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Abstract

This paper describes an e�cient method for constructing a tiling between a pair of planar contours.

The problem is of interest in a number of domains, including medical imaging, biological research

and geological reconstructions. Our method, based on ideas from multiresolution analysis and wavelets,

requires O(n) space and appears to require O(n log n) time for average inputs, compared to the O(n

2

)

space and O(n

2

log n) time required by the optimizing algorithm of Fuchs, Kedem and Uselton

1

.

The results computed by our algorithm are in many cases nearly the same as those of the optimizing

algorithm, but at a small fraction of the computational cost. The performance improvement makes

the algorithm usable for large contours in an interactive system. The use of multiresolution analysis

provides an e�cient mechanism for data compression by discarding wavelet coe�cients smaller than

a threshold value during reconstruction. The amount of detail lost can be controlled by appropriate

choice of the threshold value. The use of lower resolution approximations to the original contours yields

signi�cant savings in the time required to display a reconstructed object, and in the space required to

store it.

Keywords: Surface reconstruction; contours; tiling; meshes; multiresolution analysis; wavelets

1. Introduction

Reconstruction of surfaces from a set of planar con-

tours such as those shown in Figure 2 is an important

problem in medical and biological research, geology,

and other areas. The problem can be broken into sev-

eral subproblems

2

, one of which, the tiling problem,

is the subject of this paper.

A solution to the tiling problem constructs a poly-

hedron from two planar polygons, using the polygons

as two of the faces of the polyhedron, and triangles

constructed from an edge of one polygon and a ver-

tex of the other as the remaining faces. In Figure 1,

the upper left shows a pair of contours and and the

lower right shows a solution to the tiling problem for

those contours. To be a valid solution to the tiling

problem , the polyhedron constructed must be simple.

O'Rourke and Subramanian

3

have shown that such

a solution is not always possible. They demonstrated

that if the shapes of the contours di�er su�ciently,

no simple polyhedron can be constructed subject to

the above restrictions. In practice, adjacent contours

are usually fairly similar in shape but there are excep-

tions. Consider the pair of contours shown in Figure 2,

representing adjacent slices through the cerebral cor-

tex of the human brain. Notice that the shapes of the

contours di�er dramatically. In such cases, the shape

di�erences may be great enough that no simple poly-

hedral tiling can be constructed within the standard

de�nition of the tiling problem.

Numerous methods have been devised to solve the

tiling problem. A method that computes a tiling op-

timal with respect to a certain class of goal functions

was devised by Keppel

4

, and later improved by Fuchs,

Kedem and Uselton

1

. We will refer to their algorithm

as the optimizing algorithm. The goal function assigns

a cost to each triangle of the tiling, and minimizes

the total cost over the triangles in the tiling. In part

because of the computational cost of the optimizing al-

c
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Figure 1: The main steps of the multiresolution

tiling algorithm. Upper Left: Input contours. Up-

per Right: Tiled base-case. Lower Left: Interme-

diate stage of single-wavelet reconstruction. Lower

Right: Final tiling.

gorithm, numerous other methods have been devised

that do not perform a global optimization. A discus-

sion of some of the methods can be found in Meyers,

Skinner and Sloan

2

.

This paper describes a new method for solving

the tiling problem that represents a signi�cant im-

provement in both space and time when compared

to the optimizing algorithm. That algorithm requires

O(n

2

logn) time and O(n

2

) space to construct a tiling

for a pair of contours each of size n. In many cases, this

performance is acceptable. However, when the number

of vertices in a contour is large, the performance of the

optimizing algorithm becomes unacceptable, particu-

larly in an interactive environment. Contours contain-

ing 1000 vertices or more are encountered in actual

data sets. With current hardware and su�cient mem-

ory, the optimizing algorithm takes approximately 2

minutes to construct a tiling from a pair of contours

each with 1000 vertices. With insu�cient memory, the

time required increases to more than 30 minutes, a

problem we encountered when attempting to tile a

pair of 1000 vertex contours on a \normally con�g-

ured" DECstation 5000/125 with 20 megabytes mem-

ory. The multiresolution tiling algorithm presented

Figure 2: A pair of contours obtained from the cere-

bral cortex of the human brain. The contours contain

128 (closed dots) and 114 (open dots) vertices respec-

tively.

here takes about 1 second to compute a tiling for the

same input, on the same machine.

The contours of Figure 2 represent a severe test of

a tiling algorithm. Each of the contours has several

indentations along its perimeter that represent the in-

foldings or sulci of the cerebral cortex. An anatomist

would require these indentations to be matched in a

reconstruction so that the sulci maintain continuity.

As Figure 3 shows, even the optimizing algorithm

can construct unacceptable tilings. Notice that some

of the sulci are not matched in the tilings produced

by the optimizing algorithm and our multiresolution

algorithm. For that reason, user interaction is a neces-

sary part of a system for reconstructing surfaces from

a set of contours. In an interactive system, delays of

the magnitude encountered with the optimizing algo-

rithm are unacceptable, and have led to the use of

faster, non-optimizing methods. The algorithm we de-

scribe uses methods from multiresolution analysis to

reduce the size of the contours, then uses the optimiz-

ing algorithm to construct an optimal tiling for the

reduced problem size, and �nally uses multiresolution

reconstruction and local optimization to construct a

�nal tiling. Our algorithm uses O(n) space and what

appears to be O(n log n) time. Although we do not

prove this time bound, we show experimental results

that support it.

2. Multiresolution Analysis

This section provides an introduction to multiresolu-

tion analysis and wavelets. The reader is referred to

Chui

5

and Mallat

6

for a more detailed treatment.

We �rst illustrate the basic idea behind wavelet anal-

ysis using as an example a one-dimensional piecewise

linear function of a parameter t. We then show how

c
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Figure 3: Tilings computed by Upper: Our single-

wavelet algorithm and Center: The method of Fuchs,

Kedem and Uselton, for the contours in Figure 2. Nei-

ther result would be considered acceptable by a trained

anatomist. Lower: an interactively modi�ed tiling in

which the sulci are matched from one section to the

next.

wavelet analysis can be used to �nd least-squares best

low-resolution approximations of contours.

A sequence of 2

n

real-valued samples can be repre-

sented by a piecewise-linear function f

n

(t) where the

samples are considered to be taken at equally spaced

integer knot values of the parameter t. In the follow-

ing discussion, the notation c

n

will be used to denote

a sequence of 2

n

samples, (c

n

0

; : : : ; c

n

2

n

�1

) representing

the values of a piecewise linear function at the integer

values of t.

If we are given a sequence of samples c

n

, we

can obtain an approximating sequence c

n�1

with

half as many samples by replacing c

n

with a se-

quence found by convolving with a �lter kernel a =

f: : : ; a

�1

; a

0

; a

1

; : : :g and then selecting every other el-

ement of the new sequence, a process known as down-

sampling. The sequence c

n

is treated as a periodic

function during convolution. Appropriate choice of the

kernel a is an important consideration in such a pro-

cess since its properties will determine the quality of

the the low-resolution sequence. An important prop-

erty is the ability to recover the detail lost when con-

verting to the approximating sequence. If we can �nd

a kernel b = f: : : ; b

�1

; b

0

; b

1

; : : :g with the appropriate

characteristics, we can obtain a detail sequence d

n�1

by convolution of c

n

with b followed by downsampling.

If a and b are well chosen, it is possible to reconstruct

the original sequence from c

n�1

and d

n�1

using two

additional �lters p

n�1

and q

n�1

. Multiresolution anal-

ysis makes use of such kernels to �nd a series of detail

sequences and a low-resolution approximation of the

original sequence.

Let us now take a more formal view of the process.

Given c

n

, we �nd c

n�1

by convolution and downsam-

pling with kernel a according to:

c

n�1

i

=

X

l

a

l�2i

c

n

l

: (1)

Similarly, d

n�1

is obtained by convolution and down-

sampling with kernel b:

d

n�1

i

=

X

l

b

l�2i

c

n

l

: (2)

The elements of the sequence c

n�1

replace the ele-

ments of c

n

that have even values of t, and the ele-

ments of d

n�1

can be thought of as capturing the lost

detail.

The kernels a and b are often called analysis �lters.

If the analysis �lters have been chosen appropriately,

we can �nd a pair of kernels p and q (called synthesis

�lters) that will allow us to reconstruct c

n

from c

n�1

and d

n�1

:

c

n

i

=

X

l

[p

i�2l

c

n�1

l

+ q

i�2l

d

n�1

l

]: (3)

The analysis �lters allow us to transform a sequence

into two new sequences: a low-resolution approxima-

tion to the original, and a detail sequence; a process

often called decomposition. The synthesis �lters allow

us to reconstruct the original sequence from the low-

resolution sequence and the detail sequence, a pro-

cess known as reconstruction. Decomposition can be

applied to the low-resolution sequence c

n�1

, to ob-

tain c

n�2

and d

n�2

, and can be continued recursively

until we obtain c

0

and a series of detail sequences

d

0

; d

1

; : : : ; d

n�2

; d

n�1

, as illustrated by Figure 4. This

c
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Figure 4: Filter Bank

set of sequences has the same number of elements

as the original sequence c

n

, and is often called the

wavelet transform of that sequence. The elements of

the detail sequences are often called wavelet coe�-

cients. At any stage of the decomposition process, the

sequence c

n�j

gives the value of c(t), for the knots at

t = k � 2

j

, k 2 f0; : : : ; 2

n�j

� 1g. The elements of the

sequence d

n�j

capture the detail lost when knots at

t = ((k � 2

j

) + 2

j�1

) were removed during decomposi-

tion.

Because of the reversibility of the decomposition

and reconstruction processes, the original sequence

can be recovered from the wavelet transform. There-

fore, no information is lost in going from one repre-

sentation to the other. The process of recursively ap-

plying the analysis �lters to a sequence is often called

a �lter bank, and is illustrated by Figure 4. The �gure

suggests an e�cient algorithm for �nding a wavelet

transformation, called the �lter bank algorithm. If the

�lters a, b, c, and d are all of �nite width (or support),

then the �lter bank algorithm can be used to convert

between the original sequence and wavelet transform

in linear time.

Thus far, we have postulated the existence of suit-

able synthesis and analysis �lters, but have said noth-

ing about how they might be chosen. That is the sub-

ject of the next section.

2.1. Scaling Functions and Wavelets

In the previous section, we described how a set of anal-

ysis and synthesis �lters can be used to represent a

function at several levels of detail. We now examine

the relationship between these discrete �lters using the

multiresolution analysis framework developed by Mal-

lat

6

.

The key idea is that a function f

j

(t) can be asso-

ciated with a sequence c

j

by thinking of the elements

of c

j

as the coe�cients of a series of scaling functions

�(t), that are identical except for translation by an

integer value:

f

j

(t) =

X

k

c

j

k

�(2

j

t� k)

A scaling function must have the property that it is

re�nable. To be re�nable, there must exist an unique

sequence of coe�cients p = f: : : ; p

�1

; p

0

; p

1

; : : :g that

allow �(t) to be represented in terms of �(2t):

�(t) =

X

k

p

k

�(2t� k): (4)

Therefore, a re�nable function can be represented by

the integer translates of a scaled version of itself. The

re�nement coe�cients for the scaling function �(t) are

identically the synthesis �lter p. If we consider the

nature of the functions that can be represented by

the translates of a scaling function, we �nd that there

are sequences that can be represented exactly by the

translates of �(2t) that cannot be exactly represented

by translates of �(t). This leads us to the concept of

a set of nested spaces spanned by integer translates of

the scaling function at its di�erent resolution levels. In

more formal terms, we can de�ne a set of linear spaces

V

j

given a scaling function �(t):

V

j

� Span(�(2

j

t� k) j k 2 f: : : ;�1; 0; 1; : : :g):

Each of the spaces V

j

is spanned by the integer trans-

lates of the appropriately scaled version of the scaling

function: �(2

j

t). By that de�nition, the translates of

�(2

j

t) form a basis for V

j

. Since by de�nition a scal-

ing function is re�nable, we know that the spaces are

nested:

V

0

� V

1

� V

2

� � � :

Recall that the orthogonal complement of space B in

space A is de�ned by

B

?

= fq 2 A j hq; fi = 0;8f 2 Bg :

If we consider a pair of spaces V

j

and V

j+1

from this

in�nite set, we can de�ne a space W

j

to be the or-

thogonal complement of V

j

in V

j+1

so that:

V

j+1

= V

j

�W

j

:

Mallat de�nes a wavelet to be a function  (x) such

that the integer translates of  (2

j

x) form a basis for

W

j

. Together V

j

and W

j

span the space V

j+1

. This

property matches nicely with the idea of �nding an

approximation of a function and capturing the lost

detail presented in the previous section. For a function

that is an element of space V

j+1

, we can �nd a lower-

resolution approximation in V

j

and capture the lost

detail in W

j

. This notion is stated more formally for

scaling function �(t) and wavelet  (t) by the following

decomposition relation:

�(2t� l) =

X

k

[a

l�2k

�(t� k) + b

l�2k

 (t� k)] :

The analysis �lters a and b described in the previous

section are identical to the coe�cients that make the

decomposition relation hold for the chosen wavelet and

scaling function.

c
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Finally, the synthesis �lter q is de�ned to be the

sequence satisfying

 (t) =

X

k

q

k

�(2t� k):

2.2. Multiresolution Analysis of Contours

The �lter bank decomposition illustrated in Figure 4

can be applied to decomposition of a contour repre-

sented as a planar polygon by treating the x and y

coordinates of its vertices separately, computing a de-

composition for each sequence. The contour is treated

as a pair of functions x(t) and y(t), periodic with re-

spect to t over an interval equal to the number of ver-

tices in the contour. The parameter t is allowed to

range over the interval [0; n) for a contour of n vertices.

Each vertex is viewed as a knot, and has an integer

value of t. Points on the contour between knots are

linearly interpolated between pairs of knots, so that

x(t) and y(t) are piecewise linear functions of t over a

series of n knots with uniform knot spacing.

When using multiresolution analysis, it is impor-

tant to choose the scaling function and wavelet appro-

priately. Since contours represented by planar poly-

gons are piecewise linear functions, a scaling function

and wavelet should be chosen that can easily represent

piecewise linear functions. If it were desirable to repre-

sent contours as piecewise smooth functions, it would

be desirable to choose a wavelet basis that could easily

represent such a representation.

2.2.1. Choice of Scaling Function and Wavelet

For the multiresolution analysis of contours, we use

the linear B-spline (or hat function) as the scaling

function �(t). The linear B-spline is a piecewise lin-

ear function de�ned by

�(t) =

(

t+ 1 t 2 [�1; 0]

�t+ 1 t 2 (0; 1]

0 otherwise:

With this choice of �(t), we can determine the values

of the synthesis �lter p, which must make the relation

of equation 4 hold. For the linear B-spline,

�(t) =

1

2

�(2t� 1) + �(2t) +

1

2

�(2t+ 1):

Therefore the analysis �lter p has non-zero values only

for k 2 f�1; 0; 1g.

For the wavelet function  (t) we use a single-knot

wavelet similar to that described by DeRose, Louns-

bery and Warren

7

. As implied by its name, the single-

knot wavelet adds only one new knot when added to

an existing function using the �lter bank. That prop-

erty is useful when multiresolution analysis is used for

data compression.

To obtain  (t), we �rst de�ne �(t) to be the orthog-

onal projection of �(2t � 1) 2 V

1

into V

0

. Since � is

an element of V

0

there must exists coe�cients �

j

such

that

�(t) =

X

j

�

j

�(t� j): (5)

The wavelet  (t) is de�ned in terms of �(2t� 1) and

�(t) as

 (t) = �(2t� 1)� �(t):

It is not di�cult to show that  (t) is a wavelet since

its integer translates span W

0

.

The above construction of  (t) has an unfortunate

consequence: when so de�ned,  (t) has in�nite sup-

port. Analysis and reconstruction are linear-time op-

erations if the �lters a, b, p, and q have �nite support,

but that is only possible if  (t) has �nite support. For

our purposes, it is su�cient to modify the de�nition of

 (t) slightly so that its support is �nite. The modi�ed

version of  (t) is no longer a true wavelet; however, by

appropriately choosing the number of non-zero terms

in the projection of �(2t � 1) into V

0

, orthogonal-

ity can be approached as closely as desired. In Ap-

pendix A we show how to �nd values for the sequence

� in Equation 5 for �nite support using a constrained

least squares method.

Since  (t) by our modi�ed de�nition is no longer

orthogonal to V

0

, the low-resolution contours found

are no longer the least squares best approximations

to the original. They are, however, the best approxi-

mation subject to the constraints imposed, and they

have worked well in practice. It is possible to de�ne

a wavelet that is orthogonal to V

0

and also of �nite

support. Chui

5

de�nes a minimally supported wavelet

for the linear B-spline, but the synthesis �lters a and

b in his construction are of in�nite extent, and must

be truncated for implementation. Consequently, the

minimally supported wavelet does not allow exact re-

construction. Chui shows an upper limit for the mag-

nitude of the error as a function of the number of non-

zero terms in the truncated analysis �lters. We sacri-

�ce orthogonality but maintain exact reconstruction

and can approach orthogonality as closely as desired.

In contrast, Chui sacri�ces exact reconstruction, but

shows that it can be approached as closely as desired.

2.2.2. Determining Filter Sequence Values

The values of the synthesis �lter q and the analysis

�lter a depend on the values of the sequence �. Once

the sequence � has been determined, the values of the

c
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Wavelet and Scaling Function
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Figure 5: The single-knot wavelet  (t) and linear B-

spline scaling function �(t).

synthesis �lter q are

q

k

=

8

>

<

>

:

��

k

2

k even

�

1

2

(�

k�1

2

+ �

k+1

2

) k odd; k 6= 1

1�

1

2

�

0

�

1

2

�

1

k = 1:

(6)

and the values of the analysis �lter a are

a

�2k

=

�

�

1

2

(�

k

+ �

k+1

) k 6= 0

1�

1

2

(�

0

+ �

1

) k = 0

(7)

a

1�2k

= �

k

: (8)

Using these relationships, the �lters a and q can be

found to any number of non-zero terms by solving for

the required number of non-zero terms of the sequence

�. The derivations of Equations 6, 7, and 8 are found

in Appendix A.

To apply wavelet analysis to contours, we treat a

polygonal contour as a periodic sequence of knotswith

equally spaced integer values of a parameter t, each

with associated values x(t) and y(t). To �nd low-

resolution contours, the wavelet transform is applied

to x(t) and y(t) independently. The original number

of vertices in a contour determines the space V

j

into

which the highest resolution representation of the con-

tour falls.

The functions �(t) and  (t) are plotted in Figure 5;

Table 1 shows the non-zero terms of analysis �lters a

and b and synthesis �lters p and q when � contains 4

non-zero terms.

3. Multiresolution Tiling

Multiresolution analysis motivates a new approach to

solving the tiling problem. The �rst step is to re-

duce the size of the problem by using multiresolu-

tion analysis to �nd low-resolution approximations to

the original contours (see Figure 1). These low resolu-

tion contours are tiled using the optimizing algorithm.

i a

i

b

i

p

i

q

i

-4 1/28 0 0 0

-3 -1/14 0 0 1/28

-2 -1/8 0 0 1/14

-1 9/28 0 1/2 -1/8

0 19/28 -1/2 1 -9/28

1 9/28 1 1/2 19/28

2 -1/8 -1/2 0 -9/28

3 -1/14 0 0 -1/8

4 1/28 0 0 1/14

5 0 0 0 1/28

Table 1: The non-zero terms of the analysis �lters a

and b and the synthesis �lters p and q found when �

contains 4 non-zero terms.

Detail is then added to the low-resolution tiling by

adding wavelets, inserting edges at newly added ver-

tices, and improving the tiling by local edge swapping.

The resulting tiling is no longer guaranteed to be glob-

ally optimal with respect to the goal function used

for computing the low-resolution tiling, but it can be

computed much faster, particularly for contours with

many vertices. Since the tiling begins with an opti-

mized base case and maintains local optimality, the

�nal tiling constructed is often very nearly identical

to that computed by the optimizing algorithm. Signi�-

cant di�erences between the methods occur most often

in areas where the contours' shapes are very di�erent.

In such situations, it is often the case that neither

method produces an acceptable result (see Figure 3).

If the multiresolution algorithm is to achieve an

overall speedup, its reconstruction and local optimiza-

tion processes must be fast. If addition of one wavelet

coe�cient to the reconstruction requires as much as

O(n) time, then the overall reconstruction process will

require O(n

2

) time. To achieve the desired speedup,

it is necessary that the time to add a single wavelet

during reconstruction be a nearly constant-time oper-

ation. Addition of a wavelet coe�cient to a contour

can be done in constant time using the �lter bank

algorithm. To show an improvement in time complex-

ity over the optimizing algorithm, it is necessary to

demonstrate that the additional time required for the

addition of edges and local optimization of the tiling is

su�ciently small. A proof of upper bound for this pro-

cess is di�cult because it is possible to imagine a sit-

uation in which insertion of an edge or movement of a

c
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vertex could alter a local con�guration so that a previ-

ously undesirable edge swap becomes desirable. That

edge swap could conceivably allow a \cascade" of pre-

viously unswappable edges to become swappable. It is

conceivable that addition of each wavelet could cause

enough perturbation for a cascade of swaps to occur.

If such situations are common, O(n) time could be

required for local optimization after addition of each

wavelet, resulting in an overall O(n

2

) time complex-

ity. Although we o�er no proof of an upper bound, in

Section 4 we present experimental data to support the

assertion that for the average case, local optimization

after addition of a wavelet is very nearly a constant

time operation (see Figure 8 and Figure 10).

3.1. Contour Decomposition

Decomposition of a contour into a set of wavelet co-

e�cients and a lower resolution contour is done using

the �lter bank method described in Section 2. If the

number of vertices in a contour is not a power of 2, we

add vertices using the following method:

1. Place the original contour edges into a priority

queue based on their length.

2. Remove and bisect the longest edge in the queue

by adding a new vertex at its midpoint.

3. Insert the two new edges into the queue.

4. Repeat until the required number of vertices have

been added.

Since the number of vertices in a contour is at most

doubled by this process, no more than a constant fac-

tor is added to the overall complexity of computing

a tiling for the resulting contour. With appropriate

choice of priority queue implementation, this addition

of vertices requires at most O(n log n) time for a con-

tour of n vertices.

3.2. Reconstruction

The reconstruction of a contour from its low-resolution

version can be done using several di�erent methods.

The �lter bank algorithm described in Section 2 is

one. It is easy to implement, and reconstruction of a

contour from its low-resolution version requires O(n)

time. Another method is to reconstruct by adding

wavelet coe�cients one at a time. This method is not

as easy to implement as the �lter bank algorithm, and

the reconstruction of the original contour from its low-

resolution version requires O(n log n) time, but it has

some advantages over the �lter bank approach, dis-

cussed below. Local optimization of the tiling is done

after each step of the reconstruction.

3.2.1. Filter Bank Method

Figure 6: Illustration of vertex and edge addition

during �lter bank reconstruction reconstruction. Newly

added vertices are open circles, newly added edges are

shown as dotted lines and connect each newly added

vertex to a vertex of the opposite contour. In a real

situation the number of vertices of each contour would

be a power of 2, the original vertices would be moved

to new locations, and the newly added vertices would

not strictly bisect original edges.

Computing a tiling using the �lter bank method in-

volves the following steps: First, use the �lter bank to

decompose each contour into a low-resolution version.

Next, compute a tiling for this pair of low-resolution

contours using the optimizing tiling algorithm. Fi-

nally, construct a tiling for the original contours by

repeating the following steps for each level of the �l-

ter bank:

1. Construct a new polygon for each contour using

one level of the �lter bank. This splits each edge

of both contours, thereby introducing a new ver-

tex into each triangle of the tiling from the lower

resolution level, so that the former triangles are

now quadrilaterals, with three vertices on one of

the contours and the fourth on the opposite con-

tour. The newly added vertices do not in general

bisect an original edge, since their locations are de-

termined by the magnitude of the wavelet coe�-

cients involved. Rather, each edge is split into two,

and all original vertices of both contours may be

moved from their original positions.

2. For each new vertex added to a contour, construct

an edge from that vertex to the quadrilateral ver-

tex on the other contour, splitting the quadrilateral

into 2 triangles (see Figure 6).

3. Place all the old cross edges into a list of \suspect"

edges.

4. Locally optimize the tiling as described in Sec-

tion 3.3.
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5. Repeat until the original resolution is reached (Re-

quires n�m iterations for a contour of 2

n

vertices

and a low-resolution contour of 2

m

vertices).

The �lter bank method is easy to implement and re-

constructing contours from their low-resolution ver-

sions requires only linear time. The cost of locally op-

timizing the tiling at each level of the �lter bank recon-

struction determines the overall cost of the algorithm.

We have collected experimental results by using this

algorithm to construct tilings for contours obtained

from the human brain. These data suggest that opti-

mization after addition of one vertex and edge to the

tiling (see Figure 10) requires approximately constant

time; the overall cost of the �lter bank tiling method

therefore appears to be O(n log n) (see Figure 8).

3.2.2. Single-Wavelet Method

The �lter bank reconstruction process doubles the res-

olution of each contour at each step, and requires that

wavelet coe�cients be added in the inverse of the order

they were found during analysis. By adding wavelet

coe�cients one at a time, it is possible to use them

in any desired order, regardless of the resolution level

from which they were obtained, and to avoid using

a wavelet if the magnitude of its coe�cient is below

some threshold value. It is particularly useful to recon-

struct by adding the wavelet coe�cients in decreasing

order of their magnitude.

Adding wavelets in decreasing order has two ben-

e�ts. First, it allows for data compression. Recon-

struction using only wavelets with coe�cient magni-

tude larger than some threshold value can reduce the

number of vertices in a contour while preserving as

much detailed structure as is consistent with the re-

duced number of vertices. Second, reconstruction by

addition of wavelets in order of decreasing magnitude

causes the contours to approach their original shape

as rapidly as possible. Intuitively, it seems plausible

that a better tiling should result, because the local

optimization process operates on a close approxima-

tion of the �nal shape as early as possible. In practice,

this approach seems to produce a better tiling than

the method of Section 3.2.1.

The initial steps in computing a tiling using the

single-wavelet method are the same as those in the

�lter bank method.

Figure 7 illustrates two cases of the addition of a

single wavelet to a one-dimensional function f(t). For

a two-dimensional contour, the x and y coordinates

of a vertex are modi�ed respectively by the x and y

components of the wavelet coe�cient. Starting from a

tiled pair of low-resolution contours, the single-wavelet

method proceeds as follows:

20
22

24 26

28
30

25

16

0 0

0

16

20
22

24

26

25

28

30
0

16

0 0

0 0

16

Figure 7: Illustration of single-wavelet reconstruc-

tion in one dimension. Upper: Addition of a �ne

detail wavelet to a coarse detail function. All intrin-

sic wavelet knots are added to the function, shown

by white circles. Lower: Addition of a coarse detail

wavelet to a function already at a �ne level of de-

tail. All intrinsic wavelet knots are already present in

the function. Knots indicated by white circles must be

added to wavelet before knot vectors are merged.

1. Select a wavelet to add. The method we use is to

alternate contours at each iteration, and use the

wavelets in descending order of the magnitude of

the vector formed by their x and y coe�cients.

2. Merge the set of knots intrinsic to the wavelet and

the set of knots present in the region of the contour

in
uenced by the wavelet so that the wavelet and

contour knot vectors match. After this step, both

the wavelet and the region of the contour in
uenced

by the wavelet contain the union of the intrinsic

wavelet knots and the knots originally present in

the region of the contour in
uenced by the wavelet.
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3. Interpolate values for any newly inserted knots of

either the wavelet or the contour. Values for knots

inserted into the contour are computed by linear

interpolation. Values for knots inserted into the

wavelet are computed by linear interpolation after

the intrinsic knot values have been scaled by the

wavelet coe�cient values.

4. Update the positions of the vertices a�ected by the

wavelet by adding the values of x and y at the

wavelet knots to the corresponding x and y values

of the contour knots at each knot in the wavelet

knot sequence.

5. Place all edges incident on any vertex in
uenced by

addition of the wavelet onto a list of suspect edges.

6. Locally optimize the tiling by the method described

in Section 3.3.

7. Repeat until all wavelets have been added, or until

the coe�cients of the remaining wavelets are below

a threshold value.

In contrast to the �lter bank method, reconstruction

of a polygon using this single-wavelet algorithm re-

quires O(n log n) time. The main reason for using

single-wavelet reconstruction is to gain the bene�ts

associated with adding wavelets in sorted order. Be-

cause sorting requires O(n logn) time, this ine�ciency

relative to the �lter bank reconstruction is not a major

cause for concern.

3.3. Local Optimization

Local optimization of the tiling after addition of a

wavelet involves identifying a subset of suspect edges,

examining them to determine if the local geometry al-

lows an edge swap, and if it does, swapping the edge

orientation if doing so reduces the goal function. Only

edges connecting vertices on di�erent contours need to

be considered, since contour edges cannot be swapped.

The basic idea is that edges must be examined if the

connectivity or geometry has changed in their imme-

diate surroundings.

Filter bank reconstruction proceeds in levels that

double the resolution of the contour at each step. Ini-

tializing a suspects list for this reconstruction method

is straightforward: all edges connecting a vertex from

one contour to a vertex from the other contour in the

tiling from the previous level are adjacent to a newly

added edge, and so are placed onto the suspects list.

The initialization of the list of suspect edges for the

single-wavelet reconstruction di�ers from that used in

�lter bank reconstruction. Single-wavelet reconstruc-

tion adds a variable number of vertices to a contour at

each step (The number can range from 0 to 7 in our im-

plementation). The maximum depends on the number

of non-zero terms in the analysis and reconstruction

�lters. If no vertices are inserted during addition of a

wavelet, maintenance of a suspects list based on adja-

cency to new edges would not place any edges into the

suspects list. That is not a good strategy, since any

of the vertices within the range of the wavelet may

have moved. The strategy we use is to insert into the

suspects list all edges incident on any vertex within

the range of the added wavelet. Once the suspects list

has been initialized, optimization proceeds in the same

manner used for �lter bank reconstruction.

After the list of suspect edges has been initialized,

optimization proceeds by removing an edge from the

suspects list and examining it to determine whether

a swap of its orientation reduces the goal function,

performing the swap if it does. If a swap is performed,

edges adjacent to the swapped edge are placed onto

the suspects list. The optimization process terminates

when the list is empty.

The amount of time required for this local opti-

mization is critical to the complexity of our algorithm.

We have not been able to prove an upper bound for

the process, but data collected in tests using contours

ranging in size from 16 to 1024 vertices suggest that

the number of edges examined per vertex added dur-

ing reconstruction is very nearly constant for contours

ranging in size from 128 to 1024 vertices (see Fig-

ure 10). These data imply an expected performance

for the �lter bank reconstruction of O(n) and for the

single-wavelet reconstruction of O(n log n). Since ad-

dition of vertices to the original contour can require

O(n log n) time, the expected complexity implied by

our data is O(n log n) for both the �lter bank and

single-wavelet methods.

3.4. Choice of Base-case Size

The base-case is a pair of low-resolution contours com-

puted by performing a �lter bank decomposition of the

original contours. An optimal tiling is computed for

the base-case using the optimizing algorithm in step 2

of our algorithm. The size of this base-case needs to be

chosen to balance overall execution time and quality of

the resulting tiling. Since the base-case is of constant

size, its tiling can be computed in constant time.

The smallest possible base-case is a pair of quadri-

laterals. Reducing the original contours to this size

should result in the maximum speedup of the multires-

olution tiling method over the optimizing algorithm.

However, the quality of tiling constructed is likely to

depend on how di�erent the shape of the base-case

is from that of the original contours. Constructing an

initial optimal tiling from a pair of contours that con-

tain most of the key shape features of the originals is

likely to produce a better �nal tiling than constructing

c
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Fuchs

Single-Wavelet

Filter-Bank

Execution Time (seconds)

N

0.00

20.00

40.00

60.00

80.00

0.00 200 400 600 800 1000

Figure 8: Execution time versus N for the Fuchs, Ke-

dem, Uselton algorithm and the �lter bank and single-

wavelet multiresolution algorithms.

the initial tiling from a base-case that contains few of

the shape features of the original.

One option is to allow the user to specify the base-

case size. In that manner the user can make the

tradeo� between acceptable tiling result and execution

time. In a non-interactive environment, a base-case

size of 64 seems to work well (Figure 9). For contours

of that size, the execution times of the optimizing algo-

rithm and the sorted single-wavelet algorithm are ap-

proximately equal (see Figure 8). Contours containing

64 or fewer vertices can be tiled using the optimizing

algorithm without signi�cant loss of performance since

a base-case that size can be computed in roughly the

same time it would take to reconstruct from a smaller

base-case.

4. Results

We have implemented both the �lter bank and single-

wavelet reconstruction versions of the algorithm de-

scribed above. To evaluate their performance we timed

execution on pairs of contours obtained from the \Dig-

ital Anatomist Project", in the Department of Bio-

Single-Wavelet

Filter-Bank

Area Ratio (Opt/MRTile)

N0.90

0.95

1.00

40.00 80.00 120.00

Figure 9: Tiling quality as a function of base-case

size for the contours of Figure 2.

logical Structure, at the University of Washington. In

those data, contour size ranges from 20 to over 1000

vertices. Each timing run computed a tiling using the

optimizing algorithm and a tiling using one of the mul-

tiresolution methods. Various statistics were gathered

by counting the number of times certain key pieces of

code were executed. The resulting tilings were com-

pared with respect to the goal function optimized by

the optimizing algorithm. The results of these tests

are shown in Figures 8, 9, and 10.

Figure 8 shows the timing results obtained for each

of the optimizing, Filter Bank, and Single Wavelet al-

gorithms using a base-case size of 8. For n = 1024

the Filter Bank algorithm is 70 times faster than the

optimizing algorithm. The optimizing algorithm takes

nearly 80 seconds of CPU time, while the Filter Bank

method takes slightly over one second.

Figure 9 shows how the selection of base-case size

a�ects the quality of the tiling for the set of con-

tours shown in Figure 2. Notice that larger base-case

size improves tiling quality (measured as the ratio be-

tween the cost of the optimal tiling and the cost of the

multiresolution tiling), and that a base-case size of 64

seems to be at the point on the curve where further

increase in base-case size only marginally improves the

�nal result.

Figure 10 shows the number of edges examined dur-

ing the local optimization phase of reconstruction for

the single-wavelet and �lter bank reconstruction meth-

ods. Contour size ranges from 16 to 1024 vertices. Af-

ter an initial rise in the number of edges considered per

contour vertex, the number per vertex remains nearly

constant for contours ranging in size from 64 to 1024

vertices. These data suggest that for average inputs, a

nearly constant number of edges needs to be consid-

ered per contour vertex during local optimization.

The contours shown in Figure 2 represent a di�cult

instance of the tiling problem, obtained from the hu-

man cerebral cortex. A trained anatomist would rec-

ognize that each of the 7 indentations on each contour

c
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Filter-Bank

Single-Wavelet

Edges Examined/N

N

4.00

8.00

12.00

16.00

20.00

0 256 512 1024

Figure 10: Number of edges examined per vertex

during the optimization process for contours ranging

in size from 16 to 1024 vertices by the �lter bank

and single-wavelet reconstruction methods. A base-

case size of 8 was used.

should be linked to a corresponding indentation on the

other contour by edges at their inner extrema. Fig-

ure 3 shows tilings produced for those contours by the

optimizing algorithm and by the multiresolution algo-

rithm. Note that there are areas in both tilings that

may not be acceptable according to the criterion that

the indentations should be linked. The lower tiling,

computed by the optimizing algorithm, connects the

long indentation on the right side of the smaller con-

tour to the center of the edge of an indentation on the

larger contour, which probably is not what happens

in the real object. In the other tiling, computed by

our single-wavelet algorithm, the indentation in the

smaller contour is connected to an indentation of the

larger contour, but it is unclear whether or not the

\correct" connection has been found. Simply put, the

\correct" tiling in this region is ambiguous, and de-

pends on the nature of the material from which the

contours were derived. No algorithm is likely to yield

results always acceptable to a trained human user. In

this case, the multiresolution algorithm connected 6 of

7 indentations, compared to 5 of 7 connected by the

optimizing algorithm.

We computed tilings for the contours shown in Fig-

ure 2 using the linear-time \greedy" methods of Gana-

pathy and Dennehy

8

and of Christiansen and Seder-

berg

9

. Both methods construct a tiling beginning

with an edge assumed to be a good starting point.

Figure 11: Tilings computed by Upper: The algo-

rithm of Christiansen and Sederberg and Lower: The

algorithm of Ganapathy and Dennehy, for the contours

in Figure 2. Compare to the tilings shown in Figure 3.

They then sequentially advance along either the up-

per or lower contour, connecting the current vertex

on one contour to the next vertex on the other. The

Christiansen-Sederberg algorithm attempts to mini-

mize the sum of edge lengths by always selecting the

shorter of the two possible edges at each step. The

Ganapathy-Dennehy algorithm always selects the edge

that minimizes the di�erence in normalized arc length

traversed between the upper and lower contours. Fig-

ure 11 shows the results. Each of the algorithms gets

\confused" by a local con�guration that is not well

modeled by its heuristic. The resulting tilings are sig-

ni�cantly worse than those of either the optimizing or

multiresolution algorithm.

Figure 12 shows a series of reconstructions using the

single-wavelet multiresolution method. In each tiling,

coe�cients smaller than a threshold value were dis-

carded. The number of vertices in the contours de-

creases signi�cantly, while the overall shapes of the

contours retain much of the original detail. For many

purposes, the resolution of the tiling shown on the top

may be adequate. The low-resolution version requires

c
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Figure 12: Tilings of the contours in Figure 2 us-

ing the single-wavelet algorithm with threshold factors

of Top: 0.005, Center: 0.0025, and Bottom: 0.001.

The threshold factor multiplied by the magnitude of the

largest wavelet coe�cient determines the magnitude of

the smallest coe�cient used.

signi�cantly less space to store, and less time to dis-

play.

5. Conclusions

We have described a multiresolution approach to im-

proving the performance of a well-known optimizing

algorithm for solving the tiling problem, that of Fuchs,

Kedem and Uselton

1

.

A problem with all known tiling algorithms is that

they can produce unacceptable tilings. For that rea-

son, a practical system for reconstructing surfaces

from contours must be interactive. The computational

cost of the optimizing algorithm has caused implemen-

tors of practical systems to use linear-time \greedy"

methods. The method we present in this paper is

dramatically faster than the optimizing algorithm.

Though it does not guarantee a globally optimal tiling,

in many cases the tilings it produces are equivalent

to the optimal tilings. In general, the optimal tiling

di�ers signi�cantly from the multiresolution results

only in complex cases for which neither algorithm pro-

duces a completely acceptable result, but for which

both methods produce results superior to those of

linear-time \greedy" methods. The multiresolution al-

gorithm represents an improvement in quality over the

greedy methods, and is fast enough for interactive use,

even with contours containing well over 1000 vertices.

Multiresolution tiling provides a fast way to produce

tilings at reduced resolution, resulting in signi�cant

savings both in time required to display a reconstruc-

tion and in the space required to store it.
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Appendix A: Wavelets, Scaling Functions, and Filters

This appendix presents the derivation of the single-knot wavelet and shows how the analysis and synthesis �lters

are obtained for the linear B-spline scaling function and single-knot wavelet.

Linear B-Spline Scaling Function and Single-Knot Wavelet

The linear B-spline scaling function �(t) is the piecewise linear \hat" function

�(t) =

(

0 t < �1; t > 1

t+ 1 �1 � t � 0

1� t 0 < t � 1:

(9)

We here derive a single-knot wavelet  (t) for use with the linear B-spline scaling function by a construction

similar to that used by DeRose, Lounsbery and Warren

7

.

To obtain  (t), we �rst de�ne �(t) to be the orthogonal projection of �(2t� 1) 2 V

1

into V

0

. The orthogonal

projection gives a vector of coe�cients � that allow us to express �(t) as

�(t) =

X

j

�

j

�(t� j): (10)

The wavelet  (t) is de�ned in terms of �(2t� 1) and �(t) as

 (t) = �(2t� 1)� �(t): (11)

Since �(t) is the orthogonal projection of �(2t � 1) into V

0

,  (t) is orthogonal to V

0

. It can be shown that the

integer translates  (t� k) of  (t) span the space W

0

.

Computing �(t)

This section describes the method used to �nd �, the vector of coe�cients of Equation 10. We later de�ne the

analysis �lter a and the synthesis �lter q in terms of these coe�cients.

We will make use of the following de�nitions:

The inner product hg(t); h(t)i is de�ned to be

hg(t); h(t)i �

Z

+1

�1

g(t)h(t)dt:

For notational convenience, we de�ne:

�

i

(t) � �(t� i)

We use the notation [h�

i

(t); �

j

(t)i] to represent the in�nite square matrix with h�

i

(t); �

j

(t)i as the entry in row i

and column j.

The vector of coe�cients � is found by orthogonal projection of �(2t� 1) into V

0

. This is equivalent to solving

the folowing in�nite linear system for �

T

:

[h�

i

(t); �

j

(t)i]�

T

= [h�(2t� 1); �

i

(t)i] : (12)

where i and j range over the integers. De�ned in this way, �(t) is the least squares best approximation of

�(2t� 1) 2 V

1

in the space V

0

. There is a problem with our de�nition of �(t): the sequence of coe�cients � has

in�nite support; the analysis �lter a and synthesis �lter q will consequently have in�nite support. Implementation

of the �lter bank algorithm requires that the �lters have a �nite number of non-zero terms. It is possible to

modify the de�nition of �(t) so that it has �nite support by limiting the square matrix [h�

i

(t); �

j

(t)i] to �nite

size. Solving Equation 12 subject to that restriction �nds the vector � that makes �(t) the least squares best

approximation to �(2t� 1) for the chosen number of non-zero terms. Unfortunately, that solution su�ers from the

problem that the value of the inner product h (t); 1i may be non-zero, which is not the case for in�nite support.

Since a constant function can be exactly represented by the scaling function �(t), we desire that h (t); f(t)i = 0

when f(t) = c over the support of the wavelet. With that requirement, wavelets extracted from nearly constant

regions of a function will tend to have small values. That property is desirable, because these small coe�cients can
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be eliminated during reconstruction if lossy compression is desired. To �nd the best � subject to the additional

constraint that h (t); 1i = 0, we solve a constrained least squares problem of the form

min

Bx = d

kAx� bk

2

where

A = [h�

i

(t); �

j

(t)i]

b = [h�(2t� 1); �

i

(t)i]

x = �

T

B = [h�

j

(t); 1i]

d = [h�(2t� 1); 1i] :

The matrix A is restricted to �nite size. We solve this constrained least squares problem by the method described

in Golub and Van Loan

10

.

The function  (t) obtained after modifying our de�nition of �(t) is no longer strictly orthogonal to V

0

, so

that  (t) is no longer strictly a wavelet. By appropriate selection of the size of the matrix [h�

i

(t); �

j

(t)i], we can

approach orthogonality as closely as desired.

An additional consideration when selecting the number of non-zero terms of the sequence � is that the use of

an even number of non-zero � gives symmetric sequences a and q, while an odd number results in asymmetric

values. We recommend use of an even number of non-zero � for that reason.

Analysis and Synthesis Filters

The values of the analysis �lter a and the synthesis �lter q depend on the values of the sequence � found by solving

Equation 12, while the values of b and p do not. In this section, we derive the relationship between the sequence

� and the �lters a and q and determine the values of �lters b and p. We make use of the following relationships:

�(t) =

X

k

p

k

�(2t� k) (13)

 (t) =

X

k

q

k

�(2t� k) (14)

�(2t) =

X

k

[a

�2k

�(t� k) + b

�2k

 (t� k)] (15)

�(2t� 1) =

X

k

[a

1�2k

�(t� k) + b

1�2k

 (t� k)] (16)

�(2t� l) =

X

k

[a

l�2k

�(t� k) + b

l�2k

 (t� k)] (17)

which are Chui's equations (1.6.2), (1.6.3), (1.6.4), (1.6.5), and (1.6.6)

5

. Equations 13 and 14 are the two-scale

relations of the scaling function and wavelet. Equation 17 represents a composition of Equations 15 and 16, and

is called the decomposition relation. From these relationships and the de�nitions of �(t), �(t), and  (t) the values

of the �lters a, b, p, and q can be determined as discussed below.

Synthesis Filter p

The �lter p must make the relation of Equation 13 hold. For our choice of the linear B-spline (Equation 9) as

�(t), the two-scale relation is

�(t) = 1=2�(2t+ 1) + �(2t) + 1=2�(2t� 1): (18)

From Equations 13 and 18 we conclude that the �lter p is

p

k

=

(

0 k 62 f�1; 0; 1g

1=2 k 2 f�1; 1g

1 k = 0:

c
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Synthesis Filter q

To determine the values of the �lter q, Equation 11 can be rewritten by expanding �(t) using Equations 10 and 18

as

 (t) = �(2t� 1)�

"

X

j

even

�
j

2

�(2t� j) +

X

j

odd

1

2

(�
j�1

2

+ �
j+1

2

)�(2t� j)

#

: (19)

Comparing Equation 19 to Equation 14, we can see that the sequence q is

q

k

=

8

>

<

>

:

��

k

2

k even

�

1

2

(�

k�1

2

+ �

k+1

2

) k odd; k 6= 1

1�

1

2

�

0

�

1

2

�

1

k = 1:

(20)

Analysis Filters a and b

We now �nd values for �lters a and b. Filters a and b actually consist of two sequences each: the \even" sequences

a

�2k

, and b

�2k

and the \odd" sequences a

1�2k

, and b

1�2k

. We �rst derive the values of the sequences a

1�2k

and

b

1�2k

. From the de�nition of  (t) in Equation 11 and substituting from Equation 10 we see that

�(2t� 1) =

X

j

�

j

�(t� j) +  (t): (21)

Comparing with Equation 16 we see that

a

1�2k

= �

k

(22)

and

b

1�2k

=

�

1 k = 0

0 otherwise:

(23)

To derive the values of a

�2k

and b

�2k

we note that Equation 18 can be rearranged to

�(2t) = �(t)� 1=2 [�(2t+ 1) + �(2t� 1)] ;

which can be rewritten after some manipulation as:

�(2t) = �(t)� 1=2

"

X

j

[(�

j

+ �

j+1

)�(t� j)] +  (t+ 1) +  (t)

#

: (24)

Comparing with Equation 15, we see that

a

�2k

=

�

�

1

2

(�

k

+ �

k+1

) k 6= 0

1�

1

2

(�

0

+ �

1

) k = 0

(25)

and

b

�2k

=

�

�

1

2

k 2 f�1; 0g

0 otherwise:

(26)

Combining the even and odd sequences as in Equation 17, we have

a

l�2k

=

8

<

:

�

k

l odd

�

1

2

(�

k

+ �

k+1

) l even; k 6= 0

1�

1

2

(�

0

+ �

1

) l even; k = 0

(27)

and

b

l�2k

=

8

>

<

>

:

1 l odd; k = 0

0 l odd; k 6= 0

�

1

2

l even; k 2 f�1; 0g

0 otherwise:

(28)

c
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Summary

Implementation of �lterbank analysis and reconstruction requires that the �lters used are of �nite support (�nite

impulse response (FIR) �lters), except in special cases

5

. The single-knot wavelet as de�ned by Equation 11 has

in�nite support. It can be approximated to any desired precision as a FIR �lter by appropriate speci�cation of the

dimension of the matrix [h�

i

(t); �

j

(t)i] of Equation 12. After specifying the dimension, the sequence � is obtained

by solving a constrained least squares problem, and the values for the �lters are obtained by substitution of the

appropriate values into equations 25 and 20. This approach allows exact reconstruction, but the wavelet is not

orthogonal to the scaling function.

Chui

5

de�nes a minimally supported wavelet for the linear B-spline, but �lters a and b in his construction are

of in�nite extent, and must be truncated for implementation. Because the a and b sequences must be truncated

during implementation, the minimally supported wavelet does not allow exact reconstruction. Chui shows an

upper limit for the magnitude of the error as a function of the number of non-zero terms in the truncated analysis

�lters. We sacri�ce orthogonality but maintain exact reconstruction and can approach orthogonality as closely as

desired. In contrast, Chui's approach maintains orthogonality but sacri�ces exact reconstruction, and he shows

that exact reconstruction can be approached as closely as desired. One advantage of our approach is that exact

reconstruction is possible with a relatively narrow �lter, albeit at a sacri�ce of orthogonality. For our purpose,

orthogonality is not as important as exact reconstruction.
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