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ABSTRACT

Consider an autonomous teacher agent trying to adaptively
sequence material to best keep a student engaged, or a med-
ical agent trying to help suggest treatments to maximize
patient outcomes. To solve these complex reinforcement
learning problems, we must first decide on a policy repre-
sentation. But determining the best representation can be
challenging, since the environment includes many poorly-
understood processes (such as student engagement) and is
therefore difficult to accurately simulate. These domains
are also high stakes, making it infeasible to evaluate candi-
date representations by running them online. Instead, one
must leverage existing data to learn and evaluate new poli-
cies for future use. In this paper, we present a data-driven
methodology for comparing and validating policies offline.
Our method is unbiased, agnostic to representation, and fo-
cuses on the ability of each policy to generalize to new data.
We apply this methodology to a partially-observable, high-
dimensional concept sequencing problem in an educational
game. Guided by our evaluation methodology, we propose
a novel feature compaction method that substantially im-
proves policy performance on this problem. We deploy the
best-performing policies to 2,000 real students and show that
the learned adaptive policy shows statistically significant im-
provement over random and expert baselines, improving our
achievement-based reward measure by 32%.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
Consider the problem of creating an autonomous teacher

agent whose goal is to sequence material such that students
remain engaged while learning as much as possible. In or-
der to perform well, the agent must observe the behavior of
students in response to different orderings so as to decide on
the best order. For example, when teaching fractions, intro-
ducing 7/9 before 1/3 may cause students to be frustrated,
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while reversing the order may cause more students to learn.
Furthermore, the best strategy will likely not be a fixed se-
quence, but instead a policy for adapting the sequence to
meet the needs of each student. This is a challenging re-
inforcement learning problem, since the agent must infer
meaning from the high-dimensional history of the student’s
past behavior, many features of which are irrelevant to build-
ing a good policy. The problem is also partially observable,
since we cannot access the true mental state of the student,
only observed behaviors. And the population of students
may change over time, for example due to a regional school
holiday causing students in some part of the world to stop
playing, meaning the agent must be careful not to over-
fit to one specific time period. These features make the
problem challenging even if constructing a policy only over
a short horizon. Similar challenges arise in other human-
centric domains: for example, Shortreed [20] must solve a
high-dimensional problem of determining which sequence of
2 treatment choices to give each schizophrenia patient. In
such high stakes environments, trying several approaches on-
line is undesirable. Instead we propose using existing data
to learn and evaluate new policies for future use.

When confronted with a new problem in these difficult do-
mains, we must determine which of the many possible pol-
icy representations will perform best. Although the most
general representations such as Predictive State Represen-
tations (PSRs) [15] may be capable of capturing the envi-
ronment, learning all the parameters of a complex PSR or
POMDP [22] model directly may not always be the best ap-
proach given limited data, e.g. due to overfitting. Ideally we
could try many different representations, such as MDPs with
different state spaces, POMDPs with different observation
features, and a variety of direct policy representations, and
pick the best one. This is similar to how researchers often
try a variety of approaches (neural networks, SVMs, deci-
sion trees) when confronted with a new supervised learning
problem. Ideally, we could identify the representation likely
to generalize the best in our domain by evaluating them
offline against a previously-collected dataset. This would al-
low us to experiment with new representations and policies,
without the cost and risk of running them online.

Offline policy evaluation has been well-studied in domains
where accurate simulators exist (such as a physics simulator
in a robotic control task [16]). However, when an agent is
designed for the purpose of human interaction, policy eval-
uation becomes challenging: experience is scarce and ex-
pensive, and the human mind is part of the environment
and difficult to accurately simulate. Unless we have an ex-



tremely small number of candidate policies, we cannot run
everything in the true environment. Instead, we need an
evaluator which can use existing data collected from a non-
deterministic policy to give us a reliable estimate of policy
performance, regardless of which representation is used.

Previous work by Precup et al. [19] presented an unbi-
ased estimator of policy reward based on importance sam-
pling (IS). However, it has previously been used only for
evaluating policies given a fixed representation, and Precup
does not address the problem of evaluating policy generaliza-
tion to new data, which is particularly critical in our setting
where the population of students can change over time.

In this work, we present three main contributions. First,
we introduce an unbiased offline evaluation methodology.
We combine Precup’s importance sampling estimator with
a modified cross-validation approach, and show how one
can use this method to tackle a previously unaddressed,
yet important problem: how to evaluate the generalization
ability of different representations offline. Second, guided
by our evaluation methodology, we introduce a novel fea-
ture compaction algorithm, which address the problem of
high-dimensionality by combining the strengths of PCA and
neural networks, and outperforms other techniques for our
problem. Finally, we present a challenging real-world appli-
cation, involving learning the concept selection policy that
optimizes engagement in an educational game. We show
that our offline evaluation methodology allows us to select a
policy which improves our metric of concept completion by
over 30% compared to random and expert baselines when
deployed to students.

2. BACKGROUND
We consider partially observable environments parameter-

ized by a discrete action space A, an action validity function
V , an episode length T , and an observation space O. We
do not assume a state space is given. O can be multidimen-
sional and real-valued. For each episode, the initial history
h1 consists of an initial scalar reward r1 and an observa-
tion o1 ∈ O provided by the environment. At each timestep
t ∈ {1 . . . T}, we have a valid subset of actions specified by
the validity function, Vt = V (ht) ⊆ A. The agent chooses
an action at ∈ Vt. Then the agent receives a scalar reward
rt+1 and an observation ot+1 ∈ O from the environment.
The agent then appends the tuple (at, ot+1, rt+1) to the his-
tory ht to get ht+1. A stochastic policy π is defined as a
probability distribution π(ai|ht), denoting the probability
of selecting action ai ∈ V (ht) under policy π given a history
ht. Similarly, π(a1, . . . , at|ht) ≡

∏t

i=1 π(ai|hi).
Our objective is to find a policy π, which maximizes the

reward function
∑T

t=1 γ
t−1rt, where γ ∈ [0, 1] is the discount

rate. To find a good policy we must find a good repre-
sentation, that is, a good way of specifying the (possibly
non-deterministic) mapping from hj to aj for all possible
histories hj . A näıve representation would simply map each
history to an action, but given the large (possibly infinite)
number of possible histories hj , a good representation some-
how shares data among episodes with different histories.

3. PROBLEM SETUP
Games have recently received significant interest from the

education community due to their unique potential to moti-
vate students. Fractions is a particularly important topic

Figure 1: A level from our Refraction experiment.
This level is from the Non-one Sources concept (see
Section 8).

since it is known to be a major obstacle to progress in
mathematics [17]. We focus on creating an autonomous
teacher agent that adaptively selects concepts (sets of 2-4
levels meant to teach a certain skill) in the educational frac-
tions game Refraction, developed by the Center for Game
Science (CGS). The goal of this puzzle game is to split lasers
to direct the right amount of power into each target space-
ship (see Figure 1). The game involves both mathematical
and spatial reasoning. A version of the game can be played
at http://grail.cs.washington.edu/projects/ordering.
Refraction has been played by over 500,000 players, both
online and in classrooms. Despite this success, it has a high
dropoff rate when played online, especially on child-centric
sites. To reduce this attrition rate, we focus on improving
the early part of the game where dropoff is most prevalent.

Choosing how to order concepts in the game to maxi-
mize engagement is difficult for game designers, even ignor-
ing adaptivity, because the factors that cause a player to
quit are complicated. For example, the mathematics may
be in a reasonably engaging order, but the spatial difficulty
of some of the levels may cause students to become frus-
trated and quit. In fact, we will see in sections 9 and 10
that the expert progression designed by game designers at
CGS performs poorly, even compared to random sequencing,
suggesting expert intuition may be limited.

Even though our problem is short horizon (there are 6
points where we can select the next concept), adaptively se-
lecting concepts is still a challenging reinforcement learning
problem for several reasons. First, we have a high dimen-
sional set of 4,500 observation features, which capture each
move the student has made while playing this concept and
associated timing information. Some of these features are
certainly irrelevant, but it is difficult to determine which a
priori. Secondly, the problem is partially-observable, since
we cannot observe the student’s true mental state. The pop-
ulation of players that comes to the website to play Refrac-
tion is changing over time as well; for example on school
holidays only a certain subset of students will be playing
the game from home. Hence we must be careful not to over-
fit to one particular time period.

4. APPROACH OVERVIEW
Figure 2 gives an overview of our approach. Given data

collected from an initial stochastic policy and an initial set
of representations, we learn the representation parameters



on the data, extract a policy from each representation, and
evaluate the performance of each policy offline. If the esti-
mated performance of the best policy is unsatisfactory, we
create new representations to add to the representation set.
Otherwise, we take the strongest policy according to our
evaluation methodology and run it online, closing the loop.

Figure 2: Approach overview.

5. PRIOR EVALUATION APPROACHES
A key part of our approach is to calculate a good offline

estimate of how well a policy learned on some representation
performs.

Many approaches acquire policies by first learning the pa-
rameters of an underlying generative representation, such
as an MDP or POMDP. In this case, instead of consider-
ing policy performance directly, one instead optimizes model
parameters using (log-)likelihood of the dataset under the
model [6]. However, using likelihood to evaluate reinforce-
ment learning representations can often be misleading, even
if we compute the likelihood of held-out data to evaluate
model generalization. The reason is that likelihood consid-
ers how well the system models every observation, but there
may be observation features that are not important to model
in order to build a good policy, but have a strong impact on
the likelihood score. Even if the features are all relevant
to the task, there may be aspects of continuous features
that are not necessary to model. For example, a tea-making
robot given temperature as a scalar feature might achieve
high likelihood by modeling the exact temperature of a ket-
tle of water at low temperatures, when all that matters is
modeling whether it is above 100◦C. For a concrete example
of log-likelihood leading us astray in reality, see Figure 3.

It is not straightforward to modify log-likelihood to
evaluate how well a model captures aspects of the sys-
tem relevant to reward. Just restricting log-likelihood to
compute log(p(r1, . . . , rT |a1, . . . , aT , θ)) is a poor evalua-
tor since it ignores observations completely, and there-
fore cannot assess how well a model can interpret obser-
vations to better predict future rewards. Even computing
log(p(r1, . . . , rT |o1, . . . , oT , a1, . . . , aT , θ)) is a poor choice,
since rt may be easily inferable from ot. The central is-
sue is that a good evaluator needs to evaluate how well a
model captures relevant observations needed to construct a
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Figure 3: Unbiased reward estimator (Section 6) vs
Log-Likelihood (Section 5). As we increase the num-
ber of hidden states in our learned PCA-NN-HMM
model (see Section 9 for details) from 5 to 20, the
cross-validated log-likelihood score increases even on
held-out data, but the unbiased estimate of policy
reward sharply peaks at 10 states. Because the score
is cross-validated, we can see that the model is not
overfitting. Instead we see that the 15 and 20 state
models better capture the dynamics of the environ-
ment, but result in weaker policies. This indicates
that selecting models based on likelihood alone can
lead to poor policies.

good policy, but log-likelihood is not robust to observations
that contain irrelevant information.

Another method considered for comparing representations
is ECR [24], however this method is not statistically consis-
tent, which is a significant concern for high stakes domains.
See Appendix A in the supplement1 for more discussion.

6. IMPORTANCE SAMPLING METHOD
To evaluate policies offline, we use a method called im-

portance sampling to estimate the expected policy reward.
Intuitively, this method only uses samples where the entire
action history has (by chance) matched the decisions that
would have been made by the policy we wish to evaluate.
Importance sampling (IS) is a general technique for esti-
mating the expected value of a function f under a distribu-
tion p when samples are drawn from a different distribution
q. Importance sampling is an attractive choice because it
gives an unbiased estimate of f for any distributions p and
q. This means that the expected value of the estimate is
equal to the true value, which allows us a degree of trust in
the estimates even on a limited amount of data, although
the variance may be high. Note that some have proposed
normalized (weighted) importance sampling [18], which has
lower variance but is biased; this bias makes it unattractive
for evaluation in high-stakes domains. If we let πp be the
policy we wish to evaluate, let πq be the policy under which
the data was collected, and we have a dataset of m episodes,
we use IS to estimate the reward of πp as follows [18]:

Ê

[

T
∑

t=1

γ
t−1

rt|πp

]

=
1

m

m
∑

i=1

[

πp(a1,i, . . . , aT,i|hT,i)

πq(a1,i, . . . , aT,i|hT,i)

T
∑

t=1

γ
t−1

rt,i

]

,

(1)
where π(a1,i, . . . , aT,i|hT,i) denotes the probability of tak-
ing actions a1,i, . . . , aT,i given the history in episode i, as
described in Section 2.

1http://grail.cs.washington.edu/projects/ordering



This estimator will have very high variance on a small
amount of data, because only episodes that completely fol-
low a policy from beginning to end are counted. The vari-
ance can be reduced by observing that rewards only depend
on previous actions [19]:

Ê

[

T
∑

t=1

γ
t−1

rt|πp

]

=

T
∑

t=1

1

m

m
∑

i=1

πp(a1,i, . . . , at,i|ht−1,i)

πq(a1,i, . . . , at,i|ht−1,i)
γ
t−1

rt,i

(2)
Intuitively, this estimator averages the per-timestep re-

ward for the examples that match π2 (weighted by proba-
bility), and then combines these per-timestep rewards using
the discount factor. This method is still unbiased [19], but
has lower variance than equation (1).

One potential downside of this approach is that if we have
episodes that are relatively long, it is unlikely there will
be many samples that exactly match a given deterministic
policy at later timesteps. This will yield a high variance
estimate. However, in our domain (and others, e.g. [20])
the episodes are short, so we can effectively use Equation
(2) to evaluate policies.

Real-world reinforcement learning problems often involve
severe data sparsity and sometimes nonstationarity. Because
of this, evaluating policies by running this estimator on the
training data will cause us to choose policies that overfit,
that is, appear to perform strongly on the training data but
perform poorly in practice. We must therefore determine
how well the policies generalize, which is especially impor-
tant when data is limited. Following supervised learning, we
could divide the data randomly into validation and training
datasets, learn the policies on one portion of data and eval-
uate them on another fold using IS. However, this does not
address nonstationary environments, which may fluctuate
or change over time. We want to determine whether we
have found a policy that is likely to generalize well across
time. To this end, we propose a “temporal” cross-validation
approach, where the dataset is divided into N folds, each
of which spans a contiguous span of time (e.g. a series of
days). To score well using this approach, a representation
must generate policies that generalize to held-out time peri-
ods, and improving on just one time period (such as a special
school holiday) will not score well. The performance of the
algorithm across the 5 temporal folds also gives us a sense
of the variance across time. However, the value of the ini-
tial random policy may change over time as well, and thus
it may be difficult to tell how much better than random a
policy is by comparing the overall variance of the random
policy to the overall variance of the candidate policy. For
example, a policy could always perform slightly better than
random, but not appear significantly different from random
if the variance across time is high. We therefore subtract the
value of the random policy from the score, in order to focus
on how these policies do relative to the random baseline.

7. CANDIDATE REPRESENTATIONS
Our approach (Figure 2) takes as input a variety of pos-

sible representations suitable for high-dimensional, partially
observable problems, and learns policies on these represen-
tations. Here we describe a variety of representations we
evaluated, including novel representations developed after
observing how previous attempts performed. The set of
methods considered include feature compression methods,

POMDP models, and linear policies. Although they are in-
spired by our high dimensional, partially observable task,
they are potentially applicable to other domains.

7.1 Feature Compression
Training models with thousands of potentially irrelevant

observation features can be difficult, due to computational
challenges, data sparsity, and overfitting. Some models may
work well on the full feature space, but others (such as gen-
erative models, which model every observation feature) are
not feasible on the full feature space. One approach to re-
duce the space from a large number of largely irrelevant
observation features into a small set of relevant ones is au-
tomatic feature compression. Below, we describe two estab-
lished methods for automatic feature compression, discuss
their limitations, and describe a novel method that com-
bines their strengths to address their limitations.

Principal Component Analysis (PCA) is a widely-
used technique for taking a high-dimensional feature space
and projecting it to a lower dimensionality. This is very
useful for our purposes as the produced features are often
quite rich, and are guaranteed to be orthogonal. However,
doing PCA on a large feature space with a large number
of features that are potentially irrelevant can lead to the
relevant information being lost after the compression.

Neural networks (NN) are well-suited to compressing
a large feature space to a smaller number of hidden units
during a supervised prediction task, which in our case is pre-
dicting future reward from the current observation. Unlike
PCA, neural networks can capture a nonlinear relationship
between original and compressed features. However, neural
networks often produce features which are highly correlated,
which is not ideal if we want to find the most compressed
representation possible.

We introduce a new feature compression method that
seeks to build on the relative strengths of NN and PCA (non-
linear function approximation targeting a particular predic-
tion task, and orthogonal features, respectively). The input
features are fed into a neural network with one hidden layer
of 100 units. The neural network is trained with Rprop to
best predict future reward (in our case, time steps until the
player quits). At this point it has found 100 non-orthogonal
features that predict reward. Next, for each training exam-
ple we take the output of each hidden unit and multiply it
by the weight between it and the output unit:

φ
NN
i (o) = hi(o) ∗ wi

This causes hidden units which feature more prominently in
the value of the output to also be better preserved in the
compaction. Then we feed those 100 compressed features
into PCA to compress further into a small number of rich,
orthogonal features. We refer to this method as PCA-NN.

7.2 POMDP/IOHMM
We now consider how to use a small number of compacted

or hand-selected features as the observations of a partially
observable Markov decision process. A POMDP [22] is a
tuple (S,A,O, T ,Ω, R), where S is the finite set of hidden
states, A is the action space, O is a space of observations, T
is a set of transition probabilities conditioned on each state
and action, Ω is a set of observation probabilities conditioned
on each state (and potentially action), and R is a set of
reward probabilities conditioned on each state and action.



We can treat the POMDP as an Input Output Hidden
Markov Model (IOHMM) [3], where the inputs are actions,
and learn the model parameters using the Baum-Welch
(EM) algorithm similar to [6]. Because EM is prone to local
optima, we do 10 random restarts for each model and take
the one with the highest log-likelihood.

For our application, the outputs are set to be a vector of
continuous observations , each of which is modeled by a sin-
gle independent Gaussian. We simplify the POMDP so that
observations at each state are not conditioned on action,
since we want each state in the POMDP to represent the
same behavior independent of time step, although these as-
sumptions would be easy to remove. Episodes in our domain
can terminate early, so we define a separate terminal state,
and binary quit observation. We initialize the observation
distribution so that the terminal state is the only state that
can output the terminal = true observation. Furthermore,
the terminal state always transitions to itself.

Many widely-used offline POMDP planning techniques
such as SARSOP [11] are not applicable due to the fact
that our observations are continuous. As such, we choose
the QMDP [14] approximate planning algorithm for its sim-
plicity and speed. To help prevent overfitting, we learn the
policies with γ = 0.5 (determined empirically) even though
the true reward signal is undiscounted. Discount factors
lower than 1.0 can help the POMDP model generalize if it
is not accurate enough to issue reliable long-term predictions
due to inaccurate transitions caused by data sparsity. Fi-
nally, we restrict the planning algorithm to obey the domain
constraints, namely that concepts cannot be repeated and
certain concepts must come before others.

7.3 Linear Direct Policy Search
Since we perform policy evaluation using importance sam-

pling, a straightforward policy training procedure is to di-
rectly maximize the importance sampled estimate of the ex-
pected reward with respect to the policy parameters. To this
end, we constructed a linear policy that maps a history of
observations o1, . . . , ot to action probabilities. The outputs
are converted to action probabilities by exponentiating and
normalizing by a sum over all legal actions:

π(ai|o1, . . . , ot) =
exp(−θTi ψt)

∑

aj∈V (s) exp(−θ
T
j ψt)

(3)

where θi is the policy parameter for ai and ψt is the input.
This input can correspond to directly to the current obser-
vations ot, to a set of learned features φt, or to entire histo-
ries of observations or features over all preceding time steps.
When using whole histories, the input vector is padded with
zeros to ensure an equal length at each time step. The
weights θi are learned by inserting Equation 3 into Equa-
tion 2, differentiating, and optimizing with LBFGS.

7.4 Extracting Static policies
One interesting question in human-centric domains is how

much improvement (if any) can be achieved by adapting ac-
tions based on observations. In the context of educational
games, this means adapting to meet the needs of each stu-
dents instead of choosing the best static policy, that is, over-
all best sequence of concepts. In general, static policies are
defined as a class of policies which depend only on the action
history: πs(a|ht) = πs(a|a1, . . . , at−1). If we have learned an
adaptive policy with strong performance, we would like to

know if it simply found a static policy that generalized well,
or if the adaptive choices make a large difference. To an-
swer this question, we have to extract the“most likely”static
policy from the adaptive one. Our approach first simulates
running the policy over players in the training data, picking
actions until the action history no longer agrees with the
policy’s choices. From this information we can calculate the
overall likelihood of choosing each action at each timestep,
and then for each timestep add to the static policy the most
likely action that obeys the constraints.

8. EXPERIMENT DETAILS
Refraction begins with two required levels constituting the

introduction, which familiarize players with the basic game-
play. Next, there is a set of seven concepts we teach students
in the early part of Refraction, corresponding to seven sets
of 2-4 levels each. In standard (“expert”) order, they are:
Spatial Reasoning(1), Half Splitting(2), Fourths(3), Third
Splitting(4), Ninths(5), Sixths(6), and Non-one Sources(7).
This expert ordering was designed based on the CGS game
designers’ intuition about what concept sequence would en-
gage players, and was playtested significantly.

In our experiment there are only 6 time steps, so the agent
is allowed to choose one concept to leave out. After all 6 have
been given out there is a test level incorporating some of
the more difficult concepts. Also we add a small set of hard
constraints to which actions are valid at any given time, one
of which is that no action may be repeated. The constraints
prevent an advanced level involving a game mechanic from
coming before the tutorial on that mechanic. The addition of
these constraints leaves us with 560 possible static policies,
and an infinite set of adaptive policies.

The agent is guided by a reward signal, which is based
on concepts completed. In a voluntary game setting where
players can quit at any time, measuring exit performance
(and therefore total learning) is impractical. However, learn-
ing and engagement are intertwined, as it is not possible to
achieve learning without first engaging students. Addition-
ally, completion of each set of levels requires a degree of
mastery of the corresponding concept, making completion a
reasonable metric.

The reward signal gives a reward of 1.0 for concepts com-
pleted after the first, and 0.0 otherwise. This is because
players often quit early on due to a host of factors outside
our control, such as disliking the overall genre of the game,
which can cause a lot of noise. Also, due to the fact that
it is possible to eventually complete most levels by trial-
and-error, players who complete a single concept and quit
seem less likely to have learned something than players who
complete two or more concepts. The reward for completing
the final concept is given only if the end test is completed.
These rewards are all undiscounted.

In order to learn and evaluate policies, we had access to
raw logging data collected from an experiment on Brain-
Pop.com, a popular educational website for grades K-12.
The experiment was deployed with a randomized exploration
policy, meaning actions were chosen uniformly at random
from the valid options to ensure broad coverage of the space.
Data was collected for about 6 weeks, during which time
11,300 people made it to the first action. We used this data
to search for agent policies which could be run online.

We calculate 180 base features per level, and while the user
normally plays 2-4 levels between timesteps, it is possible to
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Figure 4: Importance sampling results. The error bars are 95% confidence intervals computed with 5-fold
temporal cross validation using normal assumptions.
Random Expert Static (IO)HMM-n Direct

Only depends on action history POMDP policies with n states (sec 7.2) Direct linear policies (sec 7.3)

Initial Expert γ = n Extracted Expert PCA PCA-NN (feature Full Last
Random Designed compression sec 7.1) (full feature history) (last timestep features)
Policy Policy Exhaustive search Extracted Uses two Two PCA 2F 3F All PCA-NN All PCA-NN

on IS with discount (sec 7.4) from hand-chosen features 2 PCA-NN 3 PCA-NN All 2 PCA-NN All 2 PCA-NN
factor n PCA-NN-HMM-10 features (sec 7.1) features features features features features features

Table 1: Methods in Figure 4. The feature counts in this table refer to the feature count per timestep.

replay any of the 25 levels at any time, resulting in 4,500
features split across levels. These 180 base features include
simple features such as total number of moves and total
time, and more complicated features calculated based on the
player’s search graph for a level. Specifically, a playthrough
of one level of Refraction consists of a human player moving
through the game state space. Depending on the feature,
each board configuration can be a state in this space, or we
can aggregate states, for example by considering all board
configurations with the same number of pieces on the board
to be identical. We can think of playthroughs as directed
multigraphs through a given state space, where the vertices
are game states and the edges are labeled with the time the
player takes to move from one state to the next. For each
possible state space and associated graph, we can calculate
its properties to use as features, such as the total number of
nodes, the average vertex degree, the sum of all edge weights,
and so on. These serve as our 180 base playthrough features,
which are then expanded to 4,500 per timestep.

9. OFFLINE EVALUATION RESULTS
In this section, we evaluate all the approaches described

in Section 7 using the importance sampling evaluator men-
tioned in Section 6. The approaches are described in detail
in Table 1. The Random and Expert policies serve as base-
lines. We learn static policies (which give the same concept
sequence to everyone), by performing exhaustive search on
IS with various discount factors. Even though the true re-
ward is undiscounted, learning with small discount factors
can prevent overfitting since we have much more data at the
beginning of the game. Note that since we are searching
over policies, a discount factor of 0 is not a reasonable op-
tion since it would only consider the initial reward. We also
extract a static policy from the best adaptive policy (see
Section 7.4). We learn IOHMM/POMDP models (Section

7.2) with various feature compaction methodologies (Section
7.1), and two features were selected by hand which were pre-
dictive of quitting in other tasks. Lastly, we tried our linear
direct policy search methodology (Section 7.3) with a variety
of feature representations, investigating feature compaction
and whether to include the full history of observation fea-
tures or just the features from the last timestep.

One conclusion apparent from Figure 4 is that the variance
of most approaches across folds is fairly high. This is due
to a combination of temporal changes in the population, the
learning methods being prone to local optima (hence they
find better solutions on some folds and worse on others), and
the inherent high variance of importance sampling. Next, we
observe that 2F-PCA-NN-HMM-10 appears to do by far the
best, indicating that the PCA-NN feature compaction had
a significant benefit over the expert-chosen features. The
expert features do show an improvement over PCA com-
paction however, illustrating that the PCA features are not
very relevant to the task at hand. On the other end of
the spectrum, the hand-designed expert policy does poorly,
performing worse than random, suggesting that despite the
best efforts of the CGS game designers, it is a challenging
problem to design a good concept sequence by hand. Inter-
estingly, the method that attempts to optimize importance
sampling directly also fares poorly, although that may be
partly due to the simple linear representation.

Among the static policies, extracting static policies from
the best adaptive policy (2F-PCA-NN-HMM-10) generalizes
better than training them to maximize IS. This is likely be-
cause the IOHMM is compacting action histories in a way
that generalizes better than looking at the full history.

10. REAL-WORLD RESULTS
Since our estimator is unbiased, we would expect that with

high probability each policy’s true value will fall within the



error bars shown in Figure 4. Since evaluation is expensive
in our domain, it is not possible to run all policies on the
game. Indeed, this is the motivation for evaluating policies
offline in the first place.

However, to empirically verify that our offline evaluation
methodology allowed us to discover policies that actually
perform well in the game, we evaluated our two baselines
(Expert and Random), the adaptive policy which appeared
to do best offline (2F-PCA-NN-HMM-10) and the the best-
performing offline static policy (Static Extracted). Because
we saw high variance during training, out of the 5 folds we
picked the 2F-PCA-NN-HMM-10 policy that had the high-
est difference from Random on its test fold, which we will
henceforth refer to as “Adaptive”, and the static policy ex-
tracted from it. The policies were run simultaneously and
the experiment was stopped when we had 500 players in each
condition, for 2000 total players.
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Figure 5: Experimental results on N=2000 play-
ers distributed equally among the four conditions.
Adaptive received the highest average reward, and
was the only policy that differed significantly from
Random (p=0.002), as indicated by the asterisk.

The results are presented in Figure 5. As expected, Adap-
tive has the highest average reward. To determine statisti-
cal significance, we use the non-parametric Wilcoxon rank-
sums test due to the non-normality of our data. We find
that Adaptive is the only condition which is significantly
different than random (p=0.002, W=263682.5, Z=3.17951)
and Adaptive is also significantly different from expert
(p<0.0001, W=267305.5, Z=4.04048). It performs on av-
erage 32% better than the Random and Expert baselines.
This is an absolute difference of 0.38, which can be inter-
preted as approximately 1 level (recall that reward is mea-
sured in concepts). Expert had a slightly lower mean than
Random (p=0.389, W=246684, Z=-0.862), and Best Static
showed no significant improvement over Random (p=0.112,
W=256878, Z= 1.58744).

We find that importance sampling gives us good estimates
of actual performance, as all observed average rewards fall
within their 95% confidence interval (Figure 4). However,
this is unsurprising given that the estimator is unbiased.

The best static policy was the following: Half Split-
ting(2), Third Splitting(4), Spatial Reasoning(1), Non-one
Sources(7), Ninths(5), Sixths(6). Compared to the expert
policy in Section 8, it has delayed the introduction of spatial
reasoning, and put the fractions which require single-splits
(e.g. 1/2) before the double-splits (e.g. 1/9 = 1/3 * 1/3).

We observe that the adaptive policy chooses between two
static policies roughly equally based on performance in the
introduction. It seems (but is difficult to confirm precisely),
that if the policy determines that the player does well on the
introduction, they are given the Halves concept next, which
involves mathematics, but if they do poorly they are given

the Spatial concept, which does not.

11. RELATED WORK
There is a large body of work in learning policies offline,

such as LSPI [12] or Fitted Q-Iteration [7]. When online
evaluation of policies learned offline is expensive, successful
real-world applications of reinforcement learning have gener-
ally relied on simulations or domain knowledge to guide the
choice of representation. For example, several prominent RL
applications, such as autonomous flight [16] or backgammon
[23], relied on use of a simulator to determine the appropri-
ate representation. In other cases, state-spaces were directly
designed by experts [21]. An alternate approach is to use a
complex set of input features, and use value function ap-
proximation over the feature set; however, this still requires
choosing the right combination of input features and func-
tion approximator [10, 8]. In contrast, we seek to explore
the space of representations without access to an accurate
model of the environment, and without a priori knowledge
about which representation best fits our problem.

Unbiased offline policy evaluation has been studied in the
restricted domain of contextual bandits [13]. In reinforce-
ment learning, importance sampling has been previously
considered as an unbiased estimator of policy reward. Pre-
cup et al. [19] proposes importance sampling for learning
the value function given an MDP state space, and Peshkin
and Shelton [18] investigate using IS to guide a policy gradi-
ent algorithm. However, in contrast to our temporal cross-
validation approach, neither addressed how to evaluate the
generalization ability of policies to new data. Hachiya et
al. [9] use a cross-validated importance sampling estimate
of value function error (as estimated by the Bellman resid-
ual) to determine the best value of a single parameter of
a fixed policy representation. Evaluating models based on
value function error is a concern for two reasons, first, an
improvement in modeling the value function does not neces-
sarily improve policy performance, and second, this method
cannot evaluate approaches which do not compute an ex-
plicit value function (such as policy gradient approaches).
Our methodology does not have these restrictions, being able
to directly compare the expected reward of the policy, and
making no assumptions about the presence of a value func-
tion. Lastly, all three of these methods focus on tuning a few
parameters of a fixed representation rather than comparing
estimated reward across representations.

There has been significant work in applying reinforcement
learning to develop educational strategies in intelligent tu-
toring systems (ITSes), such as using MDPs for hint gen-
eration tutors [2] or POMDPs to select topics of focus [4].
Work by Chi et al. [5] also focuses on improving an ITS
via reinforcement learning, and addresses a similar prob-
lem of deciding between potential state spaces offline. Their
approach did achieve encouraging learning gains, but did
not use a statistically consistent estimator (for the proof,
see Appendix A in the supplement2) for evaluating different
representations, and only considered restricted MDP feature
selection among a small set of features.

12. FUTURE WORK AND CONCLUSION
We are the first to show how an existing importance sam-

pling estimator can be used to compare the generalization of

2http://grail.cs.washington.edu/projects/ordering



different representations, such as policy gradient approaches
and POMDPs, even if the environment changes over time.
We show that in a challenging educational games applica-
tion, our methodology is a useful guide to allow us to choose
the best representation for our domain. Without our impor-
tance sampling methodology, choosing between the many
different representations, algorithms, and parameter choices
would have been challenging. We would have been unlikely
to design our novel PCA-NN feature compaction method-
ology, not knowing that it would outperform PCA in our
domain. We show that our methodology allows us to select
the best representations to run online, allowing us to see
a 30% reward improvement in a domain where we cannot
evaluate a large number of policies in the true environment.
These results suggest that our evaluation methodology has
the potential to improve performance in other challenging
reinforcement learning tasks in which the choice of repre-
sentation is unclear.

Since the variance of importance sampling estimates de-
pends heavily on the horizon, it will take a very large amount
of randomized data to evaluate long-horizon deterministic
policies, and hence research is needed into better offline
evaluation techniques for these problems. Another direction
would be to explore how POMDPs can be trained to maxi-
mize importance sampling directly, and what effect that has
on generalization. Yet another promising avenue for future
work is exploring further methods of learning representa-
tions for high-dimensional problems.

Our evaluation methodology is general and can be ap-
plied to other discrete-action reinforcement learning prob-
lems where the choice of representation is unclear and an
accurate simulator is not available. Similar situations arise
in dialogue systems [24], healthcare [20], intelligent tutor-
ing systems [5], and online advertisement delivery [1]. Our
evaluation methodology could be applied to select appropri-
ate representations for these domains, allowing us to better
solve these challenging reinforcement learning problems.
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