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(a) Input image pairs (b) Cosaliency (c) Processed Cosaliency (d) Collection-aware crops

An overview of our algorithm and its results for two pairs of images. From left to right: Standard thumbnails for
the input image pair, our calculated model for image cosaliency, its processed version and our automatically
generated collection-aware crops. Note that small image features like the position of the woman’s arm or the
angle of the bird’s head are nearly impossible to see using standard thumbnails alone.

ABSTRACT

Image triage is a common task in digital photography. Deter-
mining which photos are worth processing for sharing with
friends and family and which should be deleted to make room
for new ones can be a challenge, especially on a device with a
small screen like a mobile phone or camera. In this work we
explore the importance of local structure changes–e.g. hu-
man pose, appearance changes, object orientation, etc.–to the
photographic triage task. We perform a user study in which
subjects are asked to mark regions of image pairs most use-
ful in making triage decisions. From this data, we train a
model for image saliency in the context of other images that
we call cosaliency. This allows us to create collection-aware
crops that can augment the information provided by existing
thumbnailing techniques for the image triage task.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Algorithms, Experimentation, Human Fac-
tors

Keywords: Cosaliency, automated thumbnailing, saliency,
collection-aware cropping.

INTRODUCTION
Designing user interaction for small or mobile displays is an
ongoing challenge in the human computer interaction com-
munity. One task for which this problem is particularly acute
is the comparison of high resolution image data, a very com-
mon task in digital photography [21][10]. During a day of
shooting a photographer is often forced to perform photo-
graphic triage: Which photos should be saved and processed
for sharing with friends and family? Which photos should be
deleted to make room for new ones? Do I need to take an-
other shot? In the field, the only feedback a photographer has
to help answer these questions is the small LCD panel on the
back of his or her camera or other mobile device. Though this
offers a vast improvement in usability over the days of film
photography, it is still difficult to effectively convey the high
resolution image data on the low resolution display. This
problem is doubly true when comparing multiple images si-
multaneously.

We informally discussed this idea with a variety of amateur
photographers and asked them what kinds of factors they
consider important to image triage. Common responses fo-
cused on either low-level image quality concerns such as
image noise, focus, motion blur, exposure or abstract high-
level issues such as artistic composition composition. How-
ever, many mid-level concerns such as human pose, facial
expression, object orientation, parallax occlusions and dis-
occlusions, and appearance changes were also raised. We
broadly categorize these issues as local structure.



For many of these concerns, there exist simple ways to effec-
tively visualize and compare these features across images.
For example, the image histograms provided by many cam-
eras allow one to quickly determine which photograph is bet-
ter exposed. Composition is also easily evaluated by sim-
ply viewing the standard thumbnails (scaled down versions)
for each image. Even noise and blur can usually be seen by
zooming in to full resolution at an arbitrary image location.
Change in local structure, however, can be difficult to com-
pare because it is not always obvious from a thumbnail where
to zoom in.

In this paper, we develop a model of how local structure is
interpreted in the image triage task. Specifically, we evaluate
its importance when examining a pair of similar images, such
as those captured within the same burst of shots. We focus
on image pairs because small differences in their local struc-
ture are particularly difficult to see using standard thumb-
nails. We propose a learned model for calculating the im-
portance, or saliency, of image pixels in the context of other
images. We call this feature cosaliency.

Cosaliency is fundamentally distinct from traditional defini-
tions of image saliency because it is a property of an image
set rather than a single image. A salient object in a single im-
age may not be cosalient in an image set if it does not change
in an interesting way. Likewise, a cosalient object may not be
salient without the context of the second image. Accordingly,
naı̈ve approaches–such as simple pixel-level differences–will
not be a good approximation of cosaliency because not all lo-
cal structure changes or motion are equally salient for human
observers. For example, dynamic backgrounds and parallax
due to camera motion are generally non-salient when com-
pared to foreground objects, but would generate high pixel-
level differences. A proper cosaliency model could help to
visualize the most cosalient features that summarize the dif-
ferences across an image set. A pair of summarizing thumb-
nails, for example, could greatly simplify the image triage
task.

RELATED WORK
Our work is closely related to three areas of computer graph-
ics and vision: image summarization, retargeting, visual
saliency, and change detection.

Image summarization is the process of creating a summary
representation for image data that is smaller than the origi-
nal, yet still contains all the meaningful image content. Im-
age epitomes [8] are summaries in the sense that they con-
tain enough data to reconstruct their original images, but look
very little like their input. Bidirectional similarity [19], how-
ever, treats summarization as an optimization problem that
constrains the summary to appear similar to the input im-
age. These methods try to summarize the salient content in a
single image, whereas in this work we try to summarize the
cosalient content in an image set.

Retargeting is a similar process of adapting a large image
for display on a device with a different screen size and as-
pect ratio. In 2003, Suh et al. [22] demonstrated that simple
cropping could make browsing image collections easier by
displaying smaller portions of images that focused on impor-

tant image content like faces. In their 2005 work, Liu et al.
[11] propose a more complicated retargeting method that per-
forms a non-linear warp emphasizing interesting image fea-
tures. No current retargeting methods consider the context of
other images in the same collection, however.

Implicit in each of these summarization and retargeting tech-
niques is the assertion that certain parts of images are more
important, or salient, than others in the eyes of human view-
ers. The computer vision community has long studied mech-
anisms for automatically detecting these salient regions. Faces,
for example, are well known as high-level salient image fea-
tures and can be detected with high accuracy using modern
algorithms [23], [4]. Studies have also shown that the hu-
man visual system is sensitive to low-level image features
[7], [15]. In 2009, Judd et al. [9] performed a comprehensive
user study which showed a linear combination of both high
and low-level image features can yield better saliency maps
than those based on low-level features alone.

Most research in image saliency, however, only considers a
single image at time and therefore may be less useful for
image comparison tasks. A more related field may be that
of automated surveillance and video analysis. Boiman and
Irani’s irregularity detection technique [3] tries to reconstruct
a query image or video using patches from a database of “fa-
miliar” content. Any regions that cannot be reconstructed are
marked as suspicious. Change detection algorithms [20] [17]
instead learn statistical properties for regions of an image and
then compute the probability of each pixel in the new im-
age being an outlier in the learned model. Motion detection
techniques [6] [25] can accurately detect objects in motion,
but are restricted to operating only on continuous video se-
quences. Both algorithms operate on sets of aligned images,
which are difficult to acquire using a hand-held camera–
dynamic scenes and substantial parallax often foil alignment
algorithms. Perceptual studies have shown that motion is a
strong cue for attention [16]. These studies are relevant to the
human visual system or a continuous video sequence input,
but not necessarily for image burst input. Moreover, loca-
tions that are likely to draw human short-term attention are
not necessarily going to be useful for image triage.

Our approach combines multiple features using a machine
learning framework. The research in the areas described
above provides a wealth of image and image set features that
we can leverage to improve the quality of our learned cos-
aliency model.

OVERVIEW
This paper is primarily an exploration of the notion that im-
age saliency changes as a function of context. Accordingly,
we motivate and validate our approach using studies of hu-
man observers considering the image triage task. In our first
experiment (“Detecting Changes”), we ask users to identify
the regions in the images with the most salient differences.
We then use this data to learn a model for computing the
cosaliency of one image in the context of another (“Learn-
ing What Matters”). Finally, we perform a validation study
(“Collection-Aware Cropping”) that weighs the utility of de-
tail crops generated with cosaliency against the utility of sin-
gle image derived crops for the image triage task.



DETECTING CHANGES
Before we can create a model for saliency in the context of
other images, we must first verify that saliency does indeed
change with context. To answer this question, we perform
a short user study in which we ask users to manually gener-
ate crops that highlight the most salient differences between
pairs of similar photographs. In this section, we explain the
details of this study and discuss some of the results.

Methodology
In this study, we ask participants to create pairs of crops that,
when used in conjunction with standard thumbnails, would
be most useful in image triage. After a brief explanation of
the image triage task, subjects view pairs of similar images at
a medium resolution (fit within a 400x400 pixel box). They
then select the best crop windows from the image pair using a
provided web tool (Figure 1). Users may mark any number of
regions for an image pair, but are restricted to marking square
regions that map to 100x100 detail crops for simplicity–all
crops discussed in the remainder of this paper are 100x100
pixels unless otherwise noted. Each user marks a total of
35 image pairs. We collected these photographs from vari-
ous personal photo collections. Although leveraging online
photo repositories could have provided more data points, our
focus is on images that have not yet been triaged. This set
is better represented by these personal collections. We ran-
domize the presentation order of the image pairs to counter-
balance any learning or fatigue effects. Additionally, the web
tool is designed such that “lazy” participants do not strongly
influence our results–it is easier to add zero crop windows
than it is to add many bad ones. We employed Amazon’s Me-
chanical Turk matchmaking service [14] to recruit our study
subjects. Each user was only allowed to participate once and
was paid $0.50 for his or her efforts.

Figure 1: The web tool provided for simultaneously
cropping similar images. Users were allowed to mark
as many regions as they liked for any particular pair of
images before moving on.

Results
In total, 59 users generated 4,396 sets of crops across all im-
age pairs. Due to the sheer quantity involved, we aggregate
the crop windows selected by subjects as user-generated cos-
aliency maps. We are interested in how important each pixel
is in the image triage task. As a proxy for this importance,
we examine how often any particular pixel is included in a
crop marked by a user. If we perform a count of occurrences
in crops, we can generate a cosaliency map, but it makes no

distinction about which pixels are important within a user’s
selected window. In their single image saliency work, Judd
et al. [9] found users put more importance on the centers of
images. In addition, we observed that many subjects would
add margins around objects when marking them for crops.
Accordingly, we should weight included pixels by their nor-
malized positions within each crop window to generate the
more continuous cosaliency map shown in Figure 2(b). The
user-generated cosaliency for a pixel (x, y) is defined as

cosaliency(x, y) =
∑
i

w2
i fi(x, y)

where wi is the width of the ith crop window selected by
a user and fi is a 2D Gaussian weighting function cen-
tered within the ith crop window with standard deviation
σ = wi/3. The factor of 3 is added to ensure the Gaussian
falls off nicely within the crop window’s boundaries. The re-
sulting cosaliency maps tend to place high weight on moving
humans and areas with large changes in image content.

At first glance, it may appear that users are simply selecting
the subjects of each scene. Closer inspection, however, re-
veals that only subjects with significant changes in pose are
given high weight. For example, consider the line of children
shown in Figure 2(a). The cosaliency map generated by our
user study puts much higher weight on the girl in blue over
her counterpart in pink. Though both seem equally salient in
the context of a single image, the girl in pink becomes much
less interesting when comparing the two images. As Figure
3(a) shows, the pink girl’s facial expression and pose change
negligibly across the image pair, and thus are less relevant to
the image triage task. These user-generated maps fit well our
idea of cosaliency and can be used as a training goal maps
for machine learning. For the remainder of the paper, we
will use the term goal map to refer to these user-generated
cosaliency maps.

LEARNING WHAT MATTERS
Our goal in this section to construct a function that behaves
similarly to the goal maps produced above but can be com-
puted automatically using only features of the images them-
selves. We choose to model the underlying cosaliency rather
than the cropping function because it enables other applica-
tions such as retargeting and image abstraction. We learn
how to compute the cosaliency function using a machine
learning approach inspired by that of Judd et al. [9]: Each
user-generated goal map is treated as a binary classifier on
saliency for pixels in the image pairs. A pixel is classified
as salient if it is in the top 30% of the goal map’s histogram.
These classifications act as training examples to a linear sup-
port vector machine [5] along with a number of calculated
image features. The result is a set of linear combination
weights for the image features that together form a good ap-
proximation of the goal map.

Over the course of this work, we experimented with many
different kinds of image features. We were particularly in-
terested in features computed from multiple input images, as
these inherently include some notion of context. Figure 4
shows a selection of the features we tried (not all were use-
ful). A description of how each is calculated follows.



(a) Input image pair

(b) User-generated cosaliency (Goal map)

(c) Our computed cosaliency

(d) Single image saliency [9]

Figure 2: An input image pair and cosaliency maps.
2(b) weights each pixel by its position within the user-
generated crop windows. 2(c) shows the result of our
learned cosaliency model. Each cosaliency map is
also overlaid on an input image to show correspon-
dence between cosalient regions and image content.
The brighter a region is shown, the more cosalient its
content. The cosaliency maps for only the left image in
the pair are shown here. The right image’s cosaliency
map is very similar.

Single Image Features

• Gaussian Prior (Fig. 4(a)) – A simple Gaussian fit to fall
off nicely from the middle of the image.

• Contrast (Fig. 4(b)) – The gradient magnitude of a grayscale
version of the image.

• Faces (Fig. 4(d)) – Face detection algorithms such as [23]
and [4] mark rectangular regions of images that appear to
contain faces. We create a map from this by filling this
regions with Gaussians.

• Oliva Saliency (Fig. 4(e)) – The single image saliency al-
gorithm of Oliva et al. [15].

• Judd Saliency (Fig. 4(c)) – The single image saliency al-
gorithm of Judd et al. [9]. Judd saliency is a composition
of many other single image saliency metrics, and thus gen-
erally replaces their roles in our learning framework.

(a) A static subject and its cosaliency

(b) A dynamic subject and its cosaliency

Figure 3: Corresponding crops and their user-
generated cosaliencies from the image pair showing
the line up of children seen in Figure 2(a). Note that
the first girl’s facial expression changes very little be-
tween the two images and has low cosaliency. The
second girl’s pose changes dramatically and is strongly
cosalient.

Multi-Image Features

• Flow Divergence (Fig. 4(f)) – The absolute value of the di-
vergence of an optical flow field. Optical flow algorithms,
such as [2], try to compute a dense vector flow field that
describes the motion of every pixel in an image with re-
spect to another image in a time series. Discontinuities in
the flow field can indicate interesting changes. We find dis-
continuities by computing the divergence of the flow field.

• Nearest Neighbor Error (Fig. 4(g), 4(h)) – The total error
between an image patch in the source image and its closest
matching neighbor in the target image, as calculated by [1].
If the target image does not contain the same object or if
that object has changed appearance significantly, the patch
error will be high. This can be run at multiple scales to find
changes ranging from local to global.

• Nearest Neighbor Incoherence (Fig. 4(i), 4(j)) – The gradi-
ent magnitude of the nearest neighbor offset field as calcu-
lated by [1]. Generally, similar images will have large co-
herent regions in their nearest neighbor offset fields where
the images match. Portions of the image that contain inter-
esting differences tend to have incoherent flow fields. This
can also be computed at multiple scales.

The best features turned out to be multiplicative combina-
tions of single image features and image set features (Figures
4(l) to 4(n)), essentially image changes weighted according
to single image saliency. The product of nearest neighbor
patch error, gradient magnitude of nearest neighbor offsets,
and Judd saliency works particularly well for images with
moving animals or people. This feature is computed at many
scales to capture changes of all sizes. The model learned
from the entire image set is shown in Table 1. Figure 5 shows
a selection of goal maps and their corresponding calculated
cosaliency maps.



(a) Gaussian Prior (b) Contrast (c) Judd Saliency [9] (d) Faces (e) Oliva Saliency [15]

(f) Flow Divergence (g) Fine NN Error (h) Coarse NN Error (i) Fine NN Incoherence (j) Coarse NN Incoherence

(k) Input image pair (l) =(h)×(c) (m) =(l)×(j) (n) =(m)×(m’)

Figure 4: An image pair and its calculated image features. The first row 4(a) - 4(c) shows features calculated using a
single image as input. The second row 4(f) - 4(j) shows features calculated on both images together. The features shown
in the third row are multiplicative products of the other features. Judd weighted error 4(l)is the product of NN error 4(h)
and Judd saliency 4(c). Multiplying in the incoherence feature 4(j) yields 4(m). Features computed on multiple images are
often asymmetric, where one image acts as a source and the other as a target. Accordingly, each of the above features
has a corresponding feature with the roles of the images reversed. 4(n) is the product of 4(m) with its corresponding
feature (after translational alignment).

Weight Feature
0.049 Faces
0.112 Flow Divergence
0.108 NN Error × NN Incoherence × Judd Saliency

-0.108 Same feature at coarser 2−1 scale
0.529 Same feature at coarser 2−2 scale

-0.293 Same feature at coarser 2−3 scale
1.040 Same feature at coarser 2−4 scale

Table 1: A learned model for cosaliency. All features
are normalized to have mean µ = 0 and standard
deviation σ = 1 to give the weights a common scale.
Negative weights appear because linear SVM has no
non-negativitity constraints.

COLLECTION-AWARE CROPPING
Now that we have the ability to generate cosaliency maps,
we validate that cosaliency offers an improvement over ex-
isting saliency algorithms for use in the image triage task.
In this section we discuss how to generate collection-aware
crops given a cosaliency map and then evaluate their per-
ceived utility for image triage against existing thumbnailing
techniques.

Generating Crops
Good crops are generated from any saliency map using a sim-
ple two step procedure. First, we generate a binary thresh-
olded version of the saliency map. Binary saliency maps

are preferred for cropping because continuous saliency maps
have a tendency to contain small “hot spots” that can bias
crops towards small image features. After applying a sim-
ple percentile threshhold, we perform morphological closure
and opening operations to eliminate holes in connected re-
gions and small disconnected segments. Given a clean binary
saliency map, we find optimal crop windows by looking for
its scale space extrema. Scale space extrema have previously
been used by Lowe to detect scales for SIFT feature points
[13]. We use the (x, y, scale) position of the extremum with
the greatest magnitude to determine the contents of the crop.
Figure 6 illustrates the stages of this process.

One point that merits discussion is that both images in a
pair may have different cosaliency maps, depending on the
scene and amount of subject movement. Accordingly, both
will have different positions for their scale space extrema. If
one simply generates crop windows for the images indepen-
dently, the result is often crop pairs that don’t correspond to
the same parts of the scene or are otherwise confusing for
users. We find a better approach is to locate the optimal crop
from just one of the images and then find its corresponding
region in the other image using a simple translational align-
ment of the image pair. We translate one image using the
mode offset of the nearest neighbor field [1]. This simple
method could be extended to account for also rotation and
scale differences, but translation alone was sufficient in all
our experiments.



Input image pair Goal map Cosaliency Judd saliency

Figure 5: Input images and saliency maps produced from user study data (goal map), the learned cosaliency model, and
Judd single image saliency. Note that the Judd Saliency maps often contain high levels of saliency outside the regions
marked by users as useful for image triage. The computed cosaliency maps tend to limit their influence to regions reported
to have high utility for the triage task.

Evaluation

In order to confirm the utility of our collection-aware crops,
we perform a validation study that compares our crops against
standard techniques.

Methodology In this study, we ask users to strictly rank
the utility of the different kinds of detail crops for the im-
age triage task. Each user views a pair of uniformly scaled
thumbnails along with four pairs of close up, detail crops.
These four pairs represent four different approaches for cre-
ating detail crops to be used in the triage task: cosaliency
based crops, single image saliency based crops, a crops con-
taining the center 30% of the image, and the most typical
crop produced by the previous user study. The intention is
that an end user would have sufficient screen space on a mo-
bile device to see four total images simultaneously, the two
regular thumbnails and a pair of detail insets. In order to
avoid biasing our results, we use 7-fold cross-validation to
generate our detail crops: Training data cannot be used to
evaluate our learning technique, so instead we train multiple
models using different portions of our dataset. In this study
we evaluate the effectiveness of each model on the portion of
the dataset that was not included during training. Table 1 pro-
vides the parameters of a model trained on the entire dataset,
not used in our validation study. The cross-validation results
provide evidence that this model should extrapolate well to
novel image pairs. Again, we randomize the presentation
order of image pairs and crop types to counterbalance any
learning or fatigue effects. This also prevents “lazy” partici-
pants from skewing our results. We also again employ Ama-
zon’s Mechanical Turk service to recruit participants. Each
subject participated only once, ranking a random set of 10
image pair crops and receiving $0.25 for his or her time.

Results In total we had 198 users participate in the study
for a total of 2094 individual rankings. Figure 7 shows the
study results aggregated across all images. On average, users
ranked the thumbnails generated using the goal map higher
than the other thumbnail types, as one would expect. We also
observed that users generally found cosaliency based crops
better than singe image saliency crops for identifying sig-
nificant image changes. Across all image pairs, 56.5% of
rankings held cosaliency higher than saliency–a statistically
significant result using a Wilcoxon signed-rank test with p-
value 2.1× 10−9.

The aggregate results only tell a small portion of the story,
however. Rankings between thumbnail types were not con-
sistent across all image pairs. For 29 of the 35 pairs, our
method provides crops that are as effective or better at depict-
ing changes than the other automated methods. Rankings for
13 of these show significant preference for cosaliency over
single image saliency (using a signed-rank test at 5% signifi-
cance). Rankings for the remaining 6 image pairs show a sig-
nificant preference for single image saliency, but can largely
be explained by differences in framing. Figure 8 shows re-
sults for a few different image pairs.

The framing issue that came up repeatedly during the valida-
tion study is the tendency for users to select a well framed
thumbnail that shows little change over a poorly framed
thumbnail that shows more drastic scene changes. In a more
realistic setting, the thumbnails that we generate would be
part of an interactive system to help users compare and navi-
gate images. Our technique would simply provide automated
suggestions for interesting regions to examine. Within the
context of such a system, perfect framing would be less crit-
ical because users could easily shift the regions of interest
produced by our algorithm to encompass the areas that mat-



(a) Input image pair

(b) Goal map (c) Our computed cosaliency

(d) Thresholded cosaliency (e) After morphological operations

(f) Resulting detail crops

Figure 6: The detail cropping process illustrated. The
white box in 6(e) represents the final crop window au-
tomatically selected from all possible scales and posi-
tions.

ter most to them. We could also add a post-processing step
that adjusts crop framing to be more aesthetically pleasing in
the manner of Liu et al. [12].

LIMITATIONS AND FUTURE WORK
Although we have shown that cosaliency outperforms saliency
for the triage task, there are still issues left to be addressed
by future works. Below are a few areas we believe could im-
prove upon this work and provide a better user experience for
photographers in the future.

First, this work is limited to the pair of images case in or-
der to make direct testing more feasible. Generally, similar
images in personal photo collections appear in groups of ar-
bitrary size, not just pairs. The triage task can still be per-
formed in a pairwise fashion, using pairwise elimination, but
a more complete algorithm would take all such similar im-
ages into consideration when determining cosaliency. This
case is particularly relevant when considering desktop photo
management applications where a user may deal with tens of
images simultaneously.

Figure 7: Aggregate rankings across all subjects and
image pairs.

Second, our image pairs were drawn from un-triaged photo
collections of vacations and family gatherings. Strictly speak-
ing, the model we present may not be appropriate for other
types of photography (sports, studio portraiture, etc.) The
learning framework, however, is applicable to general pho-
tography. In future work, the generality of the cosaliency
model could be extended by sampling from a larger, more
diverse dataset.

This work only measured the effectiveness of static detail
crops. One of the most powerful features of the LCD screen
on a mobile device is the ability to animate the information
it displays. It would be interesting to investigate the effect
of applying various animations when displaying cosalient re-
gions of similar images. Flipping back and forth between
images rapidly could take advantage of a user’s preatten-
tive visual system while allowing larger image regions to be
shown. An animated tour through cosalient regions of the
images may also help provide more context so users better
understand the quality of the image as a whole.

One final area we would like to see explored more is non-
photorealistic visualization of cosalient image features. Al-
though crops provide perfect representations of the data con-
tained within the images, applying other techniques such as
image abstraction [24] may prove more useful in the triage
task. One could also combine our approach with other tech-
niques for visualizing image quality such as the representa-
tive thumbnails work of Samadani et al. [18].

CONCLUSION
The primary contribution of this paper is recognizing the
need for collection-aware image analysis. Images are rarely
used in isolation, yet are still generally processed one at a
time. In this paper, we propose a new notion of context-
aware image saliency we call cosaliency. We also propose a
model for calculating cosaliency for novel image pairs and
show that users believe it outperforms single image saliency.
We hope that this work will be a first step in a direction that
will foster future research in collection-aware image summa-
rization.
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Figure 8: A selection of results for individual image pairs in our validation study. For the top two image pairs (11 and 34),
users rankings showed a significant preference for our cosaliency crops over single image saliency crops. The next two
groups (17 and 31) yielded no statistically significant preference for our cosaliency or single image saliency crops. User
rankings for the final image pair (23) above showed a significant preference for single image saliency crops. Although
the cosaliency crop has content that is closer to the goal crop, most users chose the saliency crop that has aesthetically
better framing.


