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Abstract—This paper develops a theory of frequency domain invariants in computer vision. We derive novel identities using spherical

harmonics, which are the angular frequency domain analog to common spatial domain invariants such as reflectance ratios. These

invariants are derived from the spherical harmonic convolution framework for reflection from a curved surface. Our identities apply in a

number of canonical cases, including single and multiple images of objects under the same and different lighting conditions. One

important case we consider is two different glossy objects in two different lighting environments. For this case, we derive a novel identity,

independent of the specific lighting configurations or BRDFs, that allows us to directly estimate the fourth image if the other three are

available. The identity can also be used as an invariant to detect tampering in the images. Although this paper is primarily theoretical, it

has the potential to lay the mathematical foundations for two important practical applications. First, we can develop more general

algorithms for inverse rendering problems, which can directly relight and change material properties by transferring the BRDF or lighting

from another object or illumination. Second, we can check the consistency of an image to detect tampering or image splicing.

Index Terms—Frequency domain invariants, spherical harmonic identities, convolution, inverse rendering, relighting, tampering,

image forensics.

Ç

1 INTRODUCTION

IN this paper, we develop a theory of frequency domain
invariants in computer vision. This new class of invar-

iants can address complex materials in complex lighting
conditions for applications like inverse rendering, image
forensics, and relighting. Our work extends the widely used
spatial domain theory of invariants [17], [15], [9], [4],
developing the frequency domain analogs.

Our analysis is based on the spherical convolution
theorem for reflection of distant lighting from curved objects
[2], [19]. This theory shows that the reflected light in the
frequency domain is a product of the spherical harmonic
coefficients of the lighting signal and BRDF filter. This
product relationship is similar to the spatial product of
albedo and irradiance for textured objects that has been the
basis for a variety of spatial domain invariants such as
reflectance ratios [15] and photometric invariants [17]. By
exploiting the product form of the frequency domain
relations, we can derive analogous frequency-domain invar-
iants but now for general lighting and reflectance properties.

This paper also describes one of the first applications in
computer vision of the spherical harmonic analysis for
complex non-Lambertian materials. In earlier work, Basri
and Jacobs [1], [2] and Ramamoorthi and Hanrahan [19]

have shown that the set of all Lambertian reflectance
functions (the mapping from surface normals to intensities)
lies close to a 9D linear subspace for convex objects of
known shape lit by complex distant illumination. This
result often enables computer vision algorithms, previously
restricted to point sources without attached shadows, to
work in general complex lighting. There has been consider-
able work on novel algorithms for lighting-insensitive
recognition, photometric stereo, and relighting [2], [1], [7],
[22], [28], [26]. In graphics, the general convolution
formulas have been used for rendering with environment
maps [20], and insights have been widely adopted for
forward and inverse rendering (for example, [19], [23]).

However, there has been relatively little work in vision
on using the convolution formulas for glossy objects, even
though the frequency analysis [19] applies for general
materials. The main goal of this paper is to derive new
formulas and identities for direct frequency domain
spherical (de)convolution. Specifically, we make the follow-
ing theoretical contributions.

Derivation of new frequency domain identities. Our
main contribution is the derivation of a number of new
theoretical results, involving a class of novel frequency
domain identities. We study a number of setups, including
single (Sections 4 and 5) and multiple (Section 6) images
under single and multiple lighting conditions. For example,
one important case we consider (Section 6.3) is that of two
different glossy1 materials in two different lighting environ-
ments (Fig. 1). Denote the spherical harmonic coefficients by
Blight;material
lm , where the subscripts refer to the harmonic
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1. Parts of the theory (in Sections 4 and 6) address only purely specular
(or purely Lambertian) objects. However, as discussed in the paper and
shown in our results, the theory and algorithms can be adapted in practice
to glossy objects having both diffuse and specular components. Hence, we
use the term “glossy” somewhat loosely throughout the paper.
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indices, and the superscripts to the lighting (1 or 2) and object
or material (again 1 or 2). We derive an identity for the
specular component, B1;1

lmB
2;2
lm ¼ B

1;2
lmB

2;1
lm , directly from the

properties of convolution, independent of the specific lighting
configurations or BRDFs.

Analogy between spatial and frequency domain invar-
iants. By definition, invariants are insensitive to certain
appearance parameters like lighting. They usually transform
images to a simple feature space where more accurate
algorithms can be developed for the task at hand. Invariants
have been previously used mostly for material and lighting
insensitive recognition [17], [15]. There has been a substantial
body of previous work in developing spatial domain
invariants. Jin et al. [9] derive a constraint on the rank of the
radiance tensor field to do stereo reconstruction for non-
Lambertian objects. Nayar and Bolle [15] compute the ratio of
intensities at adjacent pixels to derive lighting independent
reflectance ratios. Davis et al. [4] derive a similar BRDF
independent ratio. Narsimhan et al. [17] consider a summa-
tion of multiple terms (diffuse plus specular), where each
term is a product of material and geometry. However, most of
the above methods are limited to point sources [17], [4] or
consider textured Lambertian objects only [15].

We show (Section 7) that the class of identities derived in
this paper can be considered the analog in the frequency
domain of fundamental spatial domain invariants. We
consider curved homogeneous glossy objects instead of
textured Lambertian objects. We also assume radially
symmetric BRDFs, a good approximation for most specular
reflectance. Moreover, we consider general complex light-
ing; by contrast, much of the previous spatial domain
theory is limited to single point sources. Conversely,
although our identities operate globally needing the full
range of reflected directions, spatial domain invariants
involve mostly local pixel-based operations.

Analysis of diffuse irradiance in reflected parameteriza-
tion. Another major contribution of the paper is the analysis
of diffuse irradiance in the reflected parameterization. This
analysis allows us to study objects with both diffuse and
specular components in a unified framework. We show that

even with the parameterization by reflected direction, the
effects of diffuse irradiance are limited to low frequencies. To
our knowledge, this is the first such combined diffuse plus
specular theory and is likely to have broader implications for
other problems in vision.

The theory and novel identities presented in the paper
have potential applications in many areas of vision and
graphics like inverse rendering, consistency checking, BRDF-
invariant stereo and photometric stereo or lighting-insensi-
tive recognition. In particular, this paper is motivated by the
following three important practical applications and seeks to
lay the mathematical foundations in these areas.

Inverse rendering. Estimation of the BRDF and lighting
has been an area of active research in vision and graphics.
Inverse rendering deals with measuring these rendering
attributes from photographs. Rendering synthetic images
by using these measurements from real objects greatly
enhances the visual realism of the rendered images. For
example, we estimate illumination from a single image of a
glossy material with known BRDF. By the convolution
theorem, a glossy material will reflect a blurred version of
the lighting. It is appealing to sharpen or deconvolve this by
dividing in the frequency domain by the spherical harmonic
coefficients of the BRDF. The basic formula is known [19]
but cannot be robustly applied, since BRDF coefficients
become small at high frequencies. Our contribution is the
adaptation of Wiener filtering [5], [25] from image proces-
sing to develop robust deconvolution filters (Figs. 4 and 12).
We are able to amplify low frequencies to recover the
lighting and reduce noise simultaneously.

BRDF/lighting transfer. Given images of an object under a
sparse set of lighting conditions, relighting it with novel
lighting is an interesting problem. Current methods [13], [11],
[24] require explicit estimation of lighting and BRDF from the
images of a scene. Zhang et al. [28], and Wen et al. [26] also use
spherical harmonics for face relighting, but they assume
Lambertian faces. This paper presents more general algo-
rithms, which directly relight and change material properties
by transferring the BRDF or lighting from another object or
illumination. For example, consider a simple case where we
have images of two different objects in two different lighting
conditions. We derive an identity that enables us to render the
fourth light/BRDF image, given the other three, without
explicitly estimating any lighting conditions or BRDFs. A
common example (Fig. 1) is when we observe two objects in
one lighting and want to insert the second object in an image
of the first object alone under new lighting. It is difficult to
apply conventional inverse rendering methods in this case,
since none of the illuminations or BRDFs are known.

Image consistency checking and tampering detection.
The final, newer application is to verify image consistency
and detect tampering (Johnson and Farid [8] and Lin et al.
[10]). The widespread availability of image processing tools
enables users to create “forgeries,” for example, by splicing
images together (one example is shown in Fig. 13). Moreover,
watermarking is not usually a viable option in many
applications, such as verifying authenticity for news report-
ing. However, (in)consistencies of lighting, shading, and
reflectance can also provide valuable clues. Most previous
work has focused on checking consistency at a signal or pixel
level, such as the camera response [10] or wavelet coefficients
(Ng et al. [16]). However, most of these methods do not
exploit consistencies of lighting, shading, and reflectance.
Johnson and Farid [8] detect inconsistencies in lighting to
expose forgeries, but their method is limited to point light
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Fig. 1. One application of our framework. We are given real photographs
of two objects of known geometry (shown in inset; note that both objects
can be arbitrary, and one of them is a sphere here only for convenience).
The two objects have different (and unknown) diffuse and specular
material properties. Both objects are present in the first image under
complex lighting, but the cat is not available in the second image under
new lighting. Unlike previous methods, none of the lighting conditions or
BRDFs are known (lightings on left shown only for reference). Our
method enables us to render or relight the cat to obtain its image in
lighting 2 (compare to actual shown on the right). This could be used for
example to synthetically insert the cat in the second image.



sources. This paper takes an important first step in laying the
theoretical foundations for this new research direction by
deriving a new class of identities which can be checked to
detect tampering and consistency of lighting and shading in a
complex lighting environment. A limitation of our approach
is that our identities require the knowledge of 3D model/
geometry of the object, though such geometry could be
available through prior acquisition or estimated from the
images, for example, based on known shape distributions [3].

The rest of this paper is organized as follows: Section 2
briefly explains the spherical convolution and signal proces-
sing framework. Section 3 demonstrates the use of deconvo-
lution to estimate lighting. In Sections 4 and 5, we introduce
identities for the simple case of a single image of an object.
Section 6 derives more identities for the case of multiple
images. In Section 7, we discuss the implications of our theory
and its relation to spatial domain invariants. Section 8 gives
experimental validation of our theory and shows potential
applications. Finally, we conclude our discussion in Section 9
and talk about the future research directions that this work
makes possible. This paper is an extended and detailed
version of a paper that was presented at European Con-
ference on Computer Vision (ECCV ’06) [12].

2 BACKGROUND

We now briefly introduce the spherical convolution and
signal-processing framework [2], [19] needed for our later
derivations. We start with the Lambertian case

BðnÞ ¼
Z
S2

Lð!Þmaxðn � !; 0Þ d!; ð1Þ

where BðnÞ denotes the reflected light as a function of the
surface normal. B is proportional to the irradiance (we omit
the albedo for simplicity), and Lð!Þ is the incident illumina-
tion. The integral is over the sphereS2, and the second term in
the integrand is the half-cosine function. The equations in this
paper do not explicitly consider color; the (R,G,B) channels
are simply computed independently. A similar mathematical
form holds for other radially symmetric BRDFs such as the
Phong model for specular materials. In the specular2 case, we
reparameterize by the reflected direction R (the reflection of
the viewing ray about the surface normal), which takes the
place of the surface normal. For the Phong model, the
reflection equation becomes:

BðRÞ ¼ sþ 1

2�

Z
S2

Lð!ÞmaxðR � !; 0Þs d!; ð2Þ

where s is the Phong exponent, and the BRDF is normalized
(by ðsþ 1Þ=2�).

If we expand in spherical harmonics Ylmð�; �Þ, using
spherical coordinates ! ¼ ð�; �Þ, n or R ¼ ð�; �Þ, and �ð�Þ
for the (radially symmetric) BRDF kernel, we obtain

Lð�; �Þ ¼
X1
l¼0

Xl
m¼�l

LlmYlmð�; �Þ

Bð�; �Þ ¼
X1
l¼0

Xl
m¼�l

BlmYlmð�; �Þ �ð�Þ ¼
X1
l¼0

�lYl0ð�Þ:
ð3Þ

It is also possible to derive analytic forms and good
approximations for common BRDF filters �. For the Lamber-
tian case, almost all of the energy is captured by l � 2. For
Phong and Torrance-Sparrow models of specular reflection,
good approximations [19] are Gaussians: exp½�l2=2s� for
Phong and exp½�ð�lÞ2� for Torrance-Sparrow, where � is the
surface roughness parameter in the Torrance-Sparrow
model, and s is the Phong exponent.

In the angular (versus angular frequency) domain, (1) and
(2) represent rotational convolution of lighting with BRDF.
The BRDF can be thought of as the filter, whereas the lighting
is the input signal. This allows us to relate them multi-
plicatively in the angular frequency domain (convolution
theorem). In the frequency domain, the reflected light B is
given by a simple product formula or spherical convolution
(see [2], [19] for the derivation and an analysis of this
convolution)

Blm ¼ �l�lLlm ¼ AlLlm; ð4Þ

where for convenience, we define the normalization
constant �l as

�l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

4�

2lþ 1

r
Al ¼ �l�l: ð5Þ

It is also possible to extend these results to nonradially
symmetric general isotropic BRDFs [19]. For this case, we
must consider the entire 4D light field, expressed as a function
of both orientation and outgoing direction

Blmpq ¼ �l�lq;pqLlm; ð6Þ

where the reflected light field is now expanded in a mixed
basis of representation matrices and spherical harmonics and
has four indices because it is a 4D quantity. The 3D isotropic
BRDF involves an expansion over both incoming and
outgoing directions. The new indices p and q correspond to
the spherical harmonic indices for the expansion over
outgoing angles (analogous to the indices l and m used for
the lighting).

The remainder of this paper derives new identities and
formulas from (4), Blm ¼ AlLlm. Most glossy BRDFs (such as
Torrance-Sparrow) are approximately radially symmetric,
especially for nongrazing angles of reflection [19], [20]. Most
of the theory in this paper also carries over to general isotropic
materials, as per (6), if we consider the entire light field.
Another reason to focus on (4), is that it is simple and allows
practical spherical harmonic computations from only a single
image—a single view of a sufficiently curved object (assuming
a distant viewer) sees all reflected directions.3

3 KNOWN BRDF: DECONVOLUTION TO ESTIMATE

LIGHTING

Lighting estimation is a specific example of the general
inverse rendering problem. Given a single image and BRDF
of known geometry and homogenous material, we want to
estimate the directional distribution of the incident light.
This information can then be used to insert new objects in
the scene, alter the lighting of the object or check lighting

MAHAJAN ET AL.: A THEORY OF FREQUENCY DOMAIN INVARIANTS: SPHERICAL HARMONIC IDENTITIES FOR BRDF/LIGHTING TRANSFER... 3

2. “Specular” will always be used to mean generally glossy, including
but not restricted to mirror-like.

3. In case we do not have the full range of normals, we can use multiple
cameras. As we move the camera (viewer), the same point on the object now
corresponds to a different reflected direction. Hence, we can get all the
reflected directions even if the object has only a partial set of normals by the
careful placement of cameras.



consistency between two objects. Since reflected light is a
spherical convolution of lighting and BRDF, it makes sense
to deconvolve it to estimate lighting. We present a
deconvolution algorithm for curved surfaces under com-
plex lighting. Section 3.1 describes the basic deconvolution
idea and introduces an ideal deconvolution filter. We then
discuss the properties of this filter for Phong-like BRDFs in
Section 3.2. Section 3.3 describes the Wiener filter used to
regularize the inverse filter so that it can be used for
practical purposes. Finally, we show the results of applying
this filter in Section 3.4.

3.1 Deconvolution—Basic Idea

Given a single image of a curved surface, we can map local
viewing directions to the reflected direction, determining
BðRÞ, and then Blm by taking a spherical harmonic
transform. If the material includes a diffuse component as
well as specular, we use the dual lighting estimation
algorithm of Ramamoorthi and Hanrahan [19], which
estimates the specular Blm consistent with the diffuse
component. As per (4), Blm will be a blurred version of
the original lighting, filtered by the glossy BRDF.

From (4), in the spherical harmonic domain, we derive

Llm ¼
Blm

Al
¼ A�1

l Blm; ð7Þ

where the last identity makes explicit that we are convol-
ving (in the angular domain) with a new radially symmetric
kernel A�1

l , which can be called the inverse sharpening or
deconvolution filter. A�1

l effectively amplifies high frequen-
cies to recover blurred out details.

3.2 Analysis of Inverse Phong Filter

We now discuss the properties of the angular form of the
inverse filter. Surprisingly, not much work has been done to
analyze this filter in detail. For simplicity, we will use the
Fourier transform rather than spherical harmonics. We will
illustrate that the properties discussed in the Fourier
domain are also valid for spherical harmonics.

We use the inverse Phong filter for our analysis. As
mentioned earlier, a Gaussian exp½�l2=2s� gives a good
approximation for Phong reflection, where s is the Phong
exponent. Therefore, the inverse Phong filter can be
approximated by exp½l2=2s�. Note that this analysis also
applies to the Torrance-Sparrow approximation by sub-
stituting s ¼ 1=2�2. Since the filter becomes large at high
frequencies, leading to amplification of the noise, we need
to truncate it first to a cut-off frequency r. The inverse
Fourier transform of this truncated filter is

fðx; r; sÞ ¼
Z r

�r
e
u2

2s e2�ixudu: ð8Þ

Putting u ¼
ffiffiffiffiffi
2s
p

v

fðx; r; sÞ ¼
ffiffiffiffiffi
2s
p Z rffiffiffi

2s
p

� rffiffiffi
2s
p
ev

2

e2
ffiffiffiffi
2s
p

�ivxdv

fðx; r; sÞ ¼
ffiffiffiffiffi
2s
p

g
ffiffiffiffiffi
2s
p

x;
rffiffiffiffiffi
2s
p

� �
;

ð9Þ

gðx; kÞ ¼
Z k

�k
et

2

e2�itxdt ð10Þ

gðx; kÞ is the inverse Fourier transform of the cannonical filter
exp½t2� truncated at kand is independent of Phong exponent s.
Going from f to g is just the application of the Fourier Scale
Theorem. Let HðuÞ be the Fourier transform of hðxÞ:

hðxÞ $ HðuÞ:

Then, the Fourier scale theorem states that

hðaxÞ $ 1

jajH
u

a

� �
:

In our case, a ¼ 1ffiffiffiffi
2s
p . The frequencies u of the cannonical

filter exp½u2� get scaled by 1ffiffiffiffi
2s
p . By the Fourier scale

theorem, this means that x gets scaled by
ffiffiffiffiffi
2s
p

in the
spatial domain. Hence, fðx; r; sÞ is just the spatially scaled
version of gðx; kÞ. gðx; kÞ can be further analyzed to give

gðx; kÞ ¼ 2�ek
2

k
n kx;

�

k

� �
; ð11Þ

nð�; �Þ ¼
Z 1
�

e�
2ð�2�u2Þsinð2�uÞdu: ð12Þ

A detailed derivation is given in Appendix A, which can be
foundathttp://computer.org/tpami/archives.htm. Plots for
fðx; r; sÞ, gðx; kÞ, and nð�; �Þ are shown in Figs. 2a, 2b, 2c, 2d,
2e, and 2f. Here, k and r are related to each other by k ¼ rffiffiffiffi

2s
p .

nð�; �Þ can be considered as a normalized form of the

inverse filter and is independent of both Phong exponent s

and cut-off frequency r. We now make some important

empirical observations about nð�; �Þ. For fixed �, it has the

shape of a damped sinusoid with a period of 1 in �. This

insight comes from a large number of plots, only two

representative examples of which we have shown (Figs. 2c

and 2f). We have also found out that the variation in peak

amplitude of n (at � ¼ 0) is small for different �. Moreover,

the amplitude of n falls off as 1
� .

We now discuss some important properties of fðx; r; sÞ.

3.2.1 Periodicity

Since n has period 1 in �, gðx; kÞ has period 1
k

4 (from (11)).

From (9)

Period of fðx; r; sÞ ¼ 1ffiffiffiffiffi
2s
p � Period of gðx; kÞ

¼ 1ffiffiffiffiffi
2s
p � 1

k

¼ 1ffiffiffiffiffi
2s
p �

ffiffiffiffiffi
2s
p

r

¼ 1

r
:

ð13Þ

Therefore, as cut-off frequency r increases, the filter becomes
more and more oscillatory (Figs. 2a and 2d).

3.2.2 Peak Amplitude

We now discuss the effect of cut-off frequency r and Phong

exponent s on the peak amplitude of the filter f (which
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4. We call them “periodic,” in the sense of the periodicity of the damped
sinusoid shape they have.



occurs at x ¼ 0). From (9) and (11), the peak amplitude

introduced due to frequency cut-off r and Phong exponent s

is
ffiffiffiffiffi
2s
p

ek
2

k � Peak Amplitude of n. Since the variation in peak

amplitude of n is small for different �, we can neglect it in

comparison to other terms. Hence, the peak amplitude is

approximately

ffiffiffiffiffi
2s
p ek

2

k
� 2se

r2

2s

r
: ð14Þ

As r increases, the peak amplitude grows almost exponentially, as

can be seen in Fig. 2g.

3.2.3 Amplitude Fall-Off

The amplitude fall-off in x of fðx; r; sÞ is the same as that of

nð�; �Þ in �. Fig. 2h shows that the log-log plot of amplitude

fall-off for fðx; r; sÞ is a straight line with slope ¼ �1. Hence,

the amplitude of fðx; r; sÞ falls off as 1
x .

3.3 Wiener Regularization

Section 3.2 shows that it is difficult to apply (7) directly and

that we need regularization. From the analysis of Section 3.2

and Fig. 2, it is clear that simply cutting off high frequencies

makes the filter more oscillatory and causes an increase in

amplitude, resulting in substantial ringing and amplifica-

tion of noise. Choosing a lower cut-off results in a loss of all

the high frequencies, even if they could be somewhat

recovered, and we still have substantial residual ringing.

These types of problems have been well studied in image

processing, where a number of methods for deconvolution

have been proposed. We adapt Wiener filtering [5], [25] for

this purpose. Assuming spectrally white noise, we define a

new inverse filter

A�l ¼
1

Al

jAlj2

jAlj2 þK

 !
¼ Al

jAlj2 þK
Llm ¼ A�l Blm; ð15Þ

where K is a small user-controlled constant.5 When

jAlj2 � K, the expression in parentheses on the left is close

to 1 and A�l � A�1
l . When jAlj2 	 K, A�l � Al=K.

Fig. 3 shows the Wiener filter in the spatial and frequency

domains for a Phong BRDF with different Phong exponents

and K values. Note the smooth fall-off of the filter in the

frequency domain. Differentiating (15) with respect to Al

reveals that A�l attains its maximum value of A�
max

l ¼ 1
2
ffiffiffiffi
K
p at

Amax
l ¼

ffiffiffiffiffi
K
p

. We can think of the corresponding value of l at

this maximum as the cut-off frequency l� of the filter. For a

Phong filter approximated as exp½�l2=2s�, this corresponds to

thecut-off frequency l� ¼ ffiffiffiffiffiffiffiffiffiffiffi
logð 1

KsÞ
p

.K ¼ 0 (magentagraph) is the

ideal inverse Phong filter and can be approximated by

exp½l2=2s�. Note that this filter attains very large values for

large frequencies. For a given s, as K increases, l� decreases

and, hence, more and more of the higher frequencies get

truncated. Fig. 3b shows the result of applying the Wiener

filters back to the original Phong filter (blue graph in Fig. 3b) to

see which frequencies are let through. Most frequencies are let

through without attenuation, whereas very high frequencies

are filtered out. Note that without Wiener filtering, it should

be equal to 1 everywhere. Figs. 3c, 3d, 3e, and 3f show these

filters in the angular domain. Increasing the value of K

(Figs. 3c and 3e, and 3d and 3f) decreases the amplitude of the

filter and makes it less oscillatory, thus, decreasing the ringing

effects. A similar behavior was noted when choosing a lower

cut-off frequency in Section 3.2; however, with Wiener

filtering, the ringing is substantially more damped. Increasing

the Phong exponents (Figs.3c and 3d,and 3eand3f) decreases

the periodicity of the filter.
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Fig. 2. Left: f, g, and n functions for two different values of frequency cut-off r. As r increases, f becomes more and more oscillatory with period 1
r .

The period of n however does not change. Right: (g) shows that the amplitude of f (at x ¼ 0) increases exponentially with r2. The log-log plot (h) of
amplitude of f versus x is a straight line with slope �1, showing that the filter falls off as 1

x .

5. Wiener filters are widely used in image restoration. There, K is the
ratio of the power spectral density (PSD) of the undegraded image (without
blur) and the PSD of the noise. In our case, the BRDF plays the role of the
blurring function, and hence, K needs to be defined suitably. In fact, it
needs to be estimated from the image. Finding the optimal K value is one of
the difficult issues in applying Wiener filters. For now, we do not attempt to
estimate it, and instead use a user-specified constant.



3.4 Lighting Estimation in Frequency Domain

The top row in Fig. 4 shows the results (on the synthetic noisy
sphere in (Fig. 4a)) of deconvolution (Fig. 4c)—the “ECCV”
text used in the lighting (Fig. 4d) can be recovered fairly
clearly. One interesting point is the effect of noise. In our case,
the image in a glossy surface is already low-pass filtered
(because of the BRDF), whereas any noise usually has much
higher frequency content, as seen in the original synthetic
image (Fig. 4a). The filter in (15) is a low-pass filter though the
cut-off can be set high for low noise. The amplification at very
low frequencies is small. Midrange frequencies are amplified
substantially, whereas high frequencies are reduced (because
of the inherent regularization). Hence, we can simultaneously
deconvolve the lighting and suppress noise (compare the noise in
(Fig. 4c) with that in Fig. 4a or Fig. 4b). Fig. 5 shows the lighting
estimation for different values ofK. The ideal inverse Phong
filter is very high for large frequencies resulting in the

amplification of noise ðK ¼ 0 caseÞ. AsK increases, more and
more high frequencies get attenuated, resulting in a decrease
in ringing due to noise. However, note that the amount of
blurring increases withK. Fig. 12 shows an application of our
method with real data and a geometrically complex object.

It is also interesting to compare our results to previous
techniques. Angular-domain approaches are usually specia-
lized to point lights, use higher frequency information like
shadows (Sato et al. [24]) or recover large low-frequency
lighting distributions (Marschner and Greenberg [11]). Even
the more precise dual angular-frequency lighting estimation
technique of Ramamoorthi and Hanrahan [19] can obtain
only a blurred estimate of the lighting (Fig. 4b). The result of
applying the latter approach is clearly seen in the bottom row
in Fig. 4, where [19] produces a blurred image (Fig. 4e) when
trying to synthesize renderings of a new high-frequency
material, whereas we obtain a much sharper result (Fig. 4f).

4 THEORETICAL ANALYSIS: SINGLE IMAGE OF ONE

OBJECT WITH SPECULAR BRDF

We now carry out our theoretical analysis and derive a
number of novel identities for image consistency checking
and relighting. We structure the discussion from the
simplest case of a single image of one object in this section
to more complex examples in Section 6—two objects in the
same lighting, the same object in two lighting conditions
and, finally, two (or many) objects in two (or many) lighting
conditions. Deconvolution, discussed in Section 3 is a
special single image case where we know the BRDF of the
object, but lighting is unknown. In this section, we discuss
the converse case, where the lighting is known, but the
BRDF is unknown. The objects are assumed to be purely
specular. We then present a general theory for objects with
both diffuse and specular components in Section 5.

We show that for radially symmetric specular BRDFs,
described using (4), we can eliminate the BRDF to derive an
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Fig. 3. Left: Wiener filters in the frequency domain. (a) shows the Wiener filters for different values of K for a Phong BRDF ðs ¼ 100Þ. Note that the

maximum occurs at l� ¼ ffiffiffiffiffiffiffiffiffiffiffi
logð 1

Ks
Þ

p
, the value being A�

max

l ¼ 1
2
ffiffiffiffi
K
p . K ¼ 0 (magenta graph) is the ideal inverse Phong filter and can be approximated by

exp½l2=2s�. Note that this filter attains very large values for large frequencies. (b) shows the result of applying the Wiener filters back to the original

Phong filter (blue graph in b) to see which frequencies are let through. Most frequencies are let through without attenuation, whereas very high

frequencies are filtered out. Without Wiener filtering, it should be one everywhere. Right: Wiener filters in the angular domain. Note the decrease in

oscillations as we increase the value of K ((c)and (e) and (d) and (f)). Also the period of the filter decreases with increasing Phong exponent s

((c) and (d) and (e) and (f)).

Fig. 4. (a) Original synthetic image (Phong BRDF with exponent s ¼ 100,
diffuseKd ¼ 2, and specularKs ¼ 1) with noise—close examination of (a)
and (b) will reveal the noise. Top row: we recover (c) much of the “ECCV”
text in the original lighting (d). Previous techniques (b) can estimate only a
blurred result. Note that top and bottom rows show a close-up of the
sphere. Bottom row: We can use the recovered illumination to create a
new rendering of a high-frequency material (f). This compares well with the
actual result (g); a previous method (e) creates a very blurred image.



identity that must hold and can be checked independent of the
BRDF. This is the first of a number of frequency domain
identities we will derive in a similar fashion. First, from (4),
we can write

Al ¼
Blm

Llm
: ð16Þ

This expression could be used to solve for BRDF coeffi-
cients.6 However, we will use it in a different way. Our key
insight is that the above expression is independent of m and
must hold for all m. Hence, we can eliminate the (unknown)
BRDF Al, writing

Bli

Lli
¼ Blj

Llj
ð17Þ

for all i and j. Moving terms, we obtain our first identity

BliLlj �BljLli ¼ 0: ð18Þ

In effect, we have found a redundancy in the structure of the
image that can be used to detect image tampering or splicing.
The lighting L and imageB are functions on a 2D (spherical)
domain. However, they are related by a 1D radially
symmetric BRDF, leading to a 1D redundancy7 that can be
used for consistency checking in (18).

To normalize identities in a ½0 . . . 1� range, we always use
an error of the form

Error ¼ jBliLlj �BljLlij
jBliLljj þ jBljLlij

:

There are many ways one could turn this error metric into a
binary consistency checker or tamper detector. Instead of
arbitrarily defining one particular approach, we will show
graphs of the average normalized error for each spherical
harmonic order.

Fig. 6 applies our theory to synthetic data of an ideal
Phong BRDF with noise added. We show close-ups of
spheres generated with “ECCV” and “ICCV” lighting. To
the naked eye, these look very similar, and it is not easy to
determine if a given image is consistent with the lighting.
However, our identity in (18) clearly distinguishes between
consistent (that is, the image is consistent with the lighting
[ECCV or ICCV] it is supposed to be rendered with) and
inconsistent illumination/image pairs. As compared to
Johnson and Farid [8], we handle general complex

illumination. Moreover, many of the identities in later
sections work directly with image attributes, not even
requiring explicit estimation or knowledge of the illumina-
tion. However, all our identities require the explicit knowl-
edge of 3D models/geometry of the object.

Fig. 7 shows the results on a synthetic sphere with Blinn-
Phong BRDF (specular lobe). In general, the convolution
theorem of (4) does not hold for Blinn-Phong because it is
not symmetric about the reflected direction. However, it can
be shown that the BRDF filter is essentially symmetric for
low frequencies l. Equation (18) holds for small frequencies
but breaks down for high frequencies. Therefore, the
identities in this and later sections are robust to small
dissymmetries in the BRDF (for example, low-frequency
symmetry) but with narrower operating range.

Our framework could be used to blindly (without water-
marking) detect tampering of images, making sure a given
photograph (containing a homogeneous object of known
shape) is consistent with the illumination it is captured in.8 To
the best of our knowledge, ours is the first theoretical
framework to enable these kinds of consistency checks.
Example applications of tamper detection on real objects are
shown in Figs. 11 and 13.

Finally, it should be noted that if we are given the full
light field (all views) instead of simply a single image, a
similar identity to (18) holds for general BRDFs that need
not be radially symmetric. In particular, based on (6), a
similar derivation gives

BlipqLlj �BljpqLli ¼ 0: ð19Þ

For the rest of this paper, we will not explicitly write out the
form of the identities for general light fields, but it should be
understood that similar properties can be derived for general
isotropic BRDFs and light fields for most of the formulas we
discuss here.

5 SINGLE IMAGE: COMBINING DIFFUSE AND

SPECULAR

We now consider the more general case of an unknown
glossy BRDF with both specular and Lambertian (diffuse)
reflectance. To our knowledge, this is the first such
combined diffuse plus specular theory of the single image
case, and the analysis (such as (20) and (23)) is likely to have
broader implications for other problems in vision, such as
photometric stereo and lighting-insensitive recognition.
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Fig. 5. Lighting estimation for different values of K with the synthetic ECCV sphere in Fig. 4. The ideal inverse Phong filter is very high for large
frequencies resulting in the amplification of noise ðK ¼ 0 caseÞ. As K increases, more and more high frequencies get attenuated, resulting in a
decrease in ringing due to noise. However, note that the amount of blurring increases with K.

6. Since natural lighting usually includes higher frequencies than the
BRDF, we can apply (16) directly without regularization and do not need to
explicitly discuss deconvolution. However, note that we have assumed a
purely specular BRDF. Section 5 does derive a new robust formula (23) for
BRDF estimation when both diffuse and specular components are present.

7. The frequency space identity in this section (18) cannot be derived for
the known BRDF case, since the lighting is not radially symmetric and
therefore cannot be eliminated.

8. Our identities are “necessary” conditions for image consistency, under
our assumptions and in the absence of noise. They are not theoretically
“sufficient.” For example, if an unusual material were to zero out a certain
frequency, tampering at that frequency might go undetected. Also note that
noise tends to add high frequencies, whereas materials tend to filter out
high frequencies, causing the consistency errors to rise (become less
reliable) with harmonic order.



5.1 Common Parameterization

The major technical difficulty is that while both diffuse
(Lambertian) and specular components are radially sym-
metric, they are so in different parameterizations (normal
versus reflected direction). An important technical con-
tribution of this paper is to express the diffuse irradiance in
the reflected parameterization

Blm ¼ KdDlm þAspec
l Llm: ð20Þ

The parameters of reflectance are the diffuse coefficient Kd

and the specular BRDF filter coefficients Al (we drop the
superscript from now on). Dlm are the spherical harmonic
coefficients of the irradiance written in the reflected para-
meterization. They depend linearly on the lighting coeffi-
cients Dlm (assumed known) as Dlm �

P2
n¼0 A

Lamb
n DnmTlmn,

with Tlmn ¼
R
S2 Ynmð�2 ; �ÞY �lmð�; �Þ d�. The �=2 in the first

term converts from normal to reflected parameterization.9

The coefficients Tlmn can be determined analytically or
numerically, since the formulas for Ynm and Y �lm are well
known. Plots for Dlm and Tlmn are shown in Fig. 8 for a
particular complex natural lighting environment. Since
n ranges from 0 to 2 for Lambertian reflectance, m varies
from�2 toþ2, so we can safely neglect terms with jmj > 2 or
jnj > 2. Moreover, for l 
 2, we find that Tlmn either vanishes
or falls off rapidly as l�3=2 or l�5=2. Hence, though somewhat
more complex, Lambertian effects in the reflected parameter-
ization are still relatively simple and low frequency. Please
see Appendix B, which can be found at http://computer.
org/tpami/archives.htm for a more detailed derivation.

5.2 Determining Kd and Image Consistency

We now seek to eliminateAl from (20) to directly estimateKd

for inverse rendering and reflectance estimation.
As before, Al can be eliminated by considering different

values of m:

Bli �KdDli

Lli
¼ Blj �KdDlj

Llj
¼) Kd ¼

BliLlj �BljLli
DliLlj �DljLli

:

ð21Þ

Since the above equation is true for all l, i, and j, we also
get an identity that must hold for any l, i, and j and can be
used for image consistency checking:

Bl1iLl1j �Bl1jLl1i
Dl1iLl1j �Dl1jLl1i

¼ Bl2mLl2n �Bl2nLl2m
Dl2mLl2n �Dl2nLl2m

: ð22Þ

5.3 Determining Al and Image Consistency

Equivalently, we can eliminate Kd

Bli �AlLli
Dli

¼ Blj �AlLlj
Dlj

¼) Al ¼
BliDlj �BljDli

LliDlj � LljDli
: ð23Þ

This can be used to directly estimate the specular BRDF
coefficients, irrespective of the diffuse coefficient Kd. As a
sanity check, consider the case when Kd ¼ 0. In this case,
Bli ¼ AlDli, so the expression above clearly reduces to Al.
Hence, (23) can be considered a new robust form of
reflectance estimation that works for both purely specular
and general glossy materials. Further note that we estimate
an accurate nonparametric BRDF representation specified by
general filter coefficients Al.

Since the formula above is true for all i, j, we get an
identity for image consistency

BliDlj �BljDli

LliDlj � LljDli
¼ BlmDln �BlnDlm

LlmDln � LlnDlm
: ð24Þ

Fig. 9 shows these ideas applied to a synthetic sphere
with both diffuse and specular components. In this case, we
used as input Al from measurements of a real material, and
they do not correspond exactly to a Phong BRDF. Hence, our
technique recovers the specular BRDF somewhat more
accurately than a comparison method that simply does
nonlinear estimation of Phong parameters. We also show
image consistency checks similar to those in the previous
section, using (24). As in the previous section, we can
distinguish small inconsistencies between lighting and
image. An application to detect splicing for a real object is
shown in the left graph in Fig. 13.

6 THEORETICAL ANALYSIS: TWO MATERIALS

AND/OR LIGHTING CONDITIONS

Section 4 analyzed the single object, single image case. In this
section,10 we first consider two different objects (with
different materials) in the same lighting. Next, we consider
one object imaged in two different lighting conditions. Then,
we consider the two lighting/two BRDF case corresponding
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Fig. 6. (a) The synthetic images used. These correspond to close-ups of
specular spheres rendered with “ECCV” and “ICCV” lighting. To the naked
eye, the two images look very similar. (b) and (c) The graphs show that our
identity can clearly distinguish consistent image/lighting pairs (lower line)
from those where lighting and image are inconsistent (upper line).

Fig. 7. (a) Grace cathedral lighting environment. (b) Sphere rendered
with Blinn-Phong BRDF, ðN:HÞs, s ¼ 500. (c) Single image identity value
for the rendered sphere. For low frequencies (shown here), the BRDF
filter is essentially symmetric, and the identity values are small.

9. We would like to emphasize that the reflected parameterization is not
directly related to Rusinkiewicz’s half-angle parameterization [21]. In fact,
the convolution theorem does not hold for the half-angle parameterization.

10. This section will primarily discuss the purely specular case. For
consistency checking, we have seen that in the reflective reparameteriza-
tion, the diffuse component mainly affects frequencies Dlm with jmj � 2.
Therefore, it is simple to check the identities for jmj > 2. Diffuse relighting
is actually done in the spatial domain, as discussed in Section 7. Section 8
provides experimental validation with objects containing both diffuse and
specular components.



to two images (in different lighting conditions), each of two
objects with distinct BRDFs. In Section 6.1, we will discuss
some broader implications.

6.1 Two Objects/BRDFs: Same Lighting

We consider a single image (hence, in the same lighting
environment) of two objects with different BRDFs. Let us
denote by superscripts 1 or 2 the two objects

B1
lm ¼ A1

l Dlm B2
lm ¼ A2

l Dlm: ð25Þ

From these, it is possible to eliminate the lighting by

dividing

B2
lm

B1
lm

¼ A
2
l

A1
l

¼ 	l: ð26Þ

We refer to 	l as the BRDF transfer function. Given the
appearance of one object in complex lighting, multiplication
of spherical harmonic coefficients by this function gives the
appearance of an object with a different material. 	l is
independent of the lighting condition and can be used in any
(unknown) natural illumination. Also note that this function
is independent ofm, so we can average over allm, which makes
it very robust to noise—in our experiments, we have not
needed any explicit regularization for the frequencies of
interest. Moreover, we do not need to know or estimate the
individual BRDFs. It is not clear that one can derive such a
simple formula, or bypass explicit lighting/reflectance
estimation, in the spatial/angular domain. Section 6.3 will
explore applications to rendering.

It is also possible to use these results to derive a frequency
space identity that depends only on the final images and does not
require explicit knowledge of either the lighting condition or the
BRDFs. We know that (26) should hold for all m, so

B2
li

B1
li

¼
B2
lj

B1
lj

¼) B2
liB

1
lj �B1

liB
2
lj ¼ 0: ð27Þ

This identity can be used for consistency checking, making
sure that two objects in an image are shaded in consistent
lighting. This enables detection of inconsistencies, where
one object is spliced into an image from another image with
inaccurate lighting. Also note that the single image identity
(18) is just a special case of (18), where one of the objects is
simply a mirror sphere (so, for instance, B1 ¼ L).

6.2 Two Lighting Environments: Same Object/BRDF

We now consider imaging the same object in two different
lighting environments. Let us again denote by superscripts 1
or 2 the two images, so that

B1
lm ¼ AlD

1
lm B2

lm ¼ AlD
2
lm: ð28Þ

Again, it is possible to eliminate the BRDF by dividing

B2
lm

B1
lm

¼ L
2
lm

L1
lm

¼ L0lm: ð29Þ

We refer to L0lm as the lighting transfer function. Given the
appearance of an object in lighting condition 1, multi-
plication of spherical harmonic coefficients by this function
gives the appearance in lighting condition 2. L0lm is
independent of the reflectance or BRDF of the object. Hence,
the lighting transfer function obtained from one object can
be applied to a different object observed in lighting
condition 1. Moreover, we never need to explicitly compute
the material properties of any of the objects nor recover the
individual lighting conditions.

The relighting application does not require explicit
knowledge of either lighting condition. However, if we
assume the lighting conditions are known (unlike the
previous section, we need the lighting known here since
we cannot exploit radial symmetry to eliminate it), (29) can
be expanded in the form of an identity:

B2
lmL

1
lm �B1

lmL
2
lm ¼ 0: ð30Þ

This identity can be used for consistency checking, making
sure that two photographs of an object in different lighting
conditions are consistent and neither has been tampered.
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Fig. 8. (a) and (b) Dlm plots for low and high frequencies. Note that Dlm coefficients are small for jmj > 2 and, hence, can be safely neglected.

(c) Tlmn plot. Tlmn falls off rapidly as l�3=2 or l�5=2 for l 
 2.

Fig. 9. (a) Synthetic sphere image with both diffuse (Kd set to 1) and
specular (taken from measurements of a real material) components.
(b) Image consistency checks (24) can distinguish small inconsistencies
between illumination and image (“ECCV” versus “ICCV” lighting). (c) For
estimation of Al, our approach gives accurate results, outperforming a
parametric estimation technique.



6.3 Two Materials and Two Lighting Conditions

Finally, we consider the most conceptually complex case,
where both the lighting and materials vary. This effectively
corresponds to two images (in different lighting conditions),
each containing two objects of different materials.

We will now use two superscripts, the first for the
lighting and the second for the material:

Lighting 1 Lighting 2

BRDF 1 B1;1
lm ¼ A1

l L
1
lm B2;1

lm ¼ A1
l L

2
lm

BRDF 2 B1;2
lm ¼ A2

l L
1
lm B2;2

lm ¼ A2
l L

2
lm:

Simply, by multiplying out and substituting the relations
above, we can verify the basic identity discussed in the
introduction to this paper

B1;1
lmB

2;2
lm ¼ B

1;2
lmB

2;1
lm ¼ A1

l A
2
l D

1
lmD

2
lm ð31Þ

or for the purposes of consistency checking

B1;1
lmB

2;2
lm �B

1;2
lmB

2;1
lm ¼ 0: ð32Þ

An interesting feature of this identity is that we have
completely eliminated all lighting and BRDF information.
Consistency can be checked based simply on the final images
without estimating any illuminations or reflectances. Note
that if the second object is a mirror sphere, this case reduces to
the two lightings, same BRDF case in (30).

Equation (31) also leads to a simple framework for
estimation. The conceptual setup is that we can estimate
the appearance of the fourth lighting/BRDF image (with-
out loss of generality, say, this is B2;2

lm ), given the other
three, without explicitly computing any illumination or

reflectances. Clearly, this is useful to insert the second
object into a photograph where it was not present
originally, assuming we have seen both objects together
under another lighting condition. From (31), we have

B2;2
lm ¼

B1;2
lmB

2;1
lm

B1;1
lm

; ð33Þ

¼ B1;2
lm

B2;1
lm

B1;1
lm

 !
¼ B1;2

lmL
0
lm; ð34Þ

¼ B2;1
lm

B1;2
lm

B1;1
lm

 !
¼ B2;1

lm	l: ð35Þ

This makes it clear that we can visualize the process of
creating B2;2

lm in two different ways. Fig. 10 further illustrates
the two approaches. One way (Fig. 10a) is to start with
another object in the same lighting condition, that is, B2;1

lm and
apply the BRDF transfer function 	l. The BRDF transfer
function is found from the image of both objects in lighting
condition 2. Alternatively (Fig. 10b), we start with the same
object in another lighting condition B1;2

lm and apply the
lighting transfer function D0lm obtained from another object.
In practice, we prefer using the BRDF transfer function (35),
since 	l is more robust to noise. This is because 	l is
independent of m. Hence, for a given l, we can average over
different values of m, thus reducing the noise in the
coefficients. In contrast, the lighting transfer functions are
more sensitive to noise. Certain frequency modes in the
source image might be suppressed, leading to division by
zero in the lighting transfer function. Hence, the image
(Fig. 10e), obtained using lighting transfer function D0lm has
artifacts, whereas the one (Fig. 10c), obtained by using
BRDF transfer function 	l is consistent with actual image
(Fig. 10d) due to robustness of 	l to noise.
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Fig. 10. Top row: two different approaches for image relighting. We can
either use BRDF transfer function (a) or Lighting transfer function (b). All
the spheres are synthetic with Lighting 1 being St. Peters environment
map and Lighting 2 Grace Cathedral. We have used Phong BRDF, with
Phong exponent s ¼ 500 for object 1 and s ¼ 100 for object 2. Bottom
row: Comparison of spheres generated using two approaches with
actual sphere. Sphere (e) generated using Lighting Transfer has
artifacts (note the ringing), whereas the sphere (c) generated using
BRDF Transfer matches closely with the acutal sphere (d).

Fig. 11. Top left: Experimental setup. Top middle: Two lightings (shown
only for reference) and images of two glossy (diffuse plus specular)
spheres in that lighting. Top right: We can accurately render (b1), given
(a1, a2, b2), and render (b2), given (a1, a2, b1). Bottom: We tamper (b2)
to generate (c) by squashing the specular highlights slightly in
photoshop. Although plausible to the naked eye, all three identities in
Section 6 clearly indicate the tampering (red graphs).



The idea of estimating the fourth light/BRDF image, given
the other three, has some conceptual similarity to learning
image analogies [6]. However, we are considering a convolu-
tion of lighting and BRDF, whereas image analogies try to
synthesize images by rearranging input pixels, irrespective of
the physics, and cannot achieve the desired result in general.
Since none of the lightings or BRDFs are known, it would also
be very difficult to renderB2;2

lm with alternative physics-based
inverse rendering methods.

7 IMPLICATIONS AND DISCUSSION

We now briefly discuss some of the broader implications of
our theory. First, we extend the two BRDF/two lighting
case to multiple lighting conditions and BRDFs. Then, we
discuss spatial domain setups and identities analogous to
our frequency domain analysis. Finally, we show how
many previous spatial domain algorithms and invariants
can be considered special cases, extensions or variants of
this general class of identities.

7.1 Multiple Lighting Conditions and BRDFs

Let us consider p lighting conditions and q BRDFs, instead of
assuming p ¼ q ¼ 2, with superscripts i � p and j � q, so that

Bi;j
lm ¼ A

j
lD

i
lm ¼) Blm ¼ LlmAT

l ; ð36Þ

where in the last part, for a given spherical harmonic index
ðl;mÞ, we regard Blm as an p� q matrix obtained by
multiplying column vectors Llm ðp� 1Þ, corresponding to
the lighting conditions, and the transpose of Al ðq � 1Þ,
corresponding to the BRDFs.

Equation (36) makes it clear that there is a rank-1 constraint
on the p� qmatrix Blm. Section 6.3 has considered the special

case p ¼ q ¼ 2, corresponding to a 2� 2 matrix, where the
rank-1 constraint leads to a single basic identity (32). In fact,
(32) simply states that the determinant of the singular
2� 2 matrix Blm is zero.

7.2 Spatial Domain Analog

Equation (36) expresses the image of a homogeneous glossy
material in the frequency domain as a product of lighting and
BRDF. Analogously, a difficult to analyze frequency
domain convolution corresponds to a simple spatial domain
product. For example, the image of a textured Lambertian
surface in the spatial domain is a product of albedo �k and
irradiance Ek, where k denotes the pixel.

Bi;j
k ¼ �

j
kE

i
k ¼) Bk ¼ Ek�

T
k : ð37Þ

Equation (37) has the same product form as the basic
convolution equation ðBlm ¼ AlLlmÞ. Hence, an identity
similar to (32) holds in the angular domain for textured
Lambertian objects

B1;1
diffuseð�; �ÞB

2;2
diffuseð�; �Þ ¼ B

1;2
diffuseð�; �ÞB

2;1
diffuseð�; �Þ: ð38Þ

The BRDF transfer function 	ð�; �Þ is just the ratio of diffuse
albedos and is constant for homogeneous objects.

These identities enable spatial domain techniques for
rerendering the diffuse component (which in our case has
constant albedo since the material is homogeneous) while
still using the frequency domain for the specular compo-
nent. In order to separate the diffuse and specular
components from the images, we observe that in a
parameterization by surface normals, Blm will have essen-
tially all of its diffuse energy for l � 2, whereas the specular
energy falls away much more slowly [20] and, therefore,
mostly resides in l > 2. Therefore, we assume that

Bdiffuseð�; �Þ �
X2

l¼0

Xl
m¼�l

BlmYlmð�; �Þ: ð39Þ

However, a single image gives information only for a
hemisphere of surface normals, so we cannot directly
calculate Blm for the normal parameterization. Spherical
harmonics do not form a linearly independent basis for the
hemisphere. We pose the diffuse computation as a fitting
problem where we want to find Blm, l � 2 that best fits the
hemisphere. We solve a system of equations AX ¼ B
corresponding to (39), where A is an N � 9 matrix of Ylm
computed at N sample points on the hemisphere, X is a
9� 1 matrix of the corresponding nine Blm coefficients, and
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Fig. 12. Deconvolution on a real cat image. (a) geometry estimation, using example-based photometric stereo (we take a number of images with the
cat and example sphere; the sphere is also used to find the BRDF). (b) input image under unknown lighting and mapping to a sphere using the
surface normals. (c) close-ups, showing the original sphere map, and our deconvolved lighting estimate on top. This considerably sharpens the
original while removing noise and resembles the BRDF�Wiener filter applied to the actual lighting (bottom row).

Fig. 13. Image consistency checking for cat (labels are consistent with

Fig. 1). The tampered image (c) is obtained by splicing the top half (b1)

under lighting 1 and the bottom half (b2) under lighting 2. Image (c) looks

quite plausible, but the splicing is clearly detected by our identities.



B is an N � 1 matrix of irradiance at sample points. The
specular component can then be handled as discussed in
the previous section, and the diffuse component can be
computed using (38). The diffuse computation is more
stable in the angular domain than in the spherical
harmonics domain. This method is used in all our rendering
examples. As expected, our practical results work less well
for the extremes when the specular intensity is very small
relative to the diffuse component (in the limit, a purely
Lambertian surface), or vice versa (a purely specular object).

7.3 Analogies with Previous Spatial Domain Results

Although the exact form of, and rank-1 constraint on, (37) is
not common in previous work, many earlier spatial domain
invariants and algorithms can be seen as using special cases
and extensions thereof. We briefly discuss some prominent
results in our framework, also describing our analogous
frequency domain results. In this way, we provide a unified
view of many spatial and frequency domain identities,
which we believe confers significant insight.

Reflectance ratios [15] are widely used for recognition. The
main observation is that at adjacent pixels, the irradiance is
essentially the same, so that the ratio of image intensities
corresponds to the ratio of albedos. Using superscripts for
the different pixels as usual (we do not need multiple super or
any subscripts in this case), we have B2=B1¼�2=�1. The
analogous frequency domain result is (26), corresponding to
the two BRDFs, same lighting case. In both cases, by dividing
the image intensities or spherical harmonic coefficients, we
obtain a result independent of the illumination.

Similarly, a simple version of the recent BRDF-invariant
stereo work by Davis et al. [4] can be seen as the two
lighting, same BRDF case. For fixed view and point source
lighting, a variant of (37) still holds, where we interpret �jk
as the (spatially varying) BRDF for pixel k and fixed view,
and Ei

k as the (spatially varying) light intensity at pixel k. If
the light intensity changes (for the same pixel/BRDF), we
have B2=B1 ¼ E2=E1. The frequency domain analog is (29).
In both cases, we have eliminated the BRDF by dividing
image intensities or spherical harmonic coefficients.

Narasimhan et al. [17] also assume point source lighting to
derive photometric invariants in the spatial domain—note
that our frequency domain framework, by contrast, easily
handles general complex lighting. Narasimhan et al. [17]
considers a variant of (37) with a summation of multiple terms
(such as diffuse plus specular). For each term, � encodes a
material property such as the diffuse albedo, whileE encodes
the illumination intensity and geometric attributes (such as a
cosine term for diffuse or a cosine lobe for specular). Their
work can be seen as effectively deriving a rank constraint on
B, corresponding to the number of terms summed. For
diffuse objects, this is a rank-1 constraint, analogous to that in
the frequency domain for (36). For diffuse plus specular, this
is a rank-2 constraint. They then effectively use the rank
constraint to form appropriate determinants that eliminate
either material or geometry/lighting attributes, as in our
frequency domain work. Jin et al. [9] employ a similar rank-2
constraint for multiview stereo with both Lambertian and
specular reflectance.

Finally, we note that while there are many analogies
between previous spatial domain identities and those we
derive in the spherical/angular frequency domain, some of our
frequency domain results have no simple spatial domain analog. For

example, the concept of angular radial symmetry does not
transfer to the spatial domain, and there is no known spatial
analog of the identities in (18), (19), (22), (24), and (27).

8 EXPERIMENTAL VALIDATION AND RESULTS

We now present some experiments to validate the theory
and show potential applications. We start with diffuse plus
specular spheres in Fig. 11, since they correspond most
closely with our theory. We then describe results with a
complex cat geometry (Figs. 1, 12, and 13). All of these
results show that the theory can be applied in practice with
real data, where objects are not perfectly homogeneous,
there is noise in measurement and calibration, and specular
reflectance is not perfectly radially symmetric.

Experimental Setup. We ordered spheres at http://
www.mcmaster.com. The cat model was obtained at a local
craft sale. All objects were painted to have various specular
finishes and diffuse undercoats. Although homogeneous
overall, small geometric and photometric imperfections on
the objects were visible at pixel scale and contributed
“reflection noise” to the input images. To control lighting,
we projected patterns onto two walls in the corner of a
room. We placed a Canon EOS 10D camera in the corner
and photographed the objects at a distance of 2-3 m from
the corner (see top left in Fig. 11). This setup has the
advantage of more detailed frontal reflections, which are
less compressed than those at grazing angles. However,
frontal lighting also gives us little information at grazing
angles, where the BRDF might violate the assumption of
radial symmetry due to Fresnel effects; we hope to address
this limitation in future experiments. To measure the
lighting, we photographed a mirror sphere. To measure
BRDFs (only for deconvolution), we imaged a sphere under
a point source close to the camera, determining Al by
simply reading off the profile of the highlight and Kd by
fitting to the diffuse intensity. For all experiments, we
assembled high-dynamic range images.

Glossy Spheres. Fig. 11 shows the two lighting, two
materials case. The top right shows a relighting application.
We assume (b1) is unknown, and we want to synthesize it
from the other three lighting/BRDF images (a1, a2, and b2).
We also do the same for rendering (b2) assuming we know
(a1, a2, and b1). The results are visually quite accurate and
in fact reduce much of the noise in the input. Quantitatively,
the L1 norm of the errors for (b1) and (b2) are 9.5 percent
and 6.5 percent, respectively. In the bottom row, we tamper
(b2) by using image processing to squash the highlight
slightly. With the naked eye, it is difficult to detect that
image (c) is not consistent with lighting 2 or the other
spheres. However, all three identities discussed in the
previous section correctly detect the tampering.

Complex Geometry. For complex (mostly convex) known
geometry, we can map object points to points on the sphere
with the same surface normal and then operate on the
resulting spherical image. Deconvolution is shown in Fig. 12.
We used a sphere painted with the same material as the cat to
acquire both the cat geometry, using example-based photo-
metric stereo [7] for the normals, and the BRDF (needed only
for deconvolution). Errors (unrelated to our algorithm) in the
estimated geometry lead to some noise in the mapping to the
sphere. Our deconvolution method for lighting estimation
substantially sharpens the reflections while removing much
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of the input noise. Moreover, our results are consistent with
taking the actual lighting and convolving it with the product
of the BRDF and Wiener spherical harmonic filters.

The cat can also be used directly as an object for
relighting/rendering and consistency checking. An example
of rendering is shown in Fig. 1. The L1 norm of the error is
somewhat higher than in Fig. 11, at 12 percent, primarily
because this is a much more challenging example. We are
using the BRDF transfer function from a much lower
frequency material to a higher frequency one—the blue
sphere has a much broader specular lobe than the green cat.
Moreover, inaccuracies in the normal estimation (not part of
our algorithm) lead to some visible contouring in the results.
Nevertheless, we see that the results are visually plausible.
Note that, even though our theory requires the full range of
normals in the image in order to calculate the spherical
harmonics transform, in practice it works well even when the
estimated normals are noisy or some of the normals are
missing.

Fig. 13 illustrates photomontage image tampering, in
which the top half under lighting 1 (b1 in Fig. 1) is spliced with
the bottom half under lighting 2 (b2 in Fig. 1). Although the
image (Fig. 13c) looks plausible in itself, the identities for both
single and multiple images clearly detect the tampering.

For image consistency checking, our identities require
explicit knowledge of 3D geometry, as well as a homo-
geneous object. However, increasingly good methods exist
to acquire this geometry from a single image, both without
and with minimal user assistance [27], [18]. Moreover,
diffuse and specular components can be separated auto-
matically with modern techniques to handle textured
objects [14]. Finally, many of the applications of image
consistency checking are focused on changes and incon-
sistencies to the appearance of known objects like human
faces, where it is easy to find generic 3D models—or with
the increasing popularity of 3D scanners, even an actual
3D model and appearance model of the subject. Famous
recent examples of digital forgeries or touchups are the
darkening of the OJ Simpson photograph on the Time
magazine cover,11 and a recent forged image of John Kerry
and Jane Fonda appearing together12 (their faces were
composited with inconsistent lighting). Our theoretical
framework provides a solid foundation for applying
practical image consistency checks to determine consistency
of lighting and shading in these scenarios.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new theoretical frame-
work for using spherical convolution and deconvolution in
inverse rendering, BRDF/lighting transfer, and image
consistency checking. The main contribution is the set of
new frequency domain invariants, which represent funda-
mental identities following from the convolution theorem.
These identities often eliminate the lighting and/or BRDF,
enabling a new class of inverse rendering algorithms that can
relight or change materials by using BRDF/lighting transfer
functions without explicit illumination or BRDF estimation.
In the future, similar ideas may be applied to other problems
such as BRDF-invariant stereo and photometric stereo or

lighting-insensitive recognition. The theoretical framework
also makes a contribution to the relatively new area of image
consistency checking, describing a suite of frequency domain
identities to detect tampering and other undesirable image
processing operations. We have also presented a new unified
view of spatial and frequency domain identities and rank
constraints that can give insight for developing future
algorithms in either or even a combination of both domains.

In the future, from a theoretical perspective, we want to
develop a framework for operating on local subsets of the
entire image, corresponding to small portions of the full
sphere of directions. From a practical perspective, we want
to better understand the sensitivity of our identities—initial
tests indicate that they are fairly robust, but more work
needs to be done. We wish to apply our algorithms in more
complex cases like faces where the geometry is not known
accurately and where objects may not be perfectly convex.
We would also like to handle textured objects by automatic
diffuse/specular separation methods [14]. We believe that
the theory may also lead to the construction of better light
probes where we can replace the mirror sphere by a sphere
of general material and hence bypass the serious issues like
dynamic range associated with current light probes.

In summary, we see this paper as introducing the basic
theory that can lead to much future theoretical and practical
work in inverse rendering and image consistency checking.
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