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ABSTRACT
In recent years, open-ended interactive educational tools
such as games have been gained popularity due to their abil-
ity to make learning more enjoyable and engaging. Model-
ing and predicting individual behavior in such interactive
environments is crucial to better understand the learning
process and improve the tools in the future. A model-based
approach is a standard way to learn student behavior in
highly-structured systems such as intelligent tutors. How-
ever, defining such a model relies on expert domain knowl-
edge. The same approach is often extremely difficult in edu-
cational games because open-ended nature of these systems
creates an enormous space of actions. To ease this burden,
we propose a data-driven approach to learn individual be-
havior given a user’s interaction history. This model does
not heavily rely on expert domain knowledge. We use our
framework to predict player movements in two educational
puzzle games, demonstrating that our behavior model per-
forms significantly better than a baseline on both games.
This indicates that our framework can generalize without
requiring extensive expert knowledge specific to each do-
main. Finally, we show that the learned model can give new
insights into understanding player behavior.

Keywords
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1. INTRODUCTION
Open-ended educational environments, especially educational
games and game-based learning, have been gaining popular-
ity as more and more evidence suggests that they can help
enhance student learning while making the process enjoyable
[21, 19]. The interactive nature of this media enables us to
track user inputs and provide an immediate personalized re-
sponse to make learning more effective and efficient. There-
fore, modeling and predicting user behavior lies at the heart
of improving engagement and mastery for every learner. For

example, we can detect if a student is struggling with a
certain concept by simulating the learned student behav-
ior model on a related task; if the student model performs
poorly, we can then give more tasks related to that con-
cept. The ability to further predict which error the student
is going to make can be used to infer how the learner misun-
derstood related concepts and provide a targeted instruction
focusing on that specific misconception.

There has been active research on learning individual behav-
ior in both the education and game community. Most of this
research focuses on inferring a meaningful latent structure,
such as knowledge or skill, often simplifying the behavior
space into a small number of parameters. Hence the choice
of a model significantly affects the quality of the learned
behavior, forcing researchers to spend time on experiment-
ing with different models and refining various features [6,
20]. Moreover, unlike highly-structured systems such as in-
telligent tutors, it is difficult to define a behavioral model
describing movements in an educational game. This is espe-
cially true when the player is given a large number of avail-
able moves, resulting in a large scale multi-class prediction
problem. For example, predicting the exact moves someone
will make while solving a puzzle is more challenging than
predicting whether a student will solve a problem correctly.

Therefore, a purely data-driven approach is both a suit-
able and preferable alternative for learning user behavior in
highly open-ended environment, such as educational games.
It needs less expert authoring, and it can capture various
low-level user movements—mistakes and errors, exploration
habits, and adapting a strategy while playing—as they are
even without a specific model describing such moves. Also,
we can further analyze learned policies to give more inter-
pretable insights into user behavior. For example, we could
analyze erroneous movements to figure out their misconcep-
tions. This knowledge can be used to construct more so-
phisticated cognitive models that will give us a deeper and
more accurate understanding of user behavior.

In this paper, we propose a data-driven framework that
learns individual movements in a sequential decision-making
process. It uses a supervised classification method to pre-
dict the next movement of a user based on past gameplay
data. For each game state, our framework transforms user
play logs into a high-dimensional feature vector, and learns
a classifier that predicts the next movement based on this
feature vector. To construct this set of features, we start



from a massive set of default features defined in a domain-
independent way over a state-action graph, and then pick a
small set of relevant ones using a univariate feature selection
technique. We apply this framework to two very different ed-
ucational games DragonBox Adaptive and Refraction, and
evaluate the learned behavior by predicting the actions of
held-out users.

Our contribution is threefold. First, we propose a data-
driven individual behavior learning framework, which does
not rely on heavy domain-dependent expert authoring. Sec-
ond, we apply our framework on two different games and
demonstrate our framework improves the prediction quality
substantially over a previously proposed algorithm. Finally,
combined with a robust feature selection, we show our frame-
work learns an efficient yet powerful set of features, which
further gives new insight into understanding player behavior
in the game.

2. RELATED WORK
Learning user behavior has been actively researched in the
education and game community. One of the most widely
used models is the Bayesian network model. Knowledge
tracing (KT) [9] and its variations [17, 27] are probably the
most widely used student models in the field of educational
data mining. This model estimates the user’s knowledge
as latent variables, or knowledge components (KCs). These
KCs represent student mastery over each concept and pre-
dict whether a student will be able to solve a task. There
are also other approaches using Bayesian networks, such as
predicting whether a student can solve a problem correctly
without requesting help in an interactive learning environ-
ment [16], predicting a user’s next action and goal in a multi-
user dungeon adventure game [5], or predicting a build tree
in a real-time strategy game [22]. Nevertheless, these ap-
proaches usually learn the knowledge of users directly from
carefully designed network structures, which often need ex-
pert authoring to define a task-specific and system-specific
network model.

Another widely used approach to learn individual behavior
is using factor analysis. Item response theory (IRT) mod-
els have been extensively used in psychometrics and edu-
cational testing domains [11, 8]. They represent an individ-
ual’s score as a function of two latent factors: individual skill
and item difficulty. The learned factors can be used to pre-
dict user performance on different items. Adapting matrix
factorization techniques from recommender systems is also
popular. Thai-Nghe et al. predicted personalized student
performance in algebra problems by modeling user-item in-
teractions as inner products of user and item feature vectors
[24]. This model can even incorporate temporal behavior by
including time factors, both in the educational community
[25] and in the game community [28]. Nevertheless, such ap-
proaches do not easily fit our goal, which requires predicting
a fine granularity of action instead of predicting user’s single
valued performance.

Another line of research on learning a low-level user policy is
optimizing a hidden reward or heuristic function from user
trajectories in a state-action graph. Tastan and Sukthankar
built a human-like opponent from experts’ demonstrations
in a first-person shooter game using inverse reinforcement

learning in a Markov decision process context [23]. Jansen
et al. learned a personalized chess strategy from individ-
ual play records by learning the weights of multiple heuris-
tics on finite depth search models [12]. Similarly, Liu et
al. learned player moves in an educational puzzle game by
learning the weights of heuristics in a one-depth probabilistic
search model [15]. However, such methods usually define a
user reward as a combination of pre-defined heuristics. The
quality of the learned policy is strongly dependent on these
heuristics, which are often system-specific and need a lot
of time to refine. Furthermore, these models assume that
players do not change over time. Describing how people
learn, which is frequently observed in interactive environ-
ments, would be another challenge to trying this approach
in our domain.

Unlike the research listed above, our framework focuses on
a data-driven approach with less system-specific authoring.
Our work is a partial extension of that of Liu et al. [15],
which is a mixture of a one-depth heuristic search model
and a data-driven Markov model with no knowledge of in-
dividual history other than the current game state. We fo-
cus on the latter data-driven approach and build upon that
model. Unlike their work, which makes the same prediction
for all players in a state, we build a personalized policy that
considers the full history of the user.

3. PROBLEM DEFINITION
Our framework works on a model that consists of a finite
set of states S; a finite set of actions A, representing the
different ways a user can interact with the game; and rules
of transitioning between states based on an action. This
paper considers domains with determinstic transitions (f :
S ×A→ S), but this approach could also apply to domains
with stochastic transitions (f : S×A→ Pr(S)). The demon-
stration of a user u, or a trajectory τu, is defined as a se-
quence of state-action pairs: τu = {(s0u, a0u), · · · , (stuu , atuu )}.
We will note As ⊆ A as a set of valid actions on the given
state, T as a set of trajectories, V and U as the set of users
in the training set and test set, respectively.

Defining such a model is often intuitive in games, because
actions and transition rules are already defined in game me-
chanics. For example, in blackjack, the configurations of
the visible cards can be states, and available player deci-
sions such as hit or stand will be actions. The transition
function here will be stochastic, because we do not know
which card will appear next. Defining a good state space
remains an open problem. A good, compact state repre-
sentation will capture the information most relevent to user
behavior; this helps greatly reduce the size of the required
training data. For the example above, using the sum of card
scores for each side would be a better state representation
than the individual cards on the table. Note that a state
refers to the observable state of the game, not the state of
the player. In many games, players base their decisions not
just on what they currently see in front of them, but also
on past experience. This non-Markovian property of human
players motivates our framework, which leverages a user’s
past behavior to improve prediction quality.

Our objective is to learn a stochastic policy π : S × T →
Pr(As) describing what action a user will take on a certain
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Figure 1: An overview of our framework. For each
state, we learn a set of features and a classifier in the
training stage. With these, a trajectory is converted
into a feature vector, and further into a stochastic
policy in the prediction stage.

state based on his trajectory. We use a supervised learning
approach, which attempts to predict the next action given a
dataset of thousands of user trajectories in the training set
TV = {τv|v ∈ V }.

4. EVALUATION
We evaluate the learned policy on every movement of each
user trajectories in the test set TU = {τu|u ∈ U}. We use
two evaluation metrics: log-likelihood and accuracy rate.

The log-likelihood is defined as∑
u∈U

∑
t∈[0,tu]

log(π̃(atu|stu, τ tu)),

while π̃ is the learned policy given a trajectory observed so
far τ tu = {(s0u, a0u), · · · , (st−1

u , at−1
u )}. Since the log function

is undefined for the case π(a|s, τ) = 0, we smooth the policy
by ε: π(a|s, τ) = (1 − ε)π(a|s, τ) + ε/|As|, while ε is set
to 0.001 in our experiments unless otherwise specified. The
log-likelihood is always smaller than or equal to zero, with
0 indicating perfect prediction.

With our stochastic policy, the accuracy rate is defined as∑
u∈U

∑
t∈[0,tu]

π̃(atu|stu, τ tu)∑
u∈U

∑
t∈[0,tu]

1
.

We want to note that even though the accuracy rate is in-
tuitive and widely used for measuring the performance of a
classifier, using it as a single evaluation metric can be mis-
leading, especially when outputs are highly skewed [13]. For
example, a degenerate constant classifier that predicts only
the dominant class may produce a high accuracy rate. Nev-
ertheless, in all of our experiments, the ordering of perfor-
mances in log-likelihoods is preserved with that in accuracy
rates.

5. ALGORITHM
Figure 1 provides an overview of our data-driven framework.
In the training stage, our framework learns a set of features

and a classifier from training data. A simple way to do
this might be to train a global classifier that takes a player
trajectory and predicts an action. However, we suspect that
the current state is the most important feature; in fact, the
set of available actions As differs per state. Thus we train
a separate classifier for each state, reducing the amount of
data in the training set but increasing the relevancy. In the
prediction stage, we take a trajectory and convert it into a
feature vector using the learned features. Then we convert
the feature vector into a policy from that state, using the
learned classifier. Here, a feature is a function that takes a
trajectory and returns a value f : T → R; a set of features
converts a trajectory into a multi-dimensional feature vector
F : T → R|F |.

Algorithm 1 Training Stage

Require: a state s, training data TV
1: Fs ← a default set of features defined on s
2: Ts, ys ← a list of τ t−1

v and atv such that s = stv ∀v, t
3: Xs ← Fs(Ts)
4: Fs ← SelectFeatures(Fs, Xs, ys)
5: if Fs = ∅ then
6: cs ← LearnMarkovClassifier(ys)
7: else
8: Xs ← Fs(Ts)
9: cs ← LearnClassifier(Xs, ys)

10: end if
11: return Fs, cs

Algorithm 1 describes a detailed process in the training
stage. The SelectFeatures function takes a set of fea-
tures, a set of feature vectors, and a set of performed actions
as inputs and filters irrelevant features out. The Learn-
MarkovClassifier function takes a set of performed ac-
tions and returns a static classifier. The LearnClassifier
function takes a set of feature vectors and performed ac-
tions as inputs and returns a classifier. We will explain each
function in detail.

The training stage starts from a default set of features de-
fined on a state-action graph. We use three kinds of binary
features:

• whether the user has visited a certain state s: 1[s ∈ τ ],
• whether the trajectory contains a certain state-action

pair (s, a): 1[(s, a) ∈ τ ], and
• whether the dth recent move is a certain state-action

pair (s, a): 1[(s, a) = (s|τ |−d, a|τ |−d) ∈ τ ].

The maximum number of d is set to 10 in our experiments.
The features with sparsely-visited states and transitions are
not counted. These features summarize which states and
actions have been visited by the user, both in the full and
recent history. We built a feature package defined on an
abstract state-action graph so that it can be used generally
in multiple systems without extra authoring.

The default set of features contains a huge amount of ir-
relevant features for the task, making our learning suffer
from overfitting as well as prolonged training time. To rem-
edy this, we apply a feature selection method using train-
ing data. For the SelectFeatures function, we use a chi-
squared statistic for each feature on Tv and select features



State s Action a Next State s′ = T (s, a) π(a|s, τ)

lv.3.4.1.x+a=b

Subtract a on both sides with merging lv3.4.1.x+0=b-a 0.4
Subtract a on both sides lv3.4.1.x+a-a=b-a 0.4
Add a on both sides lv3.4.1.x+a+a=b+a 0.2

Table 1: Examples of states, actions, transitions, and policies in DragonBox Adaptive

with p-value lower than 0.001. We used a univariate feature
filtering approach because it is relatively fast compared to
other feature selection techniques, such as L1-regularization.
Also, we used a chi-squared test because it is one of the most
effective methods of feature selection for classification [26].

Finally, we learn a classifier with the selected features. If any
features are selected, we learn a supervised learning classifier
using the LearnClassifier. We used a multi-class logistic
regressor as a classifier, because it gives a natural proba-
bilistic interpretation unlike decision trees or support vector
machines. If no features are selected, we use a predictor
built on a Markov model from Liu et al. [15], which learns
the observed frequency of state-action pairs in training data:

π̃(a|s) =

∑
v∈V

∑
t∈[0,tv ]

1[(s, a) = (stv, a
t
v)]∑

v∈V

∑
t∈[0,tv ]

1[s = stv]
.

When there are zero samples, i.e., when the denominator
is zero, this equation is undefined and it returns a uniform
distribution instead. For convenience, we will call this pre-
dictor the Markov predictor.

We can also interpret the Markov predictor as another lo-
gistic regressor with no features but only with an intercept
for each action. With no regularization or features, logistic
regression optimizes the log-likelihood on training data with
a policy only dependant on the current state, whose optimal
solution is the observed frequency for each class. This is
exactly what the Markov predictor does.

In the prediction stage, we take a trajectory and a state as
an input, and first check the type of the learned classifier on
the given state. If the classifier is the Markov predictor, it
does not need a feature vector and returns a policy only de-
pendent on the current state. Otherwise, we use the learned
features Fs and classifier cs to convert a user’s trajectory τ
into a feature vector x, and then into a state-wise stochastic
policy π(s, τ).

6. EXPERIMENT AND RESULT
6.1 DragonBox Adaptive
6.1.1 Game Description

DragonBox Adaptive is an educational math puzzle game
designed to teach how to solve algebra equations to children
ranging from kindergarteners to K-12 students [2], which is
evolved from the original game DragonBox [1]. Figure 2
shows the screenshots of the game. Each game level repre-
sents an algebra equation to solve. The panel is divided into
two sides filled with cards representing numbers and vari-
ables. A player can perform algebraic operations by merging
cards in the equation (e.g., ‘-a+a’ → ‘0’), eliminating iden-
tities (e.g. ‘0’→ ‘ ’), or using a card in the deck to perform
addition, multiplication, or division on the both sides of the

Figure 2: Screenshots of DragonBox Adaptive.
(Top) The early stage of the game. It is equiv-
alent to an equation a-b=-6+a+x. The card with a
starred box on the bottom right is the DragonBox.
(Bottom) The game teaches more and more con-
cepts, and eventually kids learn to solve complex
equations.

equation. To clear a level, one should eliminate all the cards
on one side of the panel except the DragonBox card, which
stands for the unknown variable.

Table 1 shows the examples of states, actions, transitions,
and policies in the game. Since DragonBox Adaptive is a
card puzzle game, the game state and available actions are
well discretized. A state is a pair of level ID and the current
equation (e.g. lv3.x-1=0). Available actions for a specific
state are the available movements, or algebraic operations,
that the game mechanics allow the players to perform (e.g.
add a on both sides or subtract a on both sides). Performing
an action moves a user from one state to another state (e.g.
an action adding a on both sides moves a user from lv3.x-

a=0 to lv3.x-a+a=0+a), which naturally defines a transition
function. Since the transition is deterministic and injective,
we use a notation s → s′ for a transition from s to s′ =
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Figure 3: Performances of our predictor and that of
the Markov predictor with different sizes of training
data.

f(s, a) (e.g. lv3.x-a=0 → lv3.x-a+a=0+a).

We collected the game logs from the Norway Algebra Chal-
lenge [3], a competition solving as many algebra equations
as possible in DragonBox Adaptive. About 36,000 K-12 stu-
dents across the country participated in the competition,
which was held on January 2014 for a week. One character-
istic of this dataset is a low quit rate, which is achieved be-
cause students intensively played the game with classmates
to rank up their class. About 65% of the participants played
the game more than an hour, and more than 200 equations
were solved per student on average. This is important in
our task because we can collect a lot of training data even
in higher levels. After cleaning, we collected 24,000 students’
logs with about 280,000 states, 540,000 transitions, and 21
million moves. 4,000 student’s logs were assigned to test
data and the rest as training data. As the parameters of
our framework were determined with another Algebra Chal-
lenge dataset separate from Norway Challenge, there was no
learning from the test data.

6.1.2 Overall Performance
Figure 3 shows the performances of our framework and those
of the Markov predictor with different sizes of training data.
We use the Markov predictor as a baseline, because it is an-
other data-driven policy predictor working on a state-action
graph structure, and because our model is using the Markov
predictor when it could not find relevant features to the
given state.

In both metrics, the performance of our predictor increases
with the size of training data. As it has not converged
yet, we can even expect better performance with additional
training data. For the Markov predictor, its performance
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Figure 4: (Top) Scatter plot of accuracy rates of our
predictor versus that of the Markov predictor for
each state with learned features. We see the perfor-
mance of our predictor is strictly better than that
of the Markov predictor in most cases. (Bottom)
Histogram of accuracy rate improvement, while one
count is a state with learned features.

notably improves with the size of training data only in log-
likelihood metric. We believe this is because the accuracy
rate mostly comes from frequently visited states, which the
predictor already reached to the point with no improvement,
while a significant portion of the log-likelihood value comes
from sparsely visited states, which improves as it gathers
more data.

The difference between the two methods is increasing as the
size of training data increases. With 20,000 user trajectories
as training data, the log-likelihood of our predictor is almost
12% lower than that of the Markov predictor and the accu-
racy rate improves from 64% from 68%. Since the Markov
predictor gives a static policy, we can say this gain comes
from considering individual behavior differences. Also, even
with a relatively small size of training data, the performance
of our method is still higher than that of the Markov predic-
tor. We believe our predictor performs strictly better than
the Markov predictor even with insufficient data, because
our method switches to the latter when it does not have
enough confidence on selecting features.

6.1.3 Statewise Performance
In this subsection, we further analyze the performances of
two methods in the smaller scope. Our predictor learned
1,838 logistic regression classifiers with 20,000 player trajec-
tories as training data. Considering there are about 280,000
game states in total, our method selected no features for
more than 99% of the states and decided to use the Markov
predictor instead. However, more than 60% of the move-



Next State Feature Weight

lv.3.4.1.x+0=b-a

1[(lv.3.5.1.x+a=b→ lv.3.5.1.x+0=b-a) ∈ τu] 0.583
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+0=b-a) ∈ τu] 0.568
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+0=b-a) = (st−3, at−3)] 0.387
1[(lv.2.19.x*b+a=c→ lv.2.19.x*b+0=c-a) ∈ τu] 0.181

lv.3.4.1.x+a-a=b-a

1[(lv.3.4.1.x+a+a=b-a→ lv.3.4.1.x+0=b-a) = (st−3, at−3)] 0.466
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+a-a=b-a) = (st−4, at−4)] 0.457
1[(lv.3.3.2.x+a+b=c→ lv.3.3.2.x+a+b-b=c-b) = (st−7, at−7)] 0.389
1[(lv.2.3.x+1=a→ lv.2.3.x+0=a-1) ∈ τu] 0.119

lv.3.4.1.x+a+a=b+a

1[(lv.3.4.1.x+a+a+a=b+a+a→ lv.3.4.1.x+a+a=b+a) = (st−2, at−2)] 0.247
1[(lv.3.4.1.x+a=b→ lv.3.4.1.x+a+a=b+a) = (st−6, at−6)] 0.192
1[(lv.1.18.x+a+a=a+b→ lv.1.18.x+a+0=b+0) ∈ τ ] 0.128
1[(lv.2.3.x+(-x)/(-x)+x/x=1+a→ lv.2.3.x+(-x)/(-x)+x/x-1=a+0) ∈ τ ] 0.115

Table 2: Selected features with high weights for predicting a transition from state ‘lv.3.4.1.x+a=b’ to each
available action. The selected features closely related to the task it is going to predict. Interesting features
mentioned in the text are highlighted.

Transition Accuracy Recall
from x+a=b LogReg Markov LogReg Markov
x+0=-a+b 88.0 76.7 88.1 76.7
x+a-a=-a+b 60.6 19.2 60.3 19.2
x+a+a=a+b 11.5 3.7 11.6 3.8

Table 3: Accuracy and recall rate for each action
on state lv.3.4.1.x+a=b. The performance of high-
lighted transitions are almost tripled.

ments in training data starts from the states with corre-
sponding logistic regression classifiers. It means our frame-
work invested its resources on a small set of states, which are
so influential that they govern the majority of the prediction
tasks.

Figure 4 shows the accuracy rates in both predictors for each
state that learned a logistic regression classifier. We can see
the performance of our predictor is better than that of the
Markov predictor in the most cases. The other case is ig-
norable: the Markov performs better than ours in less than
2% of the states with logistic regressors, while the average
performance drop for those states is 0.03%. This observa-
tion further supports our argument that our model performs
strictly better than the Markov model because of our robust
feature selection process.

Table 3 gives the evaluations on a state that showed an ac-
curacy rate improvement from 63% to 80%. Since we are
evaluating stochastic policies, we use the following defini-
tion for accuracy and recall for a pair (s, a):∑

u∈U

∑
t∈[0,tu]

1[(s, a) = (stv, a
t
v)] · π̃(a|s, τ tu)∑

u∈U

∑
t∈[0,tu]

1[(s, a) = (stv, atv)]
,

∑
u∈U

∑
t∈[0,tu]

1[(s, a) = (stv, a
t
v)] · π̃(a|s, τ tu)∑

u∈U

∑
t∈[0,tu]

1[s = stv] · π̃tu(a|s, τ tu)
.

In the table, the starting equation is x+a=b, and a player
can perform addition or subtraction with a card ‘a’ on the

deck. There are three possible transitions because the game
mechanics allow two ways to subtract: one putting ‘-a’ card
next to ‘a’ card, and another one putting ‘-a’ card over ‘a’ to
merge them to ‘0’. From now on, we will call them ‘normal
subtraction’ and ‘subtraction with merging’. Which move to
use among them does not affect to clear the game, but the
game can be cleared more efficiently with the latter move.
The third transition is addition making the current equation
to the equation x+a+a=b+a. This is not the right way to solve
the level, because the DragonBox is not going to be isolated.
We will call it ‘unnecessary addition’.

For the normal subtraction, the predictive power is more
than tripled. We believe our predictor successfully captured
this habitual movement, which we also believe is not likely
to change once fixed. Indeed, DragonBox Adaptive does not
provide a strong reward on decreasing the number of move-
ments, nor suggest a guide to promote the students using
the subtraction with merging. For the unnecessary addi-
tion, the predictive power is also more than tripled. Because
one must have seen similar problems several times, students
rarely makes this mistake (3.8% in training data). In spite
of such sparsity, our predictor improved its predictive power
over that of the Markov predictor.

6.1.4 Learned Features and Feature Weights
In this subsection, we take a look at the learned features and
classifiers. Most of the learned features with high weights
are closely related to the task we are trying to predict when
inspected by experts. Table 2 shows some of the learned fea-
tures with high weights in the classifier for each transition in
the previous subsection: subtraction with merging, normal
subtraction, and unnecessary addition. Most of the selected
features with high weights are actually related to the action
that it is going to predict. For example, the movement in
the first feature in the table x+a=b → x+0=b-a is exactly
same as the movement we are trying to predict. The only
difference is the level IDs. Note that having a feature set
of the future level (lv3.5.1) is possible because our game
progression forces students to visit previous levels when a
student fails to clear a level.

For another example, the movement in the eleventh feature
in the table x+a+a=a+b→ x+a+0=b+0 implies an unnecessary
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Figure 5: Performances of two methods on Refrac-
tion.

addition was performed, because the game level 1.18 starts
from x+a=b: to reach the equation x+a+a=a+b, one has to
perform the unnecessary action ahead. It is also interest-
ing that the game level 1.18 is almost 25 levels away from
the current level 3.4.1. It would be a natural assumption
that only recent playdata affect a user’s behavior, but this
provides an evidence that this is not the case. Considering
that a player can only proceed a level after correcting pre-
viously made mistakes, it also implies the learning curve of
this concept is relatively shallow.

One more thing to mention is that when a feature is de-
cribing more recent part of the playdata, it tends to have
a higher weight. In the table, features from level 3 usu-
ally receives higher weights compared to the features from
level 1 or 2. This is intuitive because a user is more likely
to change his or her behavior as time passes. This implies
that our model is also capturing the temporal behavior of
individuals.

6.2 Refraction
To demonstrate that our framework can be used on other
systems without additional authoring, we also run an ex-
periment with another educational game, Refraction [4]. As
we use the same experimental setting and game data as in
Liu et al. [15], we omit the details of the game and the
state-action model. The dataset contains 8,000 users’ game-
play data, with about 70,000 states, 460,000 transitions, and
360,000 moves. 1,000 users’ gameplay data is assigned to a
test set, and the rest as a training set. We use the gameplay
data from level 1 to level 8 to predict the movements in level
8. There are no changes in our framework, except that the
smoothing parameter ε in the log-likelihood metric is set to
0.3 to match the performance of the Markov predictor used
in previous work [15].

Figure 5 shows the performance of our predictor and the
Markov predictor. We see our predictor performs better
than the Markov predictor, although the improvement is
much smaller compared to DragonBox Adaptive. We be-
lieve this is because level 8 is an early level, and we do not
have enough data. Level 8 is the first level without the
tutorial, it would be difficult to detect a confident signal de-
scribing individual behavior. In other words, students did
not have enough opportunity to show their personality. We
could not run another experiment on a later level due to
lack of players from the high drop-out rate. Moreover, the
Refraction dataset (360,000 moves) is much smaller than the
DragonBox Adaptive dataset (21 million moves), while the
total number of transitions is similar in both.

Nevertheless, we successfully showed that our framework can
be used in a different system with no additional expert au-
thoring, and showed our predictor still performs better than
the Markov predictor.

7. CONCLUSION AND FUTURE WORK
Modeling user behavior in open-ended environments has the
potential to greatly increase undestanding of human learn-
ing processes, as well as helping us better adapt to stu-
dents. In this paper, we present a data-driven individual
policy-learning framework that reduces the burden of hand-
designing a cognitive model and system-specific features.
Our framework automatically selects relevant features from
a default feature set defined on a general state-action graph
structure, and learns an individual policy from the trajec-
tory of a player. We apply our method to predict player
movements in two educational puzzle games and showed
our predictor outperforms a baseline predictor. We also
show that the performance improvement comes not only
from frequently observed movements, but also from sparsely
observed erroneous movements. Finally, we see our robust
feature selection makes the predictor more efficient, power-
ful, and interpretable by investing its resources on a small
set of influential states and relevant features.

We see numerous opportunities for further improvement of
our framework. First, we can experiment with different clas-
sifiers instead of a logistic regressor. Since a logistic regres-
sion model is a single layer artificial neural network (ANN),
we believe using a multi-layered ANN is a natural exten-
sion to improve its predictive power. Using an ensemble of
classifiers would be another way to boost the performance.
Second, we can add more graph navigation features into the
default feature set. A feature specifying whether a transi-
tion is not visited only when it was available to the user is
the first thing to try, because it specifies whether a certain
behavior has been avoided intentionally or if the user sim-
ply did not have an opportunity to make such a choice. A
visit indicator of a specific chain of transitions or the time
spent on a certain state can also be possible features. Fi-
nally, we can try other feature selection techniques. Recur-
sive feature elimination or L1-based feature selection might
produce a better result because univariate approaches, such
as our chi-squared test, do not consider the effect of multiple
features working together [10].

Overall, we are also very interested in building applications
based on our framework. Integrating the individual behav-



ior predictor into user-specific content generation such as a
personalized hinting system or an adaptive level progression
would be the first step. Moreover, we believe our frame-
work will be also useful in other fields for learning individ-
ual behavior, such as spoken dialogue systems [14], robotic
learning from demonstration [7], and recommender systems
[18].
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