Figure 2 and Figure 4. Both the matrices are large for brute force ac-
quisition but we accurately acquire with savings of 15.4× and 20.8× respectively.
Additionally, we decompose the transport into direct, near-range and far-range
components. In Figure 2, a scene with significant inter-reflections and subsur-
face scattering, the acquired transport under relighting is close to the original
lit scene. The candle’s specularities appear in the direct component. The candle
exhibits significant subsurface scattering which appears in the near-range. In the
far-range, the candle has a red and green tinge due to the red and green wall on
either side. Likewise the far-range has red diffuse inter-reflection from the wall
on the cup and it displays none of the high frequencies in the penguin image. In
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Fig. 4. We acquire the 16384 × 16384 transport matrix of a 128 × 128 large scene of
a corner with 788 illumination patterns. We set W = 15. Under relighting with the
landscape image (second row), notice that the blue sky casts blue inter-reflections on
the floor and the green ground casts green inter-reflections on the walls.

Figure 4, we accurately acquire the transport at a corner. The near-range has the
local inter-reflections at the edges of the wedge and the diffuse inter-reflections
appear in the far-range.
Simulation on acquired light transport: We simulate our method on the

transport of a real scene (Figure 5) acquired through brute force and compare
with the ground truth for validation. We decompose and acquire the transport
matrix with just the minimal required 1+W 2 +4k2far patterns. We pick W = 19
and set 2kfar = 0.1P in both the dimensions i.e. (7, 10) respectively. We drop 9
near-range illumination patterns which fall within (or closest to) 2kfar. Notice
that SNRb of relighting is high under floodlight and a natural image.

SNRb computed at different illumination frequencies k and SNRt computed
at different camera pixels c are shown as a 2-D plot in Figure 5(Right). Across
all frequencies and pixels, the SNR is high and atleast 25dB. The lowest SNRb

is at kfar, the transition frequencies between the far and near-range. Likewise,
the lowest SNRt is at the camera pixels in the transition zone between the near
and far-range close to the edge.
Comparison to CLT [9]: CLT was proposed for acquiring transport matrices

under distant lighting and exploits sparsity of each row (reflectance function) in
Haar wavelet basis. It also imposes spatial consistency by jointly reconstructing
the reflectance of neighboring camera pixels. Under spatially varying illumination
the transport matrix is diagonally dominant and full rank, making the joint
modeling and reconstruction of rows harder. Hence, for comparison with CLT,
we treat each row independently and do not impose spatial consistency in its
implementation. For acquisition we use pseudo-random illumination patterns
lk with entries from a Bernoulli distribution. We reconstruct row t from the
measurements {bk : k = 1, 2, . . . ,K} by imposing sparsity of t in Haar wavelet
basis. The experiments in Figure 6 show that our method outperforms CLT.
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Fig. 5. We simulate our method on a real light transport acquired through brute force.
(Left) We use 423 illumination patterns to acquire and decompose the 6800 × 6800
matrix of a 68 × 100 wedge-with-toy scene. The near-range captures the local inter-
reflections at the edge and the far-range captures the diffuse inter-reflections. (Right)
We plot SNRb as a function of the sinusoidal illumination frequency k = (kx, ky) and
SNRt as a function of the camera pixel c = (cx, cy).

6 Conclusions

We have presented a theoretical model of the light transport and its components
under spatially varying illumination. Our paper separates the near-range effects
from the far-range allowing us to acquire the transport using minimal number
of patterns. We show practical results by acquiring the transport of real scenes
efficiently and decomposing them into component transports.

Practically, we treat the projector-camera correspondence and light trans-
port acquisition separately. An acquisition technique which treats them in the
same framework is an interesting avenue for future work. Theoretically, modeling
of the near-range and far-range in a single framework is desirable for graceful
decomposition and efficient acquisition.

In summary, light transport acquisition is an important and challenging prob-
lem due to the size of the matrix. However, the matrix exhibits structure and is
decomposable and we believe there is significant future work in exploiting this
structure for more efficient acquisition.
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