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Figure 1: (a) An expert’s example for a normal obstacle avoiding style. (b) The learned normal style in the same map. (c) The learned
normal style in an untrained environment. (d) The learned watchful style. (e) The learned playful style. (f) A variety of controllers created by
blending between a normal style(red) and a playful style(light blue).

Abstract

We present a method for inferring the behavior styles of character
controllers from a small set of examples. We show that a rich set
of behavior variations can be captured by determining the appropri-
ate reward function in the reinforcement learning framework, and
show that the discovered reward function can be applied to different
environments and scenarios. We also introduce a new algorithm to
recover the unknown reward function that improves over the orig-
inal apprenticeship learning algorithm. We show that the reward
function representing a behavior style can be applied to a variety of
different tasks, while still preserving the key features of the style
present in the given examples. We describe an adaptive process
where an author can, with just a few additional examples, refine the
behavior so that it has better generalization properties.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Optimal Control, Data Driven Animation, Human An-
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1 Introduction

Reinforcement learning-based character controllers have recently
enjoyed great attention in computer graphics specifically for their
ability to create optimized control policies over a given motion
graph structure. The controllers can in real time determine the opti-

mal transition through the motion graph that achieves the task goals.
The task goals are represented as a reward function defined over the
entire state and action space. Reinforcement learning controllers
produce the motion with the highest accumulated rewards.

In general, task goals do not fully determine the desired behavior,
or its underlying reward function. Often task goals can be achieved
in a number of different ways even though only one of them would
appear natural or specific to the intention of the designer. For exam-
ple, the character may navigate to the specific position defined as a
task goal, but do so by using many backward steps, by deploying
many momentum-jarring motions, or by frequently switching from
walking to running. None of these options would likely appear nat-
ural. To further define the appropriate motion, the designer needs
to craft the behavior style by adding additional terms within the
reward function to specify the desired style of achieving the task.
Finding the appropriate reward function becomes harder as the tar-
get behavior requires subtleties of human motion such as walking
cheerfully or being extremely cautious. Furthermore, as larger mo-
tion graphs include a greater variety of motion, the reward function
needs to be more detailed to specify the behavior style.

Currently, the process of adjusting the reward function to achieve
a desired behavior style is performed manually, in a fairly tedious
trial-and-error process that often produces imperfect results. A key
reason for this is that a small change in the importance of some re-
ward function feature can lead to drastically different behavior. On
the other hand, this reward function sensitivity provides enormous
expressive power to represent a wide range of behavior variations.

A significantly more natural approach to determining the appropri-
ate reward function is to simply provide examples of the specific
behavior style in a few scenarios. The problem of finding the re-
ward function from examples is known as inverse reinforcement
learning (IRL). Since providing examples of the intended behav-
ior style is natural to even the most novice designers, the behavior
styles can be specified by simply acting out a few examples.

In this paper we present an automated framework that constructs
a motion controller from a few example motions achieving the de-
sired task. Instead of specifying a reward function, users provide
a number of motion examples and a set of reward function com-
ponents, or features, that seem to be relevant to the task. Our al-



gorithm returns an optimal controller that not only maximizes the
match to the given examples, but is also capable of transferring the
extracted behavior style to different settings. We present a new
version of the apprenticeship learning (AL) algorithm of Abbeel
and Ng [2004], adapting it to the specific setting of character con-
trollers. Our method guarantees a deterministic optimal solution for
our model, in contrast to the sub-optimal mixed policy provided by
the original apprenticeship learning algorithm.

In our examples, we demonstrate the expressive power of represent-
ing the behavior style with a reward function. We show that we can
learn reward functions capturing a variety of behavior styles, trans-
fer behavior styles to different tasks and environments, and blend
different styles. We also describe an iterative process of refining
a controller with few additional examples which gracefully handles
the inherent problem of overfitting when the initial sample set is too
small.

After describing related work, Section 3 describes the details of our
motion controller, and Section 4 describes the apprenticeship learn-
ing algorithm and our convex adaptation. In section 5, we describe
our implementation and results. We conclude with this framework’s
advantages and limitations, and possible future research directions.

2 Related Work

Motion graphs created from human motion data are commonly used
as a basis to reproduce motions (e.g. [Kovar et al. 2002; Shin and
Oh 2006; Heck and Gleicher 2007; Beaudoin et al. 2008]). By
traversing the motion graph, an arbitrary length of continuous nat-
ural motions can be created. Dynamic programming can be used
to find the optimal traversal through the graph for a specific goal,
while reinforcement learning can produce optimal traversal for the
space of all goal parameterizations [Lee and Lee 2006; Treuille
et al. 2007]. McCann and Pollard [2007] integrate a model of
user behavior into reinforcement learning, enabling highly respon-
sive real-time character control. Lo and Zwicker [2008] employ a
tree-based regression method for reinforcement learning, while Lee
et al. [2009] compute controllers for doing complex tasks by using a
compact motion graph and a compact representation of value func-
tions.

The inverse reinforcement learning recovers an unknown reward
function with respect to the given behavior of a control system, or
an expert, is optimal. Ng and Russell [2000] present an IRL al-
gorithm learning a reward function that minimizes the value dif-
ference between example trajectories and simulated ones. Abbeel
et al. [2004] present a refined algorithm that compares the trajecto-
ries with a more accurate metric and use the algorithm in the con-
text of apprenticeship learning [Abbeel et al. 2008; Coates et al.
2009]. Syed et al. [2008] formulate apprenticeship learning into a
linear programming problem in a stochastic environment, expedit-
ing the computation time. Ziebart et al. [2008] take a probabilistic
approach based on the principle of maximum entropy, enabling the
prediction of route preferences from GPS data of taxi-cab driving.
In this paper, we adapt the apprenticeship learning [Abbeel and Ng
2004] because it fits our discrete motion model and our determinis-
tic controller model.

The local aspects of movement style have been learned from exam-
ples. Brand and Hertzmann [2000] present a probabilistic method
synthesizing stylistic human motion by learning a highly varied set
of motion capture data using a cross-entropy optimization. Gro-
chow et al. [2004] learns the reduced representation of pose style by
modeling the pose space as a Gaussian process. The style difference
has been transferred to unknown motion sequences by modeling a
linear time-invariant system [Hsu et al. 2005]. Liu et al. [2005]
present a nonlinear inverse optimization method that learns the

biomechanical properties that give rise to emergent motion styles
such as sadness, happiness, or limping. In contrast to work that
focuses on stylistic motion variation, we focus on a style represen-
tation for a higher level control such as the way people choose to
move through the environment, the way they choose to avoid obsta-
cles, etc.

There has been much research towards explicitly modeling the be-
havior style of characters. Funge et al. [1999] model the behaviors
of a character by selecting the appropriate action according to its
perceived environment. Sung et al. [2004] present a control struc-
ture whose possible behaviors are based on situations, with a prob-
abilistic action selection mechanism. Lee et al. [2007] learn group
behaviors from a video capturing the trajectories of corresponding
styles. Lau and Kuffner [2006] show an example of representing
behavior styles by giving different relative rewards for specific mo-
tions. Automatically learning the behavior styles, or the variation of
the character’s intention, from examples in a reinforcement learning
framework has not been addressed for character animation prob-
lems.

3 Motion Controller Model

Our IRL system sits on top of another RL-based optimization
framework, which sits on top of a character animation system.
The motion model uses a motion graph composed of short clips
segmented into a step phase. Continuous motion is generated by
concatenating a pair of motions which are adjacent in the motion
graph. Constraint frames are defined on each clip in a way simi-
lar to [Treuille et al. 2007], which are used to align concatenating
motions and to remove foot-skating. We used a partially connected
motion graph, whose connectivity is determined by the similarity
of motions. Each motion clip is parameterized on root’s displace-
ment and orientation with a constraint of fixing the ending pose as
in [Lee et al. 2009].

Our motion controller is represented as a Markov decision process
(MDP) (S, A, T, γ, R), where S is a set of states describing cur-
rent condition and environment such as a current motion clip, the
character’s position and its orientation; A is a set of actions, which
is a set of motion clips that can be concatenated to the current mo-
tion clip; T : S × A 7→ S is a deterministic transition function;
γ ∈ (0, 1) is a discount factor; and R : S × A 7→ R is a reward
function describing the task - for instance, for a controller whose
objective is to reach a goal region, a positive reward only when the
character is within the goal can be a valid reward function.

The controller decides which action to take from the given state
based on a policy π : S 7→ A. In our case, a policy gives a motion
clip and motion parameters for the next step. This allows us to
define a value function V : S 7→ R that measures this long-term
reward for each state under a policy π:

Vπ(s) =

∞∑
t=0

γtR(st, π(st)) (1)

= max
a∈A

(
R(s, a) + γVπ(T (s, a))

)
, (2)

while s0 = s and st+1 = T (st, π(st)) ∀t.
The optimal policy π∗ given a MDP maximizes the value of any
state:

π∗ = argmax
π

Vπ(s) ∀s ∈ S. (3)

Therefore, once we learn the optimal value function, we can com-



pute the optimal policy immediately:

π∗(s) = argmax
a∈A

(
R(s, a) + γVπ∗(T (s, a))

)
. (4)

There are multiple ways to compute the optimal value function such
as value iteration and policy iteration. In our case, we used the value
iteration algorithm [Bellman 1957].

To enhance speed and the accuracy of value functions, we dis-
cretized state dimensions using parameterized motion clips. For ex-
ample, when the position of the character is one of the discretized
state dimensions, we apply appropriate parameters to the original
motion clip so that the ending position of the motion always lies on
the center of a grid. Such a technique was also used in Reitsma and
Pollard [2004].

4 Inverse Reinforcement Learning

4.1 Problem Definition

The IRL problem is generally defined as follows: given measure-
ments of an agent’s behavior and its environment, determine the re-
ward function that the agent is optimizing Russell [1998]. Among
many interpretations of this problem, we use the problem definition
of Abbeel and Ng [2004].

A reward function is defined as a linear combination of K features
φi : S ×A 7→ R :

R(s, a) := w · Φ(s, a) =

K∑

k=1

wkφk(s, a). (5)

We call w feature weight. As a metric for comparing policies, we
also define a discounted sum of feature values, or a feature expec-
tation, given a state s and a policy π:

µ(π, s) :=

∞∑
t=0

γtΦ(st, π(st)), (6)

where s0 = s and st+1 = T (st, π(st)) ∀t.
Similarly, given M expert’s trajectories τm = (sm

0 , am
0 , . . .) ∀m ∈

{1, . . . , M}, we define an empirical estimate for the expert’s fea-
ture expectation µE as the following:

µE :=
1

M

M∑
m=1

µ(τm) :=
1

M

M∑
m=1

∞∑
t=0

γtΦ(sm
t , am

t ). (7)

We also define µ(w) as 1
M

∑M
m=1 µ(π∗w, sm) given M expert tra-

jectories1, while π∗w is the optimal policy given R = w·Φ. To avoid
multiple optimal policies with different feature expectations, we set
priorities between features for a preference order as a tie-breaking
rule.

The goal of this problem is to find a reward function whose feature
expectation is closest to the expert’s, while the reward function is

1Abbeel and Ng [2004] define a feature expectation as µ(w) :=
E[

∑∞
t=0 γtφ(st)|w], while s0 is drawn from the starting state distribution

D. However, we draw s0 from the observed trajectories. These definitions
are interchangeable and do not affect the algorithm. However, we believe
comparing policies on the observed trajectory space would be a better com-
parison metric than comparing policies on the expected feature expectation
space, when the providing a large amount of examples is unavailable, as in
our domain.

represented as a linear combination of given features:

Find argmin
R=w·Φ:||w||=1

||µ(w)− µE ||. (8)

Here, we set w to be a unit vector because reward functions with
different scales produce the same optimal policy.

Let us examine this problem in detail. We can write the value of a
state as a dot product of a feature weight and a feature expectation:

Vπ(s) =

∞∑
t=0

γtR(st, π(st)) (∵ Eq. 1)

=

∞∑
t=0

γtw · Φ(st, π(st)) (∵ Eq. 5)

= w · µ(π, s) (∵ Eq. 6). (9)

Now with Eq. 3, we induce:

w · µ(w) ≥ w · µ ∀w ∈ RK s.t. ∀µ ∈ U, (10)

while U := {µ(w) ∀w} is a set of all optimal policies from our
reward function domain. From this property, we induce that U is
on the surface of a convex hull for U , Co(U). If there is w such
that µ(w) is inside the convex, i.e., ∃µ(w) =

∑
i λiµi while all

µi ∈ U are vertices of Co(U), λi ∈ [0, 1], and
∑

i λi = 1, then
w · µ(w) = w ·∑i λiµi ≤ maxµi w · µi. To satisfy this and Eq.
10, w · µ(w) = w · µi for all i such that λi > 0. This means µ(w)
is on the facet containing other µis whose corresponding λis are
positive.

Furthermore, we induce U is the set of vertices of Co(U). If there is
an optimal policy whose feature expectation is on the surface, not
on the vertices, its feature weight should be the surface’s normal
(due to Eq. 10). This means the optimal policy shares its value
with other (also optimal) policies whose feature expectations are the
neighboring vertices. However, our tie-breaking rule for multiple
optimal policies prefers one of these vertices over the point in the
middle.

Figure 2: Left: Visualization of feature expectations. U are black
points, and µE is shown in red. Right: Gray region indicates
the relative range of feature weights ({w = (cos(θ), sin(θ))|θ ∈
[222.5◦, 229.2◦]}) producing the feature expectation within a cer-
tain distance from µE (shown as gray circle in left) compared to
the search space, represented as a black circle.

Solving an IRL problem manually is often tedious work. Figure
2 visualizes how hard it can be. In this example, only less than
two percent of feature weights domain produce satisfying policies.
Moreover, the range of acceptable feature weights in the search
space would drastically decrease with more features.

4.2 Apprenticeship Learning Algorithm

The apprenticeship learning (AL) algorithm [Abbeel and Ng 2004]
solves this IRL problem by iteratively suggesting a feature weight
candidate wi and computing its feature expectation µi. The sug-
gested feature weight is a unit vector maximizing the distance be-
tween µE and the convex polytope of known feature expectations
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Figure 3: Visualization of the AL algorithm. Gray, black, and
red points represent U \ U i, U i, and µE , respectively. (d) When
µE ∈ Ci, i.e., when µE can be represented as a convex combina-
tion of elements of U i, the algorithm ends. In this case, it misses
the optimal solution arg minu∈U ||µE −µ||, which is painted blue.

Ci := Co(U i), while U i := {µ0, . . . , µi}, towards its direction.
As a result, the AL algorithm gradually expands Ci towards µE

until no more improvement is observed. Figure 3 visualizes this
process.

The algorithm returns a mixed policy, or an ensemble of policies
with a certain probability whose feature expectation, on average,
mimics the expert. However, using this mixed policy as it is does
not work for our case: for example, randomly choosing between
standing still and running does not give a walking behavior. In prac-
tice, one of the policies within the mix that is most similar to the
expert is selected an used. Still, any individual selected policy does
not have to be similar to the expert. For example, in Figure 3(d), the
algorithm exits with the closest policy to the expert undiscovered.
It happens because the AL algorithm minimizes the distance be-
tween the convex polytope Ci and µE , while we want to minimize
minµ∈Ui ||µE − µ||.

4.3 Convex Apprenticeship Learning Algorithm

(a) (b) (c) (d)

Figure 4: Visualization of the Convex AL algorithm. Each itera-
tion selects the closest non-saturated facet of Ci to µE and uses its
normal as the next feature weight. (d) The algorithm exits when all
facets within the distance minµ∈Ui ||µE−µ|| are saturated (drawn
as a bold line).

To obtain a better policy, we present a novel algorithm based on our
geometric interpretation. The Convex AL algorithm maintains the
framework of iteratively suggesting a feature weight from observed
policies, while changing the weight selection criteria from the orig-
inal AL algorithm. The Convex AL algorithm builds a convex hull
from known feature expectations and chooses the normal of a facet
as a new feature weight. The basic idea is that if we keep expand-
ing Ci towards the normals of its facets until no more expansion
is found, we will recover C∗ := Co(U). To avoid unnecessary
computation, we provide facet selection criteria and tighter ending
conditions instead of computing the whole C∗. Figure 4 visualizes
this process.

In Algorithm 1, n(f) and o(f) denote the normal and offset of a
facet f , respectively so that ∀x ∈ f x·n(f) = o(f). We call a facet
that cannot expand the convex towards its normal “saturated”, and
define N(C) as a set of non-saturated facets of a convex polytope
C. The Convex AL algorithm is guaranteed to halt and return the
optimal solution in our setting. The proof of the optimality can be

Algorithm 1 Convex Apprenticeship Learning Algorithm
1: Run the AL algorithm until we can build a K dimensional con-

vex hull Ci ← Co(U i).
2: repeat

3: f ←
{ argmax

f∈N(Ci)

n(f) · µE − o(f) if µE 6∈ Ci,

argmin
f∈N(Ci)

min
x∈f

||µE − x|| otherise.

4: if µ(n(f)) 6∈ U i then
5: wi ← n(f), µi ← µ(n(f)).
6: Ci+1 ← Ci.insert(µi).
7: ti ← minµ∈Ui ||µE − µ||.
8: i ← i + 1.
9: end if

10: if n(f) · µ(n(f)) = o(f) then
11: Mark f as saturated.
12: end if

13: until

{ N(Ci) = ∅ or,
maxf∈N(Ci) n(f) · µE − o(f) < −ti if µE 6∈ Ci,

minf∈N(Ci) minx∈f ||µE − x|| < ti otherwise.
14: return arg minw∈{w0,...,wi−1} ||µE − µ(w)||.

found in the Appendix.

4.4 Applications to Controller Construction

Feature selection. Our framework adds features incrementally.
When the current set of features is not descriptive enough, a learned
policy does not replicate the input example. By observing the dif-
ference between the input and the learned policy, we determine ad-
ditional parameter that should be considered (e.g. torso orienta-
tion), and add a new feature as a simple function of the parameter
such as terms raised to different power, cosines or sigmoids. The
designer does not have to worry about the overall feature simplicity
as long as they have sufficient expressive power. In our cases, the
features were determined within a few trials.

Iterative refinement of behavior. Much like many machine
learning algorithms, our algorithm can suffer from overfitting.
When too few examples are provided, the learned policy will in-
variably produce unexpected outcomes for untrained cases. It is
frequently not clear how many examples are sufficient to fully gen-
eralize the behavior style to all environments and all possible goals.
We address this problem by including the designer in the process so
that she/he can provide corrected examples for each observed unde-
sirable case. With each new example the reward function is further
generalized. If the new example shares the same Markov model to
the previous ones, the only overhead to re-learn the behavior style
is evaluating additional feature expectations, which is negligible.
Moreover, we can start from the previous densely constructed con-
vex hull, which makes the re-learning significantly faster than run-
ning it from scratch. Even in the case of new examples coming
from different Markov models, the running time of re-learning is
linear in the number of examples. In our experience, satisfactory
controllers are reached with a surprisingly few number of examples
with this process, partly because each new example is provided at a
failure point of the old style, thus having minimal redundancy with
previous examples.

Behavior style transfer to different environments. Once a be-
havior style is learned from the examples (which themselves can
be from different environments or different Markov models) it can
be transferred to unknown environments, by changing the environ-



ment and the controller task goal while reusing the learned behavior
style.

Blending behavior styles. Once several behavior styles are
learned, one can create a variety of styles that blends between them.
This allows us to use few examples to first determine extreme styles
and then design a specific style by finding the appropriate mixture
of learned styles. Obtaining such a design space of behavior styles
would be very difficult with rule-based behavior descriptions.

5 Results

We applied our IRL framework to three different problems. For
each experiment, we provided and learned three different styles.
The Markov models were designed carefully so that running the
value iteration algorithm can be done within a short amount of time
with the aid of massive caching of feature values and transitions.
All experiments were held on a PC with a Xeon 2.33GHz CPU and
8GB memory. The given examples and the learned controllers can
be seen in the accompanying video.

We used Qhull [Barber et al. 1995] to construct convex hulls and
IBM ILOG CPLEX to solve quadratic problems. Because the al-
gorithm requires too many iterations to end, instead we stopped the
algorithm when no improvement is observed for a long period of
time. In all our cases, we could obtain a satisfactory controller with
less than two hundred iterations and within a half day.

5.1 Simple Navigation

We tested our algorithm on navigation controllers that follow the
specified direction in three styles - walking normally, walking back-
wards and running. A state is defined as a current motion clip and
the desired direction relative to the orientation of the character. The
angle dimension is discretized into sixty slots. We built stylized
controllers on a motion database containing five hundred motion
clips with a variety of stylized motions.

For each style, we sampled five trajectories by simulating a man-
ually created controller, each of them five steps long. Each con-
troller had a tiny motion graph with a dozen of manually selected
motions and a reward function that returns a positive value when the
character proceeds towards the desired direction. This naive reward
function works because the motion database only contained rele-
vant stylized motions. For example, a normal walking controller
only had walking forwards motions in its motion graph so it does
not have to care about its speed or torso orientation. Applying this
naive reward function on the large database would not provide the
desired behaviors.

For this experiment, we provided eight features:

• |d| cos(θd−θv) and |d| cos(2(θd−θv)), where θd and θv are
the desired direction and the moving direction, respectively. d
is the displacement of current clip.

• cos(θr), cos(2θr), cos(θh) and cos(2θh), where θr and θh

are the root orientation and the head orientation relative to the
desired direction, respectively.

• |v|, |v|2, |v|3 and |v|4, where v is the velocity.

5.2 Map Navigation

We built controllers that reach their goals while avoiding obstacles
on different environments with varying map sizes and number and
position of obstacles. We defined three behavior styles: a normal
walking style that keeps a distance from obstacles, a playful style

that prefers to jump over obstacles, and a watchful style that keeps
an eye on the closest obstacle while avoiding it. A state is defined as
a current motion clip, the position and orientation of the character.
We discretized the angle dimension into 16 slots and the position
dimensions into rectangular grids of 0.2 meter. The total number of
states is about 0.5 million for each map. We tested our controllers
on nine different maps.

We could make each controller work in all test maps with three
examples. One of the examples and some of the learned controllers
are shown in Figure 1. We also created a variety of controllers by
interpolating the feature weights of two controllers (Figure 1(f)).

For this experiment, we provided eight features:

• The time consumed on moving.

• Four boolean indicators specifying if the character is in the
goal region, jumping over an obstacle, walking by sideways
or jumping.

• Two measures of the distance between the character and the
obstacles:

∑
o sigmoid(do−x, σ) for varying x and constant

σ, where do is the distance to an obstacle o in meters. This
gives bumps around obstacles with different radii.

• A measure describing if the character is facing the closest ob-
stacle: cos(θr − θo), while θr is the orientation of the root
and θo is direction to the closest obstacle whose distance is
less than 1.5 meters from the character.

5.3 Bombardment Scenario

We built a video game-like environment where a character is sup-
posed to avoid exploding bombs inside a narrow corridor. A bomb
is dropped right above the character every three steps, and explodes
after six steps. A state is defined as a current motion clip, the posi-
tion and orientation of the character, and the position and the num-
ber of steps left before an explosion for each bomb. We synchro-
nized the timings of bombs to the length of the motion clip being
played to simplify the time dimension. We discretized the angle
dimension into 8 slots and the position dimensions into rectangular
grids of 0.2 meter. The total number of states is about a million.

The example of behaviors are gathered from a human player con-
trolling the character with a game pad. The player attempted to
express three different behavior styles: a relaxed style that grace-
fully navigates the map avoiding abrupt motions such as stopping
and running, a scared style that always runs away, trying to be at
the safest place, and a procrastinating style that moves as little as
possible, and jumps away from the explosion at the last moment.
For each style, we recorded about a minute long sequence of mo-
tions, and sliced it into multiple pieces so that the later parts of the
example are treated as equally important as the earlier parts.

The learned controllers were satisfactory in the same environment
to the examples, and also in an environment with a different bomb
falling sequence. We also transferred the learned controllers on
a two dimensional map, whose floor is falling apart reducing the
possible region one can step on as time passes. Learning a style
on simpler environments first and then applying it to more complex
tasks allows us to avoid difficulties with collecting expressive user
playing data on difficult tasks.

For this experiment, we provided seven features:

• Four boolean indicators describing if the character is damaged
by an explosion, standing still, walking or jumping.

• Two measures of the distance between the character and each
bomb: exp(−db), where db is the distance for each bomb b in
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Figure 5: Comparison between the AL algorithm and the Convex
AL algorithm. Minimum distance is defined as minµ∈Ui ||µE−µ||.
AL algorithm ends with a suboptimal solution, while Convex AL
algorithm runs until finding the optimal solution.

meters.

• A measure of the turning amount of current motion:
cos(∆θr), where θr is the root orientation.

Figure 5 compares the performance of the AL algorithm and the
performance of the Convex AL algorithm in the case of learning
the procrastinating style. In this experiment, the policy from the
AL algorithm is about eight times farther from the closest policy to
the expert’s trajectories than the one from the Convex AL.

6 Conclusion

We presented a framework that infers behavior styles from a small
set of examples using IRL. The resulting styles can be applied to
new unseen environments and new task goals. Style reward func-
tions can also be blended together to produce a rich design space for
character behaviors. We also present an iterative behavior refine-
ment process that allows the designer to provide minimal number
of samples for a desired behavior.

Towards this goal we introduced a novel algorithm that finds more
precise controllers compared to the existing algorithm. Our algo-
rithm guarantees the optimal solution when the Markov model is
deterministic and discrete, which is the property of the character
control problems. In contrast, the original apprenticeship learning
computes a suboptimal mixed policy which is too inaccurate for
deterministic character control problems.

Finally, we showed a number of applications. We learned styl-
ized controllers from a large motion database and created general
controllers working on various environments from a few examples.
We also learned behavior styles from traces of video game player’s
data.

We see numerous opportunities for further improvement of our
framework. First, much like all other IRL methods, ours greatly
depends on the quality of the feature set. If a key feature of the re-
ward function is missing, no IRL method will learn the meaningful
behavior style. In the future, we will investigate automatic meth-
ods to determine the most salient features for each context. Second,
the Convex AL runs considerably slower with a large number of
features. Our algorithm expands a K-dimensional convex hull on
each iteration. The maximum number of facets for a convex hull of
v points is O( vbK/2c

bK/2c! ) [Barber et al. 1995], meaning that for large
K, convex expansion will be prohibitively slow. We have found
that most practical styles can be represented with a small number
of features, and in fact in all our experiments convex expansion time
is negligible compared to the time spent on reinforcement learning.
Still, for possible applications with large numbers of features, the
original AL should be used instead since it is less sensitive to the
feature set size.

Looking forward, we believe our framework will be useful for hu-
man motion research in many directions. We would like to apply

our method to learning the reward functions in the dynamic con-
troller settings. When using reinforcement learning to control un-
deractuated dynamic characters the accuracy of the reward function
is particularly important. Furthermore, in these settings it is very
difficult to find the reward function that works not just for one ex-
ample but for a number of control settings. We are also interested
in exploring alternative IRL methods that would allow for realtime
controller design and adaptation. For example, the controller can
adapt the reward function on the fly to perform optimally on chang-
ing environments. Finally, we believe our algorithm will be useful
for adaptive game AI and adjusting the game level difficulty. The
bombardment scenario showed we can learn the player’s behavior
from a short sequence of play examples. By extension, we would
like to develop this direction further to learn the aptitude and the
preference of a game player and uses this information to adapt the
opponent’s behavior. That way, the game can itself adapt to the
player’s strategies, presenting new challenges to the player with ev-
ery new game playing session.

7 Appendix

Claim 1. A facet f is marked as saturated if and only if f is a facet
of C∗ := Co(U). In other words, n(f) · µ(n(f)) = o(f) if and
only if n(f) · µ ≤ o(f) ∀µ ∈ U .

Proof. ⇒ Suppose n(f)·µ(n(f)) = o(f). From Eq 10, n(f)·µ ≤
n(f) · µ(n(f)) = o(f) ∀µ.

⇐ Suppose n(f) · µ ≤ o(f)∀µ ∈ U . Because a facet f ’s vertices
are from U , ∃µ′ ∈ U ∩ f . Since µ′ ∈ f , n(f) · µ′ = o(f). From
Eq 10, o(f) = n(f) · µ′ ≤ n(f) · µ(n(f)). Therefore, with our
assumption, n(f) · µ(n(f)) = o(f).

Claim 2. The Convex AL algorithm ends within a finite number of
iterations.

Proof. For each iteration, a facet’s corresponding feature expecta-
tion should be either over or on the facet plane (due to Eq. 10). If it
is over the facet, then it is out of the convex Ci, which means that
we discovered a new policy. For the other case, the facet is one of
the facets of C∗ (from Claim 1) and is marked as saturated and will
never be selected again. Therefore, for each iteration, the algorithm
either reveals an undiscovered policy or marks a non-saturated facet
of C∗ as saturated (or does both).

However, in our discrete setting |S| and |A| are finite, the number
of possible deterministic policies is also finite. Therefore, |U | and
the number of facets in C∗ should be also finite. Therefore, the
algorithm has to terminate within a finite number of iterations.

Claim 3. If µE 6∈ Ci and maxf∈N(Ci) n(f) · µE − o(f) <

−minµ∈Ui ||µE − µ||, then µ∗ := arg minµ∈U ||µ− µE || ∈ U i.

Proof. Suppose µ∗ 6∈ U i while maxf∈N(Ci) n(f) · µE − o(f) <

−minµ∈Ui ||µE − µ|| and µE 6∈ Ci. Because µ∗ 6∈ Ci, there is
a facet f such that n(f) · µ∗ > o(f). From Claim 1, f ∈ N(Ci).
However, n(f) · µE − o(f) > minµ∈Ui ||µE − µ||:
− min

µ∈Ui
||µE − µ|| ≤ −||µE − µ∗|| (∵ def. of µ∗)

≤ n(f) · (µE − µ∗) (∵ ||n(f)|| = 1)

< n(f) · µE − o(f). (11)

This contradicts to our assumption.

Claim 4. If µE ∈ Ci and minf∈N(Ci) minx∈f ||µE − x|| >

minµ∈Ui ||µE − µ||, then µ∗ ∈ U i.



Proof. Suppose µ∗ 6∈ U i while minf∈N(Ci) minx∈f ||µE−x|| >
minµ∈Ui ||µE−µ|| and µE ∈ Ci. Because µE ∈ Ci and µ∗ 6∈ Ci,
there is a facet f between these two points, i.e., ∃x ∈ f such that
x = tµE+(1−t)µ∗, t ∈ (0, 1). In this case, minx′∈f ||µE−x′|| ≤
||µE − x|| < ||µE − µ∗|| < minµ∈Ui ||µE − µ||. However,

n(f) · x = n(f) · (tµE + (1− t)µ∗)

⇔o(f) = n(f) · (tµE + (1− t)µ∗) (∵ x ∈ f, n(f) · x = o(f))

⇒(1− t)(n(f) · µ∗ − o(f)) = −t(n(f) · µE − o(f))

⇒n(f) · µ∗ − o(f) > 0 (∵ n(f) · µE < o(f), t ∈ (0, 1)). (12)

By Claim 1, f ∈ N(Ci), contradicting to our assumption.
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physics-based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics 24, 3 (Aug.), 1071–1081.

LO, W., AND ZWICKER, M. 2008. Real-time planning for parame-
terized human motion. In Proceedings of the 2008 Eurographics
/ ACM SIGGRAPH Symposium on Computer Animation, Euro-
graphics Association, 29–38.

MCCANN, J., AND POLLARD, N. 2007. Responsive characters
from motion fragments. ACM Transactions on Graphics 26, 3
(July), 6:1–6:7.

NG, A. Y., AND RUSSELL, S. 2000. Algorithms for inverse re-
inforcement learning. In Proceedings of the 17th International
Conference on Machine Learning, Morgan Kaufmann, 663–670.

REITSMA, P. S. A., AND POLLARD, N. S. 2004. Evaluating
motion graphs for character navigation. In Proceedings of the
2004 ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, Eurographics Association, 89–98.

RUSSELL, S. 1998. Learning agents for uncertain environments
(extended abstract). In Proceedings of the Eleventh Annual Con-
ference on Computational Learning Theory, ACM Press, 101–
103.

SHIN, H. J., AND OH, H. S. 2006. Fat graphs: constructing an
interactive character with continuous controls. In Proceedings of
the 2006 ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation, Eurographics Association, 291–298.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable
behaviors for crowd simulation. Computer Graphics Forum 23,
3, 519–528.

SYED, U., BOWLING, M., AND SCHAPIRE, R. E. 2008. Appren-
ticeship learning using linear programming. In Proceedings of
the 25th international conference on Machine learning, ACM,
1032–1039.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-optimal
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