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Abstract. We present a novel single image deblurring method to esti-
mate spatially non-uniform blur that results from camera shake. We use
existing spatially invariant deconvolution methods in a local and robust
way to compute initial estimates of the latent image. The camera mo-
tion is represented as a Motion Density Function (MDF) which records
the fraction of time spent in each discretized portion of the space of all
possible camera poses. Spatially varying blur kernels are derived directly
from the MDF. We show that 6D camera motion is well approximated
by 3 degrees of motion (in-plane translation and rotation) and analyze
the scope of this approximation. We present results on both synthetic
and captured data. Our system out-performs current approaches which
make the assumption of spatially invariant blur.

1 Introduction

Image blur due to camera shake is a common problem in consumer-level pho-
tography. It arises when a long exposure is required and the camera is not held
still. As the camera moves, the image formation process integrates a stream of
photographs of the scene taken from slightly different viewpoints.

Removing blur due to camera shake is currently a very active area of re-
search. Given only a single photograph, this blur removal is known as blind
deconvolution, i.e., simultaneously recovering both the blur kernel and the de-
blurred, latent image. Commonly, it is assumed that the blur kernel is spatially
invariant, reducing the set of camera motions that may be modeled.

An open problem is to model more general camera motions, which are quite
common and can cause spatially varying blur. We focus on generalizing the cam-
era motion to include both 2D translation and in-plane rotation. Thus, starting
from a single image, we seek to recover the latent image, and the spatially varying
blur kernels that arise from this more general camera motion.

We develop a novel formulation of the camera shake deblurring problem by
generalizing spatially invariant (2D) kernels. Although a full model of motion
would require 6 degrees of freedom, we show that for typical scenarios, 6D general
motion can be reasonably approximated with a 3-dimensional motion (only in-
plane rotation and translation). The problem is still substantially more under-
constrained than the standard in-plane translation-only case.
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Rather than directly recovering the spatially varying blur kernels at each
image point, we observe that camera motion is a 1D curve through camera pose
space. We model the time spent in each pose over the exposure as a density
function in a higher dimensional camera motion space; we call this a Motion
Density Function (MDF). The MDF can be used to generate the kernel at any
location in the image without knowing the temporal ordering of the motion curve.
Our system takes as input (1) a blurred image, (2) its EXIF tags specifying sensor
resolution and approximate focal length, and (3) an estimate of the maximum
blur kernel size, and recovers both the latent image and the MDF using a non-
linear optimization scheme similar to a more traditional spatially invariant blind-
deconvolution method. Altogether, we demonstrate an automatic method for
single image deblurring under a range of spatially-varying, camera motion blurs.

The paper is organized as follows. In Section 2, we survey related work. In
Sections 3 and 4, we propose and analyze our optimization formulation and then
discuss our solution of this formulation in Section 5. In Section 6, we show the
results of our approach and finally conclude with a discussion of limitations and
future work in Section 7.

2 Related Work

Image deblurring has received a lot of attention in the computer vision commu-
nity. Deblurring is the combination of two tightly coupled sub-problems: PSF
estimation and non-blind image deconvolution. These problems have been ad-
dressed both independently and jointly [1]. Both are longstanding problems in
computer graphics, computer vision, and image processing.

Image blur arises from multiple causes. Image blur due to camera motion
has recently received increased attention, as it is a very common problem in
consumer-level photography. In most recent work, image blur is modeled as the
convolution of an unobserved latent image with a single, spatially invariant blur
kernel [1,2,3,4,5,6,7,8,9,10,11].

Software-based methods use image priors and kernel priors to constrain an
optimization for the blur kernel and the latent image [2,3,4,5,6,12,13,14].

Fergus et al. [4] recover a blur kernel by using a natural image prior on image
gradients in a variational Bayes framework. Shan et al. [2] incorporate spatial
parameters to enforce natural image statistics using a local ringing suppression
step. Jia et al. [13] use transparency maps to get cues for object motion to recover
blur kernels by performing blind-deconvolution on the alpha matte, with a prior
on the alpha-matte. Joshi et al. [14] predict a sharp image that is consistent
with an observed blurred image. They then solve for the 2D kernel that maps
the blurred image to the predicted image.

Levin et al. [15] give a nice overview of several of these existing deblurring
techniques. Common to all of them is that they assume spatial invariance for
the blur. Levin et al. show that spatial invariance is often violated, as it is only
valid in limited cases of camera motion. Their experiments show that in practice
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in-plane camera rotation (i.e., roll), which leads to spatially varying blur kernels,
is quite common.

There is relatively little work on handling spatially-varying blur. Tai et al. [16]
developed a hybrid camera which captured a high frame rate video and a blurred
image. Optical flow vectors from the video are used to guide the computation of
spatially-varying blur kernels which are in turn used for deblurring. This method
is limited by the requirement of a hybrid camera and faces problems in regions
where optical flow computation fails. Tai et al.[17] use a coded exposure to
produce a stroboscopic motion image and estimate motion homographies for the
discrete motion steps with some user interaction, which are then used for deblur-
ring. Their method requires close user interaction and relies on non-overlapping
texture information in the blurred regions. Dai et al. [18] propose a method to
estimate spatially varying blur kernels based on values of the alpha map. The
method relies strongly on the pre-computation of a good alpha matte and as-
sumes the scene to be a foreground object moving across a background. Shan et
al. [19] propose a technique to handle rotational motion blur. They require user
interaction for rotation cues and also rely on constraints from the alpha matte.

One approach to model the spatial variation of blur kernels is to run a blind
deconvolution method at each pixel. Joshi et al. [14] do this in a limited sense,
where they run their method for non-overlapping windows in an image and use
this to remove spatially varying defocus blur and chromatic aberration; however,
they do not address camera motion blur, nor do they try to recover a global
model of the blur. Levin et al. [12] take a similar approach for object motion
blur, where an image is segmented into several areas of different motion blur
and then each area is deblurred independently. Hirsch et al.[20] also propose
a multi-frame patch-based deblurring approach but do not impose any global
camera motion constraints on the spatially-varying blur.

Unfortunately, these approaches have several limitations. First, running blind
deconvolution for each pixel, window, or segment can be slow. Furthermore, it is
unclear how best to handle boundaries between areas with different blur kernels,
which can lead to artifacts. Second, deblurring techniques often use natural
image priors, which is inherently a global constraint, and may not apply to all
local areas in an image, thus leading to unreliable blur kernels and artifacts in
the deblurred result.

In comparison, we do not try to recover the spatially varying blur kernels
directly, but rather recover the camera motion (specifically the MDF) from which
the blur kernels can be derived. In a concurrent work, Whyte et al.[21] describe
a similar framework where they recover 3-dimensional rotational camera motion
(roll, pitch, and yaw) to explain the spatially-varying blur. In contrast, we recover
a different set of 3D camera motions (roll and x,y-translations). Our results show
that these two approaches are similar for sufficiently long focal lengths due to
the rotation-translation ambiguity in that focal length range. However at shorter
focal lengths, each system will result in different types of artifacts depending on
the errors in approximating the actual underlying camera motion. Thus, the two
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papers taken together form a nicely complementary set of results. We present a
more detailed analysis of this rotation-translation ambiguity in Section 4.

3 A Unified Camera Shake Blur Model

In this section, we develop a unified model relating the camera motion, the latent
image and the blurred image for a scene with constant depth.

3.1 Image Blur Model

Let l be the latent image of a constant depth scene and b be the recorded blurred
image. The blurred image can be written as a convolution of the latent image
with a kernel k and the addition of some noise n. The convolution model does
not account for variations in depth and view-dependent illumination changes
and we do not handle them here:

b = k ⊗ l + n, (1)

For simplicity, we assume Gaussian noise, n ∼ N (0, σ2).
This convolution model can also be written as a matrix-vector product:

B = KL+N, (2)

where L, B, and N denote the column-vector forms of l, b, and n respectively. K
is an image filtering matrix that applies the convolution – each row of K is the
blur kernel placed at each pixel location and unraveled into a row vector. For
this reason, we also refer to K as the blur matrix. With spatially invariant blur
each row has the same values that are just shifted in location. This matrix-vector
form becomes particularly useful for formulating spatially varying blur – as each
row contains a different blur kernel for each pixel [22], as we will discuss in the
next section.

3.2 Blur Matrix as Motion Response

We assume the camera initially lies at the world origin with its axes aligned
with the world axes. A camera motion is a sequence of camera poses where
each pose can be characterized by 6 parameters - 3 rotations and 3 translations.
Any camera motion can be represented as a 1D continuous path through this
6-dimensional space, which we call camera pose space. In a discretized version of
this space, the camera spends a fraction of the exposure time at each pose; we call
this proportion the density at that pose. Taken all together, these densities form
a Motion Density Function from which a blur kernel can be directly determined
for any point on the image. The MDF for all the camera poses forms a column
vector over the discrete positions in the camera pose space. We denote the MDF
by A where each element aj denotes the density at the camera pose j.
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The observed blurred image B is an integration over the images seen by
the camera over all the poses in its path. In the discrete motion space, B is
a summation over the images seen by the camera in all possible poses, each
weighted by the proportion of time spent by the camera in that pose, which in
our notation is the pose’s density. We write this mathematically as:

B =
∑
j

aj(KjL) +N, (3)

where Kj is a matrix that warps L, the latent image or the un-blurred image seen
by the camera in the original pose, to the image seen in pose j. N is the noise
model introduced in Section 3.1. Given a particular 6D pose (indexed by j) of a
camera, we denote the corresponding homography that warps a fronto-parallel
scene at depth d as Pj :

Pj = C(Rj +
1

d
tj [0 0 1])C−1, (4)

where Rj and tj are the rotation matrix and translation vector for pose j and
C is the matrix of camera intrinsics, which we form from the information in the
image EXIF tags. For now we assume the depth d is known. Kj is an image
warping matrix where each row contains the weights used to compute the values
of pixels in the warped image by applying the inverse homography. We use
bilinear interpolation for the warps and thus there are at most four non-zero
values per row of Kj . For clarity, we note that Kj is a square matrix where each
dimension is the width times the height of the image l.

Rearranging the linear operations in Equation 3 and comparing it with Equa-
tion 2, allows us to write the blur matrix K as:

K =
∑
j

ajKj . (5)

Thus the Kj ’s form a basis set whose elements can be linearly combined
using the MDF to get the corresponding blur matrix for any camera path. By
definition, the blur matrix also gives us the blur kernels for each pixel location
in the image. We call this basis set the Motion Response Basis (MRB). We note
that the MRB can represent any basis in the more traditional sense, e.g., each
basis matrix could actually correspond to an aggregate blur matrix itself where
it captures some region of support in the 6D space.

In this work, we choose a particular basis that we found meaningful for
modeling typically occurring camera motion blurs. Specifically, we choose to
reduce motion in the 6D space to a 3D subspace: rotation around the z axis
(roll) and x and y translation (modeling x translation and yaw and y translation
and pitch together, respectively and neglecting the affect on z translation). We
then compute the basis by point-sampling this 3D space. We discuss the validity
of using a 3D space and details about creating basis sets in Section 4.
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3.3 Optimization Formulation

Equation 3 relates the MDF to the latent image and the blurred image. In the
process of deblurring, each basis matrix Kj is pre-computed and we solve for
the variables L and A. To do this we pose the problem in a Bayesian framework
and seek to recover the latent image and MDF that is most likely given the
observation and priors on the image and MDF.

We compute the maximum a posteriori (MAP) estimate, which we formulate
as the minimization of the following energy function (in the interest of space, we
have left out the intermediate derivation steps from the Bayesian formulation):

E = ||[
∑
j ajKj ]L−B||2 + prior(L) + prior(A), (6)

prior(L) = φ(|∂xL|) + φ(|∂yL|), (7)

prior(A) = λ1||A||γ + λ2||∇A||2. (8)

prior(L) is the global image prior with the same parameter settings as used by
Shan et al. [2]. φ assigns a linear penalty to small gradients and quadratic penal-
ties to large gradients and approximates the heavy-tailed gradient distribution
priors for natural images [23].

prior(A) models priors that are important to recovering an accurate MDF.
Specifically in 6D, the camera motion is a 1D path that captures the trajectory
that the camera takes during the exposure window. This holds in the 3D space
as well. Ideally, one would enforce a path prior directly on the MDF; however,
this is a computationally challenging constraint to optimize. Thus we enforce
two other computationally more tractable constraints.

The first component of prior(A) is a sparsity prior on the MDF values. We
note that while blur kernels in the 2D image space may seem quite dense, in the
higher dimensional MDF space, a 1D path represents an extremely sparse popu-
lation of the space. The second component of prior(A) is a smoothness prior on
the MDF, which also incorporates the concept of the MDF representing a path,
as it enforces continuity in the space and captures the conditional probability
that a particular pose is more likely if a nearby pose is likely.

We also note that we can choose to use the whole blurred image for the
optimization or some selected parts by masking out rows in L, B, and the cor-
responding matrices.

4 Forming the Motion Response Basis

As introduced in Section 3, the Motion Response Basis (MRB) is the set of image
warping matrices Kj ’s that correspond to a warp operation relating the image
in the original camera pose to that in camera pose j. We can pre-compute the
MRB; however, the size of the basis set is critical for the computational feasibility
of the system. We now discuss the issues involved in this computation.
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Fig. 1. PSNR of the deblurred result (by recovering yaw using x translation) with
respect to the ground truth image. Cropped parts from deblurred images for some plot
samples are also shown for qualitative comparison.

4.1 Dependence on scene depth

As discussed in Section 3.2, it is necessary to know the scene depth d to compute
the homographies Pj and corresponding basis matrices Kj . Unfortunately, recov-
ering the depth of a scene from a single image is an under-constrained problem.
Fortunately, given our assumption of a constant depth or fronto-parallel scene,
we observe that we do not need to know the exact depth and rather can consider
1
d tj as a single 3-dimensional variable, which allows us to remove the dependence
on depth and instead only concern ourselves with the image parallax. Given this,
the number of degrees of freedom of our system does not change, depth is not
needed as a separate variable. Computing a basis that captures the parallax re-
duces to sampling the total resulting image plane translation, appropriately. We
discuss how to choose the sampling resolution in Subsection 4.3.

4.2 Computational reduction in d.o.f for the camera motion

We observe that instead of using 6 degrees of freedom for the camera motion,
we can use only 3 degrees of freedom - roll (rotation about z-axis) and x and y
translations. This reduction makes the problem computationally more feasible
since the size of the MRB is dependent on the number of degrees of freedom.
Given the projective camera model, it is known that small camera rotations
about the x (pitch) and y (yaw) axes can be approximated by camera trans-
lations when perspective affects are minimal (i.e., longer focal lengths). Joshi
et al [24] show that in most cases the camera shake motion lies in this operat-
ing range. To validate this approximation, we performed an experiment with a
ground truth image blurred using a synthetic camera motion involving yaw. We
then solve for an MDF limited to only x translations. Figure 1 shows the PSNR
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Fig. 2. Our System Pipeline

values comparing the resulting deconvolved images to the ground truth as we
vary the focal length. We varied the amount of yaw in relation to focal length
to keep the blur kernels approximately the same size (∼ 11 pixels wide) so that
deconvolution errors due to differences in blur kernel size do not affect the anal-
ysis. The PSNR improvement levels out quickly, which means that the recovered
translations start to accurately approximate the yaw as the focal length increases
to a value that covers most standard camera settings. A similar argument also
holds for pitch to be approximated by y translations. We do a similar analysis
for the effect of z translations of the camera and found that their contribution
is also negligible under typical camera shake motion. We provide more analysis
including similar figures for pitch and z translations on the project webpage [25].

As a result, the full 6D space of camera motion can be accurately approxi-
mated using only samples of the 3D space of roll, x and y translations across a
wide range of focal lengths. We note that 6D motions can still be theoretically
solved using our framework, but the high dimensionality makes the solution
computationally prohibitive.

4.3 Sampling range and resolution of the camera motion space

The number of matrices Kj is the number of motion poses that we sample.
The number of samples along each d.o.f. affects the size of the MRB and hence
we want to keep the sampling as coarse as possible. We hypothesize that the
sampling needs to only be dense enough that the neighboring voxels in the
discretized motion space project to within a pixel width at any image location.
The range of the motion can be chosen to cover the estimate of the kernel size
that is initially specified by the user. Hence we automatically choose the sampling
range and resolution along the 3 degrees of freedom and pre-compute the Kj ’s.

5 Our System

The proposed optimization in Equation 6 is non-linear in the variables L and A.
We solve this using an alternating, iterative EM-style procedure which takes an
initialization for L and then optimizes for A and L successively. Figure 2 shows
the steps in our system pipeline, and we explain each of the steps now.
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5.1 Generating an initial estimate for the latent image

We first select uniformly distributed patches on the blurred image which we
independently deblur for generating an initial estimate for the latent image L.
The patch sizes are proportional to the estimated maximum blur kernel size in
the image, which is an input parameter for our system. Since kernel estimation
techniques require a good distribution of edge orientations [14], we filter out the
patches having a low average value of the Harris corner metric. The Harris corner
metric measures the presence of gradients in orthogonal directions in an image
region and hence is a good estimate for the success of kernel estimation. We em-
pirically choose this threshold value to be 0.1. We denote these selected patches
as pi’s. We then use the blind deconvolution approach proposed by Shan et al [2]
to deblur each of these patches independently. We denote the corresponding de-
blurred patches and blur kernels as di’s and ki’s, respectively. These deblurred
patches are the initial estimates for the latent image in corresponding regions.

5.2 Ransac-based optimization for the MDF

Assuming we know L, we can solve for A by minimizing the following function
which is a reduced form of Equation 6.

E = ||
∑
j

aj(KjL)−B||2 + λ1||A||γ + λ2||∇A||2 (9)

Here we only use the parts of the image regions of L and B which are covered by
patches pi’s. This optimization is performed using an iterative re-weighted least
squares (IRLS). We use the values of γ = 0.8, λ1 = 0.1 and λ2 = 0.5 in all our
experiments. In practice, we see that using five iterations of IRLS works well.

We have found that using all the deblurred patches from the initialization
phase does not give good results. This is because blind blur kernel estimation on
a patch can vary in performance based on the quality and quantity of texture
information and image noise. Ideally, we would want to select the best deblurred
patches in the image for fitting the MDF. Unfortunately, this is a hard problem to
solve in itself. There are numerous metrics that have been used in the literature
for this classification – penalizing based on a heavy-tailed gradient distribution
([23]) and slope of the power spectrum ([26]); however, we have not found these
to work well.

Instead, we use a RANSAC-based scheme to robustly choose a set of “good”
patches from the initial set of deblurred patches. Each RANSAC iteration ran-
domly chooses 40% of the patches and fits an MDF to them by minimizing
Equation 9. We classify each of the patches, pi’s, as inliers or outliers by how
well the MDF describes the corresponding blur kernel. We consider this a con-
tribution of using an MDF – the process of fitting a lower-dimensional MDF to
blurred/deblurred patch pairs allows us to measure the quality of deblurring in
local image patches, which is otherwise difficult.

Specifically, to compute the inlier metric, let k′i be the recovered kernel using
the MDF, the residual error is given as, ||di ∗ k′i− bi||2. A patch is an inlier if its
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Fig. 3. Deblurred results using different schemes for choosing good deblurred patches
for initialization. Handpicking patches works better than RANSAC-based selection
which works better than no selection at all.

residual error is less than 1.2 times the median of all the errors in the patch set.
From all the RANSAC iterations, we select the set of patches which gives the
minimum average residual error on the inliers. Finally, we fit an MDF using all
the inlier patches.

To test the performance of our RANSAC approach, we ran our complete
deblurring pipeline on three cases – (A) using all the initially deblurred image
patches, (B) automatically choose inliers from the initially deblurred patches
using RANSAC, and (C) handpicking patches to be deblurred. Figure 3 shows
the deblurring results for these three cases, and we see that using handpicked
patches works better than RANSAC which in turn works better than doing no
patch selection. We use the RANSAC-based scheme in all our experiments since
it is robust, automatic, and gives reasonable results.

5.3 Optimization for the latent image

Assuming we know the MDF A, we can solve for L by minimizing the following
function which is another reduced form of Equation 6. This is essentially a non-
blind image deconvolution:

E = ||
∑
j

(ajKj)L−B||2 + φ(|∂xL|) + φ(|∂yL|). (10)

We solve this optimization as described by Shan et al. [23] in their paper. We
feed the solution back into the RANSAC-based MDF optimization and repeat
the overall procedure until the latent image converges. We have observed that
2-3 iterations are enough for convergence of the recovered latent image in all our
experiments.
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Fig. 4. Model validation. (A) Ground truth image, (B) Synthetic camera motion, (C)
Blurred image, (D) Deblurred output using ground truth initialization, (E) Deblurred
output using handpicked locally blind deblurred image regions for initialization, (F)
Result with a globally spatially invariant deblurring system. (Please zoom in to com-
pare.)

6 Experiments and Results

We run our deblurring experiments on a quad dual-core 3.0GHz PC with 64GB
RAM. Running our system on a 768X512 sized image takes about 1 hour and
takes up around 8 GBs of RAM. As there are no existing single image automatic
deblurring systems for a general (spatially-varying) camera motion blur, we per-
form all our comparisons with the recent blind deconvolution method of Shan et
al [2], who have code available online.

6.1 Model validation using synthetic data

Figure 4 shows the visual validation of our model formulation and illustrates
sensitivity to the initialization values. We take a sharp image (A) and use a
specified 6D camera motion (B) to blur it (C). We then optimize for the 3D
MDF, (z-rotation and x, y-translations) using the original sharp image as the
initialization (D) and using some handpicked locally blind deblurred image re-
gions for initialization (E). (F) shows the corresponding result for a blind spa-
tially invariant deblurring system. We see that (D) is very close to the ground
truth which means that if we start with the ideal initialization, we can recover a
very accurate 3D approximation of the true 6D MDF. We do see some artifacts
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Fig. 5. Deblurring result. (A) Blurred image, (B) Deblurred image using spatially
invariant approach, (C) Deblurred result using our system. Recovered blur kernels at
few locations are shown in yellow boxes.

(upper left corner) in (E) which shows that our system is sensitive to the initial
latent image. But we still out-perform the result in (F), which assumes only a
translational motion of the camera or in other words, a spatially invariant blur
kernel. We show more such comparison sets with synthetic data on the project
webpage [25].

6.2 Results and comparisons on real-world data

Figure 5 shows one of our results for real-world blurred images of scenes captured
using a Canon EOS-1D camera. It shows the original blurred image (A), the de-
blurred result using spatially invariant deconvolution (B), our deblurred result
(C), and the inset comparisons between (B) and (C). Our approach shows a sig-
nificant improvement over the spatially invariant approach in all the cases. Our
current implementation does not handle depth variance in the scene. Figure 6
is a difficult example as it has large depth variation, yet our deblurring method
performs better than the spatially invariant approach and gives a reasonable
looking deblurred result. This shows that our system can handle depth variation
until the point where it starts to cause a large amount of spatial variation in
the blur kernels. We also provide more results and intermediate step images for
each of these results on the project webpage [25].
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Fig. 6. Deblurring result. (A) Blurred image, (B) Deblurred image using spatially
invariant approach, (C) Deblurred result using our system. Recovered blur kernels at
few locations are shown in yellow boxes.

7 Discussion and Future Work

We presented a unified model of camera shake blur and a framework to recover
the camera motion and latent image from a single blurred image. One limita-
tion of our work is that it depends on imperfect spatially invariant deblurring
estimates for initialization. Two things could improve this: (a) using other blur
estimation methods for initialization and (b) a better metric to judge the accu-
racy of a particular kernel estimate, which is still a very open and interesting
problem.

Another interesting area of work is to explore other motion response bases.
Instead of using a uniform sampling with delta functions, a more sophisticated
basis with larger, more complex support regions may be more appropriate for
modeling common camera blurs.
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