
Compact Character Controllers

Yongjoon Lee Seong Jae Lee Zoran Popović

University of Washington

Abstract

We present methods for creating compact and efficient data-driven
character controllers. Our first method identifies the essential mo-
tion data examples tailored for a given task. It enables complex
yet efficient high-dimensional controllers, as well as automatically
generated connecting controllers that merge a set of independent
controllers into a much larger aggregate one without modifying ex-
isting ones. Our second method iteratively refines basis functions
to enable highly complex value functions. We show that our meth-
ods dramatically reduce the computation and storage requirement
of controllers and enable very complex behaviors.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Optimal Control, Data Driven Animation, Human An-
imation

1 Introduction

Over the past decade motion graphs composed from a large set of
captured motion data have been commonly used to construct inter-
active controllers of realistic human motion. More recently, rein-
forcement learning approaches have shown that for a given motion
graph a wide variety of optimized controllers can be automatically
constructed [Lee and Lee 2004; McCann and Pollard 2007; Treuille
et al. 2007; Lo and Zwicker 2008].

While controllers based on motion graphs have been successfully
demonstrated for specific subsets of human motions, the problem
of constructing controllers that cover the entire space of all human
behaviors and motion tasks remains an open problem. Extrapolat-
ing current techniques to build such a controller would require a
prohibitively large number of motion clips and value functions of
dimensionality beyond what current methods can handle.

In this paper we consider two fundamental hurdles towards the goal
of comprehensive controllers. The first hurdle is the selection of the
right compact subset of motion data that covers a large number of
different controllers. It is important to provide the drastically differ-
ent sets of motion examples that each task requires, while minimiz-
ing non-essential redundant motion data so that the entire system
can accommodate a wider variety of behaviors. In addition, for an
aggregate controller system that represents many different behav-
iors by combining the separately constructed controllers, automati-
cally finding the natural transition examples among the controllers

is an important advance. It enables the individual controllers to be
designed without worrying about their connection to other exist-
ing controllers. For example, we can seperately create a standing
controller and running controller, and then automatically identify
necessary speed-up motions to make the transition between them
more realistic. This is a practical way to rapidly expand a library
of achievable tasks with minimal design cost. Compact yet maxi-
mally expressive sets of clips allow complex motion controllers to
fit on game platforms with a relatively limited storage (e.g. mobile
devices).

The second hurdle towards automatic synthesis of comprehensive
controllers is the appropriate selection of compact basis functions
used for the value function representations. When a complex task
requires a lot of parameters to be modeled, its value function be-
comes sufficiently high-dimensional so that naive distribution of
basis functions over such space becomes impractical. An automatic
basis selection and refinement method is required before larger
problems can be solved.

We present methods for constructing complex individual and con-
necting controllers over an automatically selected compact set of
motion clips. Our methods systematically analyze the controller’s
preferences and performance bottlenecks to produce larger aggre-
gate controllers as well as complex high dimensional controllers us-
ing less resources. We demonstrate the effectiveness of our frame-
work on a number of controller examples, and provide compactness
and optimality comparisons.

2 Related Work

Pre-planning and learning methods have been used to create inter-
active controllers, including value iteration [Lee and Lee 2004], ex-
plicitly calculating (and caching) reward over a short window of
time [Ikemoto et al. 2005; Lau and Kuffner 2006], learning user
command statistics for responsive characters [McCann and Pollard
2007], constructing linear approximate value functions using con-
tinuous basis functions [Treuille et al. 2007], and a tree-based re-
gression method on parameterized data [Lo and Zwicker 2008].

Since data-driven animation by nature requires a large amount of
example motion data, researchers have tried to keep the data re-
quirement manageable. Many works since Lamouret and van de
Panne [1996] pruned the database by identifying similar or redun-
dant motion data in the collection [Kovar and Gleicher 2004; Beau-
doin et al. 2007; Beaudoin et al. 2008; Zhao et al. 2009]. Recent
works incorporate specific purposes or task objectives into consid-
eration in addition to redundancy reduction. Cooper et al. [2007]
used an active learning technique to adaptively improve the cov-
erage of motion synthesis. Reitsma and Pollard [2007] adjusted
given motion graphs to achieve a good trade-off between the graph
size and the ability to navigate through specific environments. Our
method automatically identifies highly compact sets of example
data specifically tailored for the given user-defined task objectives
or constraints. We improve the long term achievement of the task
objectives, instead of simply creating a sparse coverage of various
motion repertoire.

Many methods for automatically finding the right basis functions
to approximate the value functions have been proposed. The proto-

value functions use harmonic analysis on state transitions to cap-
ture ridges in the state connectivity and decision boundaries [Ma-
hadevan and Maggioni 2006]. Keller et al. [2006] used neighbor-
hood component analysis to aggregate states of similar Bellman er-
ror, and used the clusters as the basis functions. Variable resolu-
tion methods effectively adapt the local structure of value functions
[Moore 1991; Munos and Moore 2002]. Munos and Moore [2002]
present an octree-based hierarchical refinement process based on
state influence and error variance statistics.

3 Animation with Parametric Data

This section describes the basic components of our animation
framework: the parametric motion data representation and the re-
inforcement learning formulation. Both components are largely
adopted from Treuille et al. [2007] and Lo and Zwicker [2008]
with some modifications.

3.1 Parametric Motion Model

Our motion model is based on Treuille et al [2007] that uses the
step-phase-based clip segmentation and foot contact annotation.
This is the only partially manual processing necessary. Continu-
ous animation is synthesized by the same process that aligns the
pivot foot and blends the clips. Lo and Zwicker [2008] extended
the model by weighted interpolation on the motion clips, which en-
abled a wider variety of animation and more precise controls with a
significantly reduced amount of data. We further extend the model
by introducing another parameterization method by transformation.
While the interpolated clips produce novel motions by interpolat-
ing motion data, our transformation methods directly alter the joint
configurations to create new motion. We employ computationally
inexpensive methods that can be used in realtime synthesis, such as
directly modifying the root’s translation, orientation, or clip length.
By continuously increasing the modification amount through time,
we can alter the clips to turn different angles, climb steps of various
heights, or change step lengths and timing.

Transformation has advantages over interpolation. First, it does not
require creating clusters for similar motion clips which can be te-
dious manually, and error-prone through automated methods. Sec-
ond, transformation is better for precise controls over multiple pa-
rameters. A clip can be transformed to satisfy many simultaneous
desired changes such as step length, height, direction, and timing.
Constructing interpolated clips that represent such parameters re-
quires exponential number of clip examples. Moreover, finding
the blending weights that satisfy every simultaneous constraint is
even challenging and often not possible. Another advantage is the
predictability of transformation. The result of transformation can
be known with minimal prediction operations without actual trans-
formation or interpolation operations. This speeds up the decision
processes described in Section 3.2.

Unfortunately, the transformation may violate physical properties
and create unrealistic animation. Methods that produce physically
correct motions through a full-body simulation and extensive op-
timizations [Liu et al. 2005] are infeasible for interactive applica-
tions. Instead, we sacrifice physical correctness for efficiency by
using simple transformations. However, such transformations are
far more likely to introduce unpleasant distortions as the amount of
warping increases and moves away from the original motion. The
key idea is that reinforcement learning can be applied to intelli-
gently adjust the degree of transformation in order to achieve both
runtime efficiency and motion quality.

The motion model synthesizes continuous animation by concate-
nating clips in succession as in Treuille et al. [2007]. The necessary

constraint frames information can be recomputed in any instances
of parametrized clips by interpolating the constraint frame poses or
applying transformation on the pose. We can handle foot-skating
artifacts using a stock IK solver, although parameterized locomo-
tion clips produce little foot-skating artifacts after blending.

A parameterized clip is specified by the clip data C and the clip
parameters θP. For an interpolated clip, C is a cluster of clips, and
θP are the blending weights. For a transformed clip, C is a single
motion clip, and θP encode the transformation parameters.

3.2 Reinforcement Learning Formulation

We use a modified version of the reinforcement learning (RL) for-
mulation in Treuille et al [2007] and Lo and Zwicker [2008]. The
learning algorithms construct intelligent mechanisms that synthe-
size realtime animation for interactive user controls. Specifically,
the mechanism makes decisions on which sequence of clips to con-
catenate, to produce a natural and effective long term behavior. In
this section we describe the components of the RL formulation.

A state encapsulates all the information necessary to make the de-
cisions. With non-parametric clips, states are defined as a pair

s = (C,θT) (1)

of the clip C, and the current task parameters θT that are unique to
each task definition. The θT are defined to be at the center of the clip
(Figure 1(a)). With parameterized clips, this definition is insuffi-
cient, because the clip parameters θP alter both the produced motion
and θT (Figure 1(b)). In other words, each variation C′ = W (C,θP)
by a transformation W acts as a distinct non-parametric clip. This
means we need the clip parameters θP in the state definition,

s = (C,θP,θT). (2)

Unfortunately, reinforcement learning tasks become exponentially
harder as the number of state parameters increases [Bellman 1957].
Lo and Zwicker [2008] omitted θP in the state definition by crafting
interpolated clusters with very similar motion clips. However, the
errors are still present, and many clusters are required because each
represented a relatively small variation of motion.

(a) (b) (c)

θP θP
θT θT θT"'

Figure 1: Parameterization by transformation. (a) The original
clip C. (b) The clip C transformed by parameters θP. (c) The clip
C transformed by parameters θP with transformation acceleration.
In all figures, the solid line represents the original motion and the
dotted line represents the modified motion.

Parameterization by transformation allows an optional solution we
call transformation acceleration, which accelerates the transforma-
tion to complete within the first segment (Figure 1(c)) instead of
spanning over the entire clip (Figure 1(b)). The key observation is
that the next clip sees only the second segment of the current trans-
formed clip. If the second segment of the clip remains unmodified,
the next decision can be made as if the entire clip was unmodified.
Since θP in (2) captures the modification of the clip data C, it can
be ignored safely. Notice the task parameters θ ′′T are still affected
by θP, but the original state definition already includes them.

Note that the acceleration is optional. In cases where transforma-
tions need to span both segments such as waving hands, the full

state representation in (1) can be used. Also, states represented in
(1) and (2) can coexist, allowing us to use the correct representation
when necessary, while using reduced state whenever possible.

An action represents a decision on the next motion, such as turning,
changing speeds, or climbing stairs. With non-parametric clips, the
action is simply the choice of the next clip. In the parametric case,
an action is a pair a = (C,θP) because both the clip and its param-
eters determine the resulting motion. The transition function f de-
termines the next state s′ from a state s and an action a: s′ = f (s,a).

A policy Π is an automatic mechanism that determines the action
for any state, as in Π(s) = (C,θP). Since this is what a controller
is, we use the terms “controller” and “policy” interchangeably.

The goal of the RL framework is to construct controllers that
achieve pre-defined tasks, as described by the reward function,
R(s,a). The learning algorithm finds the optimal policy Π∗ that
maximizes a discounted long term reward on every state s = s0:

Π
∗ = argmaxΠ ∑

t
α

tR(st ,Π(st)) (3)

for st+1 = f (st ,Π(st)), the discount factor α ∈ [0,1), and

Π(s) = argmaxa(R(s,a)+αV Π(f (s,a))) (4)

where the value function V Π of a policy Π is defined as

V Π(s) = ∑
t

α
tR(st ,Π(st)) (5)

= R(s,Π(s))+αV Π(f (s,Π(s))). (6)

For continuous state parameters in θT, the value function is ap-
proximated with a linear combination of basis functions Φ = {φi}.
Letting V Π(s)≈Φ(s)w, we can rewrite (6) as,

Φ(s)w = R(s,Π(s))+αΦ(s′)w. (7)

We use the least squares policy iteration (LSPI) [Lagoudakis and
Parr 2003] to solve for w:

min
w
|[Φ(s)−αΦ(s′)]w−R(s,Π(s))|,∀s. (8)

We measure the performance Q of a controller by how well it
achieves the long term reward:

Q(Π) = ∑
s0∈D

∑
t

α
tR(st ,Π(st)) (9)

where the initial state distribution D can be chosen by the user. The
distribution D can span every state, or be restricted to interested
regions. For example, when constructing a controller to go through
revolving doors, we can specify D to be the states before the doors.

4 Motion Selection

Parametric motion clips can synthesize a wide variety of novel mo-
tions with significantly less data. The reduced data requirement
translates to tangible savings in storage because a clip typically
needs more storage than other components do such as value func-
tions. The growing demand for a richer set of character behavior
controllers with better runtime performance, especially on mobile
gaming platforms, further motivates storage savings.

Unfortunately, it is unclear how to find a compact set of data, or
clips in our setup, that produces a well-performing controller for

an arbitrary task. Experienced designers usually rely on their intu-
ition to identify relevant motion data for the character’s given task.
However, it is becoming less practical to use human intuition on the
growing amount of motion data and even larger number of paramet-
ric transitions. This is a significant bottleneck to the content cre-
ation pipeline when each new behavior or task definition requires
the entire selection process to be redone.

Systematically selecting the right set of clips is a challenging prob-
lem. In a typical motion database, there are numerous versions of
similar motions, yet we have found that visually similar clips can
have drastically different effects on the controller. Omission of key
clips noticeably degrades the perceived intelligence and realism, so
we have to judiciously pick the right clip even among the similar
clips. Naively searching over all possible combinations of clips is
impractical even with a modest-sized motion clip database.

In this section, we present a method to automatically identify com-
pact sets of clips that produce high performance controllers. In or-
der to cope with the exponential search space, we employ an itera-
tive search process. At each iteration, we score every candidate clip
according to how much it benefits the controller, and pick the one
with the most desirable effects.

4.1 Motion Selection Criteria

We need a clip selection criteria to measure the benefit of using a
particular clip for a controller. Since an optimal controller by defi-
nition more frequently utilizes clips that are beneficial to achieving
the task, the controller’s usage preference gives a good insight of
which clips are considered more useful by the controller.

The concept of influence captures such usage preferences [Munos
and Moore 2002]. The influence I of a state s′ under a policy Π is,

I(s′) = 1s′∈D + ∑
s∈B(s′)

αI(s) (10)

where B(s′) = {s| f (s,Π(s)) = s′} and D is a user-specified initial
state distribution. Informally, the influence of a state s′ measures
how many other states s eventually transition to s′ under policy Π.
A policy change at the state s′ recursively influences the policy at
every preceding state s, hence the term. The discount factor α en-
sures the immediate states have more impact on the influence than
the distant states in a transition chain. We set D to match the D in
the performance metric in (9) so that we get the influence on the
user-interested states in D. Intuitively, a clip becomes influential
when the controller decides to use the clip more than others: An
influential clip is a useful clip.

On the other hand, not all useful clips are influential. For example,
in a directional controller, straight clips are more influential than
turning clips because the controller only uses the turning clips in a
couple of steps to converge to the desired direction of movement,
after which only the straight clips are used. However, the lack of
responsive turning ability will significantly decrease the quality of
motion and perceived naturalness. That means we need to consider
the actual performance contribution of each clip to the controller.

The marginal value contribution of a clip C to a state s is defined,

∆VC(s) = VC+(s)−VC−(s) (11)

where VC+(s) is the value of state s when C is included in the con-
troller, and VC−(s) is the value when C is not included.

The marginal value contribution alone as a selection criteria is also
insufficient. If the clip brings drastic improvements to states that are
almost never visited by the controller, such contribution will do lit-
tle to enhance overall controller performance. Therefore, the most

beneficial clips have high value contribution on the controller’s in-
fluential states. This leads to a combined scoring metric,

M(C) = ∑
s

I(s) ·∆VC(s). (12)

Notice the term I(s) ·∆VC(s) approximates the actual change of per-
formance in the controller, because the improvement of value pre-
dicted by ∆VC(s) propagates exactly the amount of I(s) in sum to
the states that lead to s. See Appendix A for how (12) and (9) are
related under some assumptions.

4.2 Motion Selection Process

We formulate the motion selection process as an iterative clip ad-
dition process, where we start with a single clip then successively
include more clips until we reach the desired clip size or controller
performance. At each iteration, we need to evaluate a candidate clip

Algorithm 1 Motion Selection Process
Input: The reward function R, the initial clip C.

1: C ←{C}
2: repeat
3: Construct Π from R and the current C .
4: Update influence I for Π.
5: C∗← argmaxC/∈C M(C).
6: C ← C ∪{C∗}.
7: until desired |C | and Q(Π) trade-off is achieved.

C for its additional benefit to the controller. Since C /∈ C , we have
VC−(s) = V (s). VC+ is the better of the current value and the value
induced by taking the optimal action aC+ that uses C,

VC+(s) = max(V (s),R(s,aC+)+αVp(f (s,aC+)) (13)

where Vp is a predicted value for the new state containing C, ap-
proximated by taking the better of the values induced by taking the
optimal action into C and the optimal action containing C again.
This approximation correctly predicts the actual change of perfor-
mance with correlation coefficients ranging from 0.77 to 0.91. The
initial clip can be chosen to be one that produces the best controller
with a single clip, but in our experience the choice makes little im-
pact on the final convergence.

A major advantage of this approach is the computational feasibil-
ity. The evaluation of the score metric is more efficient than the
full value function construction especially for larger clip sets. For a
candidate set of size C and a target number of clips N, our method
requires the fast score evaluation CN times and the slow value func-
tion construction N times. This means our method scales well with
respect to both C and N. On the other hand, a brute force search
requires

(C
N
)

number of the expensive value function construction.

As an iterative process, our formulation lacks any optimality guar-
antee. A smaller set of clips could achieve better performance, or
the selection process could potentially fail completely when a task
requires long elaborate sequences of motion clips. The influence-
based scoring metrics implicitly assumes a static current policy,
even though the optimal policy could be substantially different af-
ter an addition. Nevertheless, our evaluations show a remarkable
convergence to the global optimum after just a few iterations.

Alternatively, we can start with all candidate clips included, then
iteratively remove the least scoring clips. We can set for a clip C,

VC−(s) =

{
R(s,aC−)+αV (f (s,aC−)), if Π(s) contains C
V (s), otherwise

(14)

for the optimal action aC− not containing C. However, this method
is less viable because it requires a huge initial value function with
all the clips. Also the selection process needs much more iterations
because typically a fraction of candidate clips performs almost as
well as the entire set.

4.3 Applications

The motion clip selection extends beyond single controller cases.
It is possible to formulate similar selection methods for a group of
controllers to improve collective performance.

Controllers with Separable Parameters. For some tasks, the
task parameters θT contain separable parameters θ s

T. Treuille et
al. [2007] shows that partial policies Πi using specific settings of
θ s

T can be separately constructed and then combined to form the full
policy that covers the entire parameter space. The separated partial
policies are much easier to construct, so we can build higher dimen-
sional controllers using the partial policies as building blocks.

We are interested in the motion selection process that benefits the
full policy Π. Since the reward functions are identical in every Πi,
the scores MΠi are directly comparable. Also we maintain the iden-
tical set of clips in all Πi through the selection process. Therefore
we can define the aggregate scoring metric to be the sum of the
scores of individual partial policies.

Magg(C) = ∑
Πi

MΠi(C) = ∑
Πi

∑
s

I(s) ·∆V Πi
C (s) (15)

Transitions for Switching Controllers. Switching is also pos-
sible between any controllers with different set of clips, because
the optimal action depends only on the next controller’s reward and
value functions (see Equation (4)) and the motion model admits
valid transition between any clips [Treuille et al. 2007]. This means
we can add new controllers to the framework with no modification
to existing controllers. A rich library of modular behaviors can be
built by simply adding independently created controllers.

However, switching between controllers does not always produce
visually natural transitions. For example, a walking controller and
a running controller with no clips for speed adjustments would pro-
duce abrupt unnatural speed changes while switching. The compact
controllers with small specialized sets of clips from the selection
process only exacerbate the issue.

T

T'

S

(a)

S1

S2 T2

T

T1'

'

(b)

S1

S2
T

T'

S3

(c)

Figure 2: Transition controllers. (a) A transition controller T ′
mediates switching from S to T by finding better paths that lead
to T . (b) Specialized transition controllers can be built for each
switching scenario. (c) A single transition controller can be opti-
mized for multiple transition scenarios simultaneously.

We can apply the clip selection process to find natural transitional
clips for switching. In order to keep the existing source and tar-
get controllers unmodified, we introduce a transitional controller
that incorporates the newly selected clips into the switching pro-
cess, as described in Figure 2(a). When switching from the source
controller S to the target controller T , the transitional controller T ′

provides an alternate transition route using the transitional clips not
included in T . We construct T ′ with the reward function of T , so
the alternate route is an optimal path for the target task. Also by
fixing the value function of T during construction of T ′ the policy
T can remain unmodified.

We define the scoring metric to measure the benefit of a given clip
to the entire switching process using the transitional controller.

Mtran(C) = ∑
s∈DS

IS(s) · (V T ′
C+(s)−V T

C−(s)) (16)

for the source controller’s state distribution DS, the source con-
troller’s influence IS , the predicted value V T ′

C+ of the transition con-
troller, and the value function V T

C− = V T of the target controller.

A transition controller is built for each controller pair, therefore can
be highly specialized and modular (See Figure 2(b)). Alternatively,
the selection metric can consider clips that benefits all switching
transitions by summing every transition’s score (See Figure 2(c)).
This can further reduce the overall number of clips at the cost of
specialization of each transitional controller.

The automation of transitional controller synthesis enables a de-
signer to concentrate on crafting novel individual controllers with-
out concerns for connections with existing controllers.

5 Basis Refinement

A controller’s ability to make optimal decisions relies directly on
the correctness of the value functions, which are in turn approx-
imated by a set of basis functions. Therefore the basis functions
must have enough representational power to approximate the value
functions especially for complex tasks that have complicated value
functions. Each value function has a different set of basis func-
tions that can approximate it well. Naively using all possible basis
functions is clearly infeasible.

A common approach is to adapt a set of basis functions until they
provide enough representational power. Munos and Moore [2002]
identified and iteratively improved regions where basis functions
need more power. This refinement process effectively produced so-
lutions for high dimensional problems. In this section we present
the refinement process and how we incorporate it in our setup.

We need basis functions that allow high degree of localized modi-
fications for the refinement process. To that end, we employ piece-
wise constant basis functions Φ that are a collection of functions
φBi = 1s∈Bi for a boxed region l ≤ Bi < u for various l,u. The
supports Bi are mutually exclusive and exhaustive in the parameter
space. Each boxed region, or a cell, can be split to locally increase
the resolution of the piecewise constant basis functions and provide
additional representational power. Figure 6 shows a splitting exam-
ple. From now on, we simply denote φi = φBi .

The approximation by basis functions inevitably produces inaccu-
racies called the Bellman error,

e(s) = [R(s,Π(s))+αV (s′)]−V (s) (17)

which is the disagreement between the approximated value at the
current state and the one-step look ahead value. An important ob-
servation is that the Bellman error should be zero everywhere for
a correct value function (see Equation (6)). In fact, nonexistence
of the Bellman error is a sufficient condition for obtaining the op-
timal value function [Bellman 1957]. To identify the regions with
policy degradation due to Bellman error, Munos and Moore [2002]
introduce the concept of variance σ2,

σ
2(s) = α

2
σ

2(s′)+ e2(s) (18)

for s′ = f (s,Π(s)). In essence, the variance measures an aggregate
approximation error including the state’s own Bellman error as well
as the discounted approximation error propagated from the future
states. Since the errors lead the current state to suboptimal actions,
states with high variance are good candidates for the refinement ef-
fort. The influence is useful for measuring the scope that the state’s
error potentially propagates to. The combined scoring metric

M(φi) = ∑
s

φi(s)I(s)σ(s) (19)

therefore identifies the cells that cause large overall propagated er-
rors in the entire value function.

6 Results

We demonstrate the effectiveness of our methods creating compact
controllers on several locomotion tasks. We captured the motion
data by freely performing given locomotion tasks without specific
instructions other than to try various turns and speeds at will. The
motion data is captured at 120Hz using a Vicon system. Each clip
is about 70 to 120 frames long, and takes about 60KB of storage.

For motion selection experiments, we arbitrarily picked the set of
candidate clips using rough tags such as ’walk straight’, ’sharp
turn’, or ’ascend stairs’. We limited the size of the candidate set to
100 to make the comparison with human manual selection process
feasible in a reasonable amount of time. We note that the motion
selection scales well (linearly) with the number of clips, so we can
easily use our entire database of more than 3000 clips.

6.1 Motion Selection for Single Compact Controller

Parameterization by transformation provides variations to example
motions so we can create a walking controller with a single clip.
However, the resulting animation has lower quality due to large
amount of transformation. On the other hand, a walking controller
using 88 clips produced natural and responsive animation.

We used the motion selection process to find a set of only 5 clips
that produce visually indistinguishable animation with the 88-clip
controller. The value function was stored in less than 1KB.

6.2 Motion Selection for Separable Controllers

We applied the motion selection on a stairs navigation controller.
We captured the motion data for this example on multiple set of
stairs with varying heights. The motion capture subject freely
walked around for some time. Parameterization by transformation
enables navigation on stairs with different tread heights and widths.

The task parameters are defined as θT = (θc,θd ,ds,ws,hs) where
θc is the orientation of the character, θd is the desired direction
of movement, ds is the distance from the next tread, ws is the
width of a tread, and hs is the relative height of the next tread
(Figure 3). Notice that θd , ws and hs are separable parame-
ters. The clip transformation has three parameters θP = (τ,µ,h)
where τ ∈ (−0.2π,0.2π) is the amount of directional change and
µ ∈ (0.8,1.2) is the ratio of adjusted step length with respect to
original motion clip. The step height adjustment h is determined by
the next step location. The reward function is defined as,

R = Ψ−ωd |ρ−θd |−ωF F (20)

where Ψ is the naturalness of the transition, θd is the desired di-
rection, ρ is the actual movement direction, F is the foot collision
penalty, and ωd and ωF are weighting coefficients.

ws
ds

θc

θd

-700

-600

-500

-400

-300

-200

-100

 2 4 6 8 10 12 14
P

er
fo

rm
an

ce

Number of Clips

R4

M4

R12

M12

Motion Selection
Global Optimum

Figure 3: Left: Stairs Task Parameters. Right: Performance im-
provement by motion selection.

We applied the motion selection algorithm on the 8 partial con-
trollers with separable parameter θd spanning [−π,π), with ws and
hs fixed. The performance improvement after each iteration is plot-
ted in Figure 3. The improvement occurs early in the first few iter-
ations of motion selection and quickly approaches the global opti-
mum performance produced with all 100 candidate clips. We set D
for the performance measure to be the entire state space.

For comparison, we asked an animation researcher to select a set of
clips from the candidates. In Figure 3, M4 and M12 represent the
best performance achieved by the researcher in 30 minutes using 4
clips and 12 clips respectively. We also ran a naive random search
over combinations of clips for the same amount of time with the se-
lection method. R4 and R12 represent the best performance found
by random trials using 4 clips and 12 clips respectively.

The result shows our selection method outperforms both human and
random selection by producing a better controller with only 4 mo-
tions than the manual controller with three times as many motion
clips (R12). Random selection with limited time significantly un-
derperforms both methods. We believe the manual motion selection
on separable controllers is difficult because one needs to consider
possible benefits to every partial controller simultaneously.

We believe our method outperforms the manual selection because
the manual process involves inspecting an overwhelming number
of possible parametric transitions between clips. In addition, it is
difficult for humans to predict the overall contribution of a clip from
isolated inspections. Due to these difficulties, the users tend to lean
towards simply picking natural transitions in a few isolated cases.

6.3 Motion Selection for Transition Controllers

We applied our motion selection to generate transition controllers
between controllers that walk forward, walk backwards, jog and
jump over ditches. Each controller is generated through the motion
selection algorithm. The walking and running controllers have the
reward function

R = Ψ−ωd |ρ−θd |−ωτ |τ− τd |−ωv|v− vd | (21)

where τ , τd are actual and desired torso orientations, v, vd are ac-
tual and desired movement speed, and ωτ , ωv are coefficients. The
jumping-over-ditch controller uses the reward function

R = Ψ−ωd |ρ−θd |−ωJJ (22)

for the desired direction θd fixed perpendicular to the ditch and the
successful jump reward J. The jumping controller initially contains
four jumping clips only, so the transitional controllers are crucial.

We construct transitional controllers for all possible 12 pairs of
controllers. We used D to be the entire state space except for the
jumping controller where D is restricted to before the ditch. Fig-
ures 4(a)-(d) show their performance improvements relative to the

 0

 1

5 10 15

R
el

at
iv

e
Im

p
ro

v
em

en
t

(c)

BJ
RJ
FJ

5 10 15
(d)

JB
RB
FB

 0

 1

 (a)

JR
BR
FR

 (b)

JF
BF
RF

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10
(e)

Our Algorithm
Manual Selection
Global Optimum

Number of Additional Motions

Figure 4: (a)-(d) Performance improvements for each pair of con-
trollers, relative to the global optimum. Walking forward, walking
backwards, jogging, and jumping-over-ditches controllers are ab-
breviated to F, B, R, and J, respectively. (e) Comparison with man-
ual selection on the BJ transition controller.

global optimum that uses all the given candidate motions. In gen-
eral, our algorithm converges to the global optimum very quickly.
Figure 4(e) shows the performance improvement for walking back-
wards to jumping controller transitions with our algorithm, com-
pared with the manually selected clips by a motion expert who
spent approximately 8 hours to beat our method. Our method sig-
nificantly outperforms the manual selection: with only 2 clips, it
performs better than the best 11 manually picked clips.

6.4 Basis Refinement

We applied the basis refinement method to create a controller that
can navigate through a checkerboard with varying tile sizes. The
goal is to follow the desired direction, stepping only on the white
tiles. The task parameters are defined as θT = (θc,θd , ls, px, pz)
for the orientation of the character θc, the desired direction θd , the
length of the square ls, and the relative position of the character to
the checkerboard (px, pz). Here θd and ls are separable parameters.
We use the same clip transformation as the stairs controllers, with
the step height change h fixed at 0. The reward function is defined

R = Ψ−ωd |ρ−θd |−ωT T (23)

with the black tile step penalty T and coefficients ωd , ωT .

ls

θc
θd

px

pz

-1200

-1100

-1000

-900

-800

-700

-600

0 0.2M 0.4M 0.6M 0.8M 1M

P
e
rf

o
rm

a
n
c
e

Number of Basis Functions

Basis Refinement

Uniform Bases

Figure 5: Left: Checkerboard task Parameters. Right: Perfor-
mance improvement by basis refinement.

Figure 5 shows the performance of our iterative basis refinement
compared to the one using uniform piecewise constant basis func-
tions. Refined bases clearly produce better policy than uniform
bases: the performance with one million uniform bases is equiv-
alent to the one with our 0.13 million refined bases. Figure 6 shows
the successive refinement results.

Our octree keeps the parent, children and its value in each cell. The
revolving door example used up to 1 million cells, or 6MB.

(a) (b) (c) (d)

Figure 6: Basis refinement iterations. The axes represent the
orientation θd and the relative position px, pz of the character. (a)
Before refinement. (b) Iteration 1. (c) Iteration 2. (d) Iteration 6.

6.5 Combination

The motion selection and the basis refinement methods can be
combined to create a highly complex controller that can navigate
through a set of revolving doors spinning at constant velocity. The
task parameters θT = (θr,dr,θc, tr,wr,sd ,nd) include the direction
θr and the distance dr from the door , the relative character ori-
entation θc, the timing tr, the width wr and the speed sd of the
door, and the number of doors nd . Here wr,sd ,nd are separable,
but θr,dr,θc, tr form a single high dimensional control problem.
We use the same clip transformation as the checkerboard controller.
The reward function is defined as

R = Ψ+ωd |ρ−θd |+ωCC (24)

where C(s,a) is the collision penalty for any body part against doors
or walls, and ωd , ωC are coefficients.

θc

θr dr

tr

wr

(a)

-20

-15

-10

0 1M 2M 3M 4M
Number of Basis Functions

Refinement
Uniform

-20

-15

-10

 0 100 200 300

P
er

fo
rm

an
ce

Computation Time (Min)

Refinement
Uniform

(b)

Figure 7: (a) Revolving doors task parameters. (b) Performance
improvement comparison by basis refinement. Our method outper-
forms uniform basis functions with significantly fewer basis func-
tions and computation time. In both graphs, we used the 7 motion
clips that our motion selection method produced.

We started with a single-clip controller using coarse uniform piece-
wise constant bases, and applied basis refinement algorithm and
motion selection algorithm iteratively. We split 20% of the bases
at each refinement step. On an Intel Xeon 2.33GHz machine with
8GB RAM, creating a controller with seven clips from 63 candi-
dates took about 11 hours in our unoptimized C# implementation
in the release mode. Motion selection, basis refinement, and value
function construction took 79%, 8%, and 13% of the precomputa-
tion time, respectively.

Figure 7(b) compares the performance of our refined bases and one
of uniform piecewise constant bases given an identical set of mo-
tions. Refined bases require less storage and computation time to
achieve the same performance as that of the uniform piecewise con-
stant bases: the performance of 3.8M uniform bases is almost same
as the one of 0.4M refined bases, while the computation time of the
former takes about 15 times more than the latter does.

We expedited the computation by caching. Because the basis re-
finement keeps a huge portion of the bases from the last step, it can
reuse previously computed transitions and rewards. In Figure 7(b),

it takes about 70 minutes to compute a value function with a million
bases with eight refinement processes, while it takes about 50 min-
utes to compute a value function with 1.2 million uniform bases.
Considering that the former constructed nine value functions, it is a
significant increase in speed.

7 Conclusion and Future Work

This paper presents methods for constructing compact controllers
with significantly reduced data requirement and improved perfor-
mance. The motion selection algorithm can select a compact set
of clips that produces high performance controllers. Our method
consistently outperforms expert manual selections and approaches
a global optimum in just a few iterations. We extend the method
to automatically create high quality transition controllers. This en-
ables creating a rich library of behaviors with completely modular
controllers as building blocks. The basis refinement method selec-
tively enhances the power of the value function near critical de-
cision boundaries, while sparing resources in less critical regions.
The refinement can adapt very coarse initial basis functions to cre-
ate effective controllers for highly complex tasks. These methods
enable a five-dimensional (one discrete, four continuous) revolving
doors controller which would be infeasible with known alternatives.

Our selection and refinement methods apply naturally to our para-
metric motion model, but also to any motion representation where
a Markov decision process (MDP) can be defined. For example,
on the original motion graph, an MDP can be defined by states at
each branching point of the graph. The motion selection would be
choosing which edge to admit. Interpolated or parametrized mo-
tion graph structures are all similarly applicable. Application on
the modular dynamic step controllers [Muico et al. 2009] should
be an interesting step towards compactly representing a dynamic
human motion mechanism.

A major limitation of our motion selection is the lack of theoretical
guarantee of optimality. Each selection iteration greedily picks the
single best contributing clip, instead of considering collaborative
effect of several new clips. Thus it can fail to identify a long specific
sequence of clips typically required for more deliberate tasks. Still,
for locomotion tasks in our experiments we obtained a consistent
convergence to the global optimum.

Another limitation is that our selection process cannot synthesize
novel clips to use. Instead, the algorithm does its best with the
existing clips. If no improvement is possible with existing clips, the
user has to provide more relevant data. It will be very interesting to
start from only a description of the task and progressively build the
most effective motion repertoire.

The basis refinement depends on an octree-based representation
that requires exponential storage space. This is currently the fun-
damental limiting factor on the complexity of achievable tasks. A
storage-efficient spatial partitioning structure, such as linkless oc-
trees [Choi et al. 2009] can be beneficial in the near term. In the
long term, more effective methods to model high dimensional deci-
sion processes will enable more delicate and complex behaviors.

We believe our work enables interesting applications. Automatic
selection of clips and bases brings the entire process of controller
authoring closer to a level where novices can author complex real-
istic controllers. Simply by choosing a few task objectives, one can
generate a specialized compact task controller and transition con-
trollers to other existing task controllers. Our hope is that game
players and virtual world participants will be able to author not
just their appearance, but also their behaviors, and enable avatars
to learn new skills by extending the existing behaviors with new
controllers that can deal with new environments.

With the ability to create large interconnectable collection of con-
trollers, we can envision planning techniques with the controllers
as the building blocks. This higher-level meta-controller finds an
optimal sequence of controllers that achieves its high level objec-
tives. For example, when the character is thirsty, a standing up
controller, a door opening controller, a walking down the stairs
controller, and a drink from a water fountain controller can be se-
quentially activated. A meta-controller can potentially plan very
efficiently by delegating the responsibilities for motion quality and
local task achievement to specific task controllers. This should en-
able the character to navigate complex scenes that are even chang-
ing dynamically, with the same motion quality provided by the con-
trollers. The motion selection can be extended as a controller selec-
tion method, where we pick essential controllers for a meta-task.

Acknowledgments.

We thank Erik Anderson and Robert Forsberg for help with videos,
and the anonymous reviewers for their helpful comments. This
work was supported by the UW Animation Research Labs, NSF
grant HCC-0811902, Intel, Samsung, and Microsoft Research.

A Controller Performance Prediction

This section shows how (12) is related to actual performance
changes in (9). Assume the new clip changes the policy only at
a single state s, and the effects of cyclic transitions can be ignored.
Note the influence can be rewritten as,

I(s) = 1+ ∑
k=1

α
k
∣∣∣Bk

D(s)
∣∣∣ (25)

where Bk
D(s) is the intersection of D and the set of states that tran-

sition to s in k steps. The overall propagated performance change
qC(s) by the new clip C on the state s is,

qC(s) = ∆VC(s)+ ∑
s′∈B(s)

αqC(s′) (26)

= ∆VC(s)+ ∑
k=1

 ∑
s′∈Bk

D(s)

α
k
∆VC(s)

 (27)

= ∆VC(s) · (1+ ∑
k=1

α
k
∣∣∣Bk

D(s)
∣∣∣) (28)

= ∆VC(s) · I(s) (29)

Now the overall performance change can be approximated by sum-
ming individual performance changes at every state,

∆Q(Π)≈∑
s

qC(s) = ∑
s

∆VC(s) · I(s) , M(C). (30)

References
BEAUDOIN, P., VAN DE PANNE, M., AND POULIN, P. 2007. Auto-

matic construction of compact motion graphs. Tech. Rep. 1296,
Universite de Montreal, May. DIRO.

BEAUDOIN, P., VAN DE PANNE, M., POULIN, P., AND COROS,
S. 2008. Motion-motif graphs. In Symposium on Computer
Animation 2008, ACM.

BELLMAN, R. E. 1957. Dynamic Programming. Princeton Uni-
versity Press.

CHOI, M. G., JU, E., CHANG, J., KIM, Y. J., AND LEE, J. 2009.
Linkless octree using multi-level perfect hashing. Pacific Graph-
ics 2009.

COOPER, S., HERTZMANN, A., AND POPOVIĆ, Z. 2007. Active
learning for real-time motion controllers. ACM Transactions on
Graphics 26, 3 (July), 5.

IKEMOTO, L., ARIKAN, O., AND FORSYTH, D. 2005. Learn-
ing to move autonomously in a hostile environment. Tech. Rep.
UCB/CSD-5-1395, University of California at Berkeley, June.

KELLER, P. W., MANNOR, S., AND PRECUP, D. 2006. Automatic
basis function construction for approximate dynamic program-
ming and reinforcement learning. In ICML ’06: Proceedings of
the 23rd international conference on Machine learning, ACM,
New York, NY, USA, 449–456.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and
parameterization of motions in large data sets. ACM Transac-
tions on Graphics 23, 3.

LAGOUDAKIS, M. G., AND PARR, R. 2003. Least-squares policy
iteration. Journal of Machine Learning Research 4, 1107–1149.

LAMOURET, A., AND VAN DE PANNE, M. 1996. Motion syn-
thesis by example. In In EGCAS 96: Seventh International
Workshop on Computer Animation and Simulation, Eurograph-
ics, 199–212.

LAU, M., AND KUFFNER, J. J. 2006. Precomputed search trees:
Planning for interactive goal-driven animation. In Proceedings of
the 2006 ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation, 299–308.

LEE, J., AND LEE, K. H. 2004. Precomputing avatar behav-
ior from human motion data. In Proceedings of the 2004 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
ACM Press, 79–87.

LIU, K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics 24, 3, 1071–1081.

LO, W.-Y., AND ZWICKER, M. 2008. Real-time planning for
parameterized human motion. In 2008 ACM SIGGRAPH / Eu-
rographics Symposium on Computer Animation, 29–38.

MAHADEVAN, S., AND MAGGIONI, M. 2006. Proto-value func-
tions: A laplacian framework for learning representation and
control in markov decision processes. Tech. Rep. TR-2006-36,
University of Massachusetts, Department of Computer Science.

MCCANN, J., AND POLLARD, N. 2007. Responsive characters
from motion fragments. ACM Transactions on Graphics 26, 3
(July), 6.

MOORE, A. 1991. Variable resolution dynamic programming: Ef-
ficiently learning action maps in multivariate real-valued state-
spaces. In Machine Learning: Proceedings of the Eighth Inter-
national Conference, L. Birnbaum and G. Collins, Eds.

MUICO, U., LEE, Y., POPOVIĆ, J., AND POPOVIĆ, Z. 2009.
Contact-aware nonlinear control of dynamic characters. ACM
Transactions on Graphics 28, 3.

MUNOS, R., AND MOORE, A. 2002. Variable resolution dis-
cretization in optimal control. Machine Learning 49, 2-3, 291–
323.

REITSMA, P., AND POLLARD, N. 2007. Evaluating motion graphs
for character animation. ACM Transactions on Graphics 26, 4
(Oct.), 18.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-optimal
character animation with continuous control. ACM Transactions
on Graphics 26, 3 (July), 7.

ZHAO, L., NORMOYLE, A., KHANNA, S., AND SAFONOVA, A.
2009. Automatic construction of a minimum size motion graph.
In Proceedings of the 2006 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation.

