
Animating Pictures with Stochastic Motion Textures

Yung-Yu Chuang1,3 Dan B Goldman1 Ke Colin Zheng1 Brian Curless1 David H. Salesin1,2 Richard Szeliski2

1University of Washington 2Microsoft Research 3National Taiwan University

(a) Japanese Temple (b) Harbor (c) Boat Studio (d) Argenteuil (e) Sunflowers

Figure 1 Sample input images we animate using our technique. The first two pictures are photographs of a Japanese Temple (a) and a harbor (b). The
paintings shown in (c) and (d) are Claude Monet’s The Boat Studio and The Bridge at Argenteuil. We also apply our method to Van Gogh’s Sunflower
(e) to animate the flowers. (The last three paintings are courtesy of WebMuseum, http://www.ibiblio.org/wm/.)

Abstract
In this paper, we explore the problem of enhancing still pictures
with subtly animated motions. We limit our domain to scenes con-
taining passive elements that respond to natural forces in some fash-
ion. We use a semi-automatic approach, in which a human user seg-
ments the scene into a series of layers to be individually animated.
Then, a “stochastic motion texture” is automatically synthesized us-
ing a spectral method, i.e., the inverse Fourier transform of a filtered
noise spectrum. The motion texture is a time-varying 2D displace-
ment map, which is applied to each layer. The resulting warped
layers are then recomposited to form the animated frames. The re-
sult is a looping video texture created from a single still image,
which has the advantages of being more controllable and of gener-
ally higher image quality and resolution than a video texture created
from a video source. We demonstrate the technique on a variety of
photographs and paintings.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.9 [Image Processing and
Computer Vision]: Applications

Keywords: Animation, image-based animation, image-based ren-
dering, natural phenomena, physical simulation, video texture

1 Introduction
When we view a photograph or painting, we perceive much more
than the static picture before us. We supplement that image with
our life experiences: given a picture of a tree, we imagine it sway-
ing; given a picture of a pond, we imagine it rippling. In effect, we
bring to bear a strong set of “priors,” and these priors enrich our
perception.

http://grail.cs.washington.edu/projects/StochasticMotionTextures/

In this paper, we explore how a set of explicitly encoded priors
might be used to animate still images on a computer. The fully au-
tomatic animation of arbitrary scenes is, of course, a monumental
challenge. In order to make progress, we make the problem easier
in two ways.

First, we use a semi-automatic, user-assisted approach. In particu-
lar, a user segments the scene into a set of animatable layers and
assigns certain parameters to each one. Second, we limit our scope
to scenes containing passive elements that respond to natural forces
in some fashion. We explore a range of passive elements including
plants and trees, water, floating objects such as boats, and clouds.
The motion of each of these objects is driven by a single natural
force, namely, the wind. Although this set of objects and motions
may seem limited, they occur in a large variety of pictures and
paintings, as shown in Figure 1.

We have found that all of these elements can be animated using a
unified approach. First, we segment the picture into a set of user-
specified layers using Bayesian matting [Chuang et al. 2001]. As
each layer is removed from the picture, “inpainting” is used to fill in
the resulting hole. Next, the user annotates one or more layers with
a motion armature, a line segment which approximates the struc-
ture of a layer. Using these constraints, we synthesize a stochastic
motion texture using spectral methods [Stam 1995]. Spectral meth-
ods work by generating a random noise spectrum in the frequency
domain, applying a physically based spectrum filter to that noise,
and computing an inverse Fourier transform to create the stochastic
motion texture. This motion texture is a time-varying 2D displace-
ment map, which is applied to the pixels in the layer. Finally, the
warped layers are recomposited to form the animated picture for
each frame.

The resulting moving picture can be thought of as a kind of video
texture [Schödl et al. 2000]—although, in this case, a video texture
created from a single static image rather than from a video source.
Thus, these results have potential application wherever video tex-
tures do, i.e., in place of still images on Web sites, as screen savers
or desktop “wallpapers,” or in presentations and vacation slide
shows.

In addition, there are several advantages to creating video textures
from a static image rather than from a video source. First, because
they are created synthetically, they allow greater creative control
in their appearance. For example, the wind direction and amplitude

can be tuned for a particular desired effect. Second, consumer-grade
digital still cameras generally provide much higher image quality
and greater resolution than their video camera counterparts. These
advantages allow animated stills to be used in new situations such
as animated matte paintings for special effects. Furthermore, they
can be applied to sources that exist only in a static form such as
paintings and historic photographs.

For the most part, the algorithms we describe in this paper are ap-
plications of techniques from a variety of disparate sources such
as image matting and inpainting, and physically based animation
of natural phenomena. We show how these techniques can be com-
bined, seamlessly and synergistically into an easy-to-use system for
animating still images. Thus, our major contributions are in the for-
mulation of the overall problem, including the recognition that an
interesting class of phenomena can all be animated attractively via a
single wind source using simple controls; the marshalling of a vari-
ety of techniques, most notably stochastic motion textures, to solv-
ing this problem; the design of a user interface that allows novice
users to animate pictures with little or no training; and lastly, a proof
of the viability and quality of applying image warping approaches
to synthesizing appealing animated pictures.

1.1 Related work

Our goal is to synthesize a stochastic video from a single image.
Hence, our work is similar in spirit to the work on video textures
and dynamic textures [Szummer and Picard 1996; Schödl et al.
2000; Wei and Levoy 2000; Soatto et al. 2001; Wang and Zhu
2003]. Like our work, video textures focus on “quasi-periodic”
scenes. However, the inputs to video texture algorithms are short
videos that can be analyzed to mimic the appearance and dynam-
ics of the scene. In contrast, the input to our work is only a single
image.

Our work is, in spirit, similar to the “Tour Into the Picture” sys-
tem developed by Horry et al. [1997]. Their system allows users to
map a 2D image onto a simple 3D box scene based on some inter-
actively selected perspective viewing parameters such as vanishing
points. This approach allows users to interactively navigate into a
picture. Criminisi et al. [2000] propose an automated technique that
can produce similar effects in a geometrically correct way. More
recently, Oh et al. [2001] developed an image-based depth editing
system capable of augmenting a photograph with a more compli-
cated depth field to synthesize more realistic effects. In our work,
instead of synthesizing a depth field to change the viewpoint, we
add motion fields to make the scene change over time.

For certain classes of motions, our system requires the user
to specify a motion armature for a layer, and then performs
physically-based simulation on the armature to synthesize a mo-
tion field. It is therefore similar to the method of Litwinowicz and
Williams [1994], which uses keyframe line drawings to deform im-
ages to create 2D animations. Their system is quite useful for tra-
ditional 2D animation. However, their technique is not suitable for
modeling the natural phenomena we target because such motions
are difficult to keyframe. Also, they use a smooth scattered data
interpolation to synthesize a motion field without any physical dy-
namics.

Our work is also related to the object-based image editing system
proposed by Barrett and Cheney [2002], namely, object selection,
matte extraction, and hole filling. Indeed, Barrett et al. have also
demonstrated how to generate a video from a single image by edit-
ing and interpolating keyframes. Like Litwinowicz’s system, the fo-
cus is on key-framed rather than stochastic (temporal texture-like)
motions.

Freeman et al. [1991] previously attempted to create the illusion
of motion in a static image in their “Motion without movement”
paper. They apply quadrature pairs of oriented filters to vary the

local phase in an image to give the illusion of motion. While the
motion is quite compelling, the band-pass filtered images do not
look photorealistic.

Even earlier, at the turn of the 20th century, people painted out-
door scenes on pieces of masked vellum paper and used series of
sequentially timed lights to create the illusion of descending wa-
terfalls [Hathaway et al. 2003]. People still make this kind of de-
vice, which is often called a kinetic waterfall. Another example of
a simple animated picture is the popular Java program, Lake ap-
plet, which takes a single image and perturbs the image with a set
of simple ripples [Griffiths 1997]. Though visually pleasing, these
results often do not look realistic because of their lack of physical
properties.

Working on an inverse problem to ours, Sun et al. [2003] propose
a video-input driven animation (VIDA) system to extract physi-
cal parameters such as wind speed from real video footage. They
then use these parameters to drive the physical simulation of syn-
thetic objects to integrate them consistently with the source video.
They estimate physical parameters from observed displacements;
we synthesize displacements using a physical simulation based on
user-specified parameters. They target a similar set of natural phe-
nomena to those we study: plants, waves, and boats, which can all
be explained as harmonic oscillations.

To simulate dynamics, we use physically-based simulation tech-
niques previously developed in computer graphics for modeling
natural phenomena. For waves, we use the Fourier wave model to
synthesize a time-varying height field. Mastin et al. [1987] were the
first to introduce statistical frequency-domain wave models from
oceanography into computer graphics. In a similar way, we synthe-
size stochastic wind fields [Shinya and Fournier 1992; Stam and
Fiume 1993] by applying a different spectrum filter. When apply-
ing the wind field to trees, since the force is oscillatory in nature, the
corresponding motions are also periodic and can be solved more ro-
bustly and efficiently in the frequency domain [Stam 1997; Shinya
et al. 1998].

Aoki et al. [1999] coupled physically-based animations of plants
with image morphing techniques as an efficient alternative to ex-
pensive physically-based plant simulation and synthesis. However,
they only demonstrate their concept on synthetic images. In our
work, we target real pictures and use our approach as a way to syn-
thesize video textures for stochastic scenes.

Our system requires users to segment an image into layers. To sup-
port seamless composites, a soft alpha matte for each layer is re-
quired. We use recently proposed interactive image matting algo-
rithms to extract alpha mattes from the input image [Ruzon and
Tomasi 2000; Chuang et al. 2001]. To fill in holes left behind af-
ter removing each layer, we use an inpainting algorithm [Bertalmio
et al. 2000; Criminisi et al. 2003; Jia and Tang 2003; Drori et al.
2003].

1.2 Overview
We begin with a system overview that describes the basic flow of
our system (Section 2). We then address our most important sub-
problem, namely synthesizing a stochastic motion texture (Sec-
tion 3). Finally, we discuss our results (Section 4) and end with
conclusions and ideas for future work.

2 System overview
Given a single image, how can we generate a continuously moving
animation quickly and easily? One possibility is to use a keyframe-
based approach, as did Litwinowicz and Williams [1994]. However,
such an approach is problematic for naı̈ve users: specifying the mo-
tions is complex, and achieving any kind of movement resembling
physical realism is quite difficult. Another straightforward approach
is to use compositions of sinusoids to create oscillatory motions

 displacement map

...

(a)

(b)

(c)

(d)
(e)

...

...

= = = = =

L1 L2 Ll-2 Ll-1 Ll

L (t)1 L (t)2 L (t)l-2 L (t)l-1 L (t)l

 displacement map displacement map displacement map displacement map

d (t)
 l-1

d (t)
 ld (t)

 l-2d (t) 2d (t)
 1

type=“boat” type=“still” type=“tree” type=“cloud” type=“water”

Figure 2 Overview of our system. The input still image (a) is manually segmented into several layers (b). Each layer Li is then animated with a
different stochastic motion texture di(t) (c). Finally, the animated layers Li(t) (d) are composited back together to produce the final animation I(t)
(e).

[Griffiths 1997], but the resulting effect may not maintain a viewer’s
interest over more than a short period of time, on account of its pe-
riodicity and predictability.

The approach we ultimately settled upon — which has the advan-
tages of being quite simple for users to specify, and of creating
interesting, complex, and plausibly realistic motion — is to break
the image up into several layers and to then synthesize a differ-
ent motion texture1 for each layer. A motion texture is essentially
a time-varying displacement map defined by a motion type, a set
of motion parameters, and in some cases a motion armature. This
displacement map d(p, t) is a function of pixel coordinates p and
time t. Applying it directly to an image layer L results in a forward
warped image layer L′ such that

L′(p + d(p, t)) = L(p) (1)

However, since forward mapping is fraught with problems such as
aliasing and holes, we actually use inverse warping, defined as

L′(p) = L(p + d′(p, t)) (2)

We denote this operation as L′ = L ⊗ d′.

We could compute the inverse displacement map d′ from d using
the two-pass method suggested by Shade et al. [1998]. Instead,
since our motion fields are all very smooth, we simply dilate them
by the extent of the largest possible motion and reverse their sign.

With this notation in place, we can now describe the basic workflow
of our system (Figure 2), which consists of three steps: layering and
matting, motion specification and editing, and finally rendering.

Layering and matting. The first step, layering, is to segment
the input image I into layers so that, within each layer, the same
motion texture can be applied. For example, for the painting in Fig-
ure 2(a), we have the following layers: one for each of the water,
sky, bridge and shore; one for each of the three boats; and one for
each of the eleven trees in the background (Figure 2(b)). To accom-
plish this, we use an interactive object selection tool such as a paint-
ing tool or intelligent scissors [Mortensen and Barrett 1995]. The
tool is used to specify a trimap for a layer; we then apply Bayesian

1We use the terms motion texture and stochastic motion texture inter-
changeably in this paper. The term motion texture was also used by Li et.
al [2002] to refer to a linear dynamic system learned from motion capture
data.

matting to extract the color image and a soft alpha matte for that
layer [Chuang et al. 2001].

Because some layers will be moving, occluded parts of the back-
ground might become visible. Hence, after extracting a layer, we
use an enhanced inpainting algorithm to fill the hole in the back-
ground behind the foreground layer. We use an example-based in-
painting algorithm based on the work of Criminisi et al. [2003] be-
cause of its simplicity and its capacity to handle both linear struc-
tures and textured regions.

Note that the inpainting algorithm does not have to be perfect since
only pixels near the boundary of the hole are likely to become vis-
ible. We can therefore accelerate the inpainting algorithm by con-
sidering only nearby pixels in the search for similar patches. This
shortcut may sacrifice some quality, so in cases where the automatic
inpainting algorithm produces poor results, we provide a touch-up
interface with which a user can select regions to be repainted. The
automatic algorithm is then reapplied to these smaller regions us-
ing a larger search radius. We have found that most significant in-
painting artifacts can be removed after only one or two such brush-
strokes. Although this may seem less efficient than a fully automatic
algorithm, we have found that exploiting the human eye in this sim-
ple fashion can produce superior results in less than half the time
of the fully automatic algorithm. Note that if a layer exhibits large
motions (such as a wildly swinging branch), artifacts deep inside
the inpainted regions behind that layer may be revealed. In prac-
tice, these artifacts may not be objectionable, as the motion tends to
draw attention away from them. When they are objectionable, the
user has the option of improving the inpainting results.

After the background image has been inpainted, we work on this
image to extract the next layer. We repeat this process from the
closest layer to the furthest layer to generate the desired number of
layers. Each layer Li contains a color image Ci, a matte αi, and a
compositing order zi. The compositing order is presently specified
by hand, but could in principle be automatically assigned with the
order in which the layers are extracted.

Motion specification and editing. The second component of
our system lets us specify and edit the motion texture for each layer.
Currently, we provide the following motion types: trees (swaying),
water (rippling), boats (bobbing), clouds (translation), and still (no
motion). For each motion type, the user can tune the motion param-
eters and specify a motion armature, where applicable. We describe
the motion parameters and armatures in more detail for each motion
type in Section 3.

Since all of the motions we currently support are driven by the
wind, the user controls a single wind speed and direction, which is
shared by all the layers. This allows all the layers to respond to the
wind consistently. Our motion synthesis algorithm is fast enough
to animate a half-dozen layers in real-time. Hence, the system can
provide instant visual feedback to changes in motion parameters,
which makes motion editing easier. Each layer Li has its own mo-
tion texture, di, as shown in Figure 2(c).

Rendering. During the rendering process, for each time in-
stance t and layer Li, a displacement map di(t) is synthesized.
(Here, we have dropped the dependencies of Li and di on p for
notational conciseness.) This displacement map is then applied to
Ci and αi to obtain Li(t) = Li(0)⊗di(t) (Figure 2(d)). Notice that
the displacement is evaluated as an absolute displacement of the in-
put image I(0) rather than a relative displacement of the previous
image I(t − 1). In this way, repeated resampling and numerical
error accumulation are avoided.

Finally, all the warped layers are composited together from back to
front to synthesize the frame at time t, I(t) = L1(t) ⊕ L2(t) ⊕
. . . ⊕ Ll(t), where z1 ≥ z2 · · · ≥ zl and ⊕ is the standard over
operator [Porter and Duff 1984] (Figure 2(e)).

3 Stochastic motion textures
In this section, we describe our approach to synthesizing the
stochastic motion textures that drive the animated image. We first
describe the basic principles on which our system is based (Sec-
tion 3.1). We then describe the details of each motion type, i.e., trees
(Section 3.2), water (Section 3.3), bobbing boats (Section 3.4), and
clouds (Section 3.5).

3.1 Stochastic modeling of natural phenomena
Many natural motions can be viewed as harmonic oscillations [Sun
et al. 2003], and, indeed, hand-crafted superpositions of a small
number of sinusoids have often been used to approximate natural
phenomena for computer graphics. However, this simple approach
has some limitations, as we discovered after experimenting with
this idea. First of all, it is tedious to tune the parameters to produce
the desired effects. Second, it is hard to create motions for each
layer that are consistent with one another since they lack a physical
basis. Lastly, the resulting motions do not look natural since they
are strictly periodic — irregularity actually plays a central role in
modeling natural phenomena.

One way to add randomness is to introduce a noise field. Intro-
ducing this noise directly into the temporal or spatial domain often
leads to erratic and unrealistic simulations of natural phenomena.
Instead, we simulate noise in the frequency domain, and then sculpt
the spectral characteristics to match the behaviors of real systems
that have intrinsic periodicities and frequency responses. Specific
spectrum filters need to be applied to model specific phenomena,
leading to so-called spectral methods [Stam 1995].

The spectral method for synthesizing a stochastic field has three
steps: (1) generate a complex Gaussian random field in the fre-
quency domain, (2) apply a domain-specific spectrum filter, and
(3) compute the inverse Fourier transform to synthesize a stochas-
tic field in the time or frequency domain. A nice property of this
method is that the synthesized stochastic field can be tiled seam-
lessly. Hence, we only need to synthesize a patch of reasonable size
and tile it to produce a much larger stochastic signal. This tiling ap-
proach works reasonably well if the size of the patch is large enough
to avoid objectionable repetition. Furthermore, each layer can use a
patch of a different size, which obscures any repetitive motion that
may remain in individual layers.

To realistically model natural phenomena, the filter should be
learned from real-world data. For the phenomena we simulate,

plants and waves, such experimental data and statistics are avail-
able from other fields, e.g., structural engineering and oceanogra-
phy, and have already been used by the graphics community to cre-
ate synthetic imagery [Shinya and Fournier 1992; Stam and Fiume
1993; Mastin et al. 1987]. After experimenting with several differ-
ent variants published in both the computer graphics and simulation
literature, we selected the following set of techniques to synthesize
stochastic motion textures that are both realistic and easy to control.

3.2 Plants and trees
The branches and trunks of trees and plants can be modeled as phys-
ical systems with mass, damping, and stiffness properties. The driv-
ing function that causes branches to sway is typically wind [Stam
1997]. Our goal is to model the spectral filtering due to the dy-
namics of the branches applied to the spectrum of the driving wind
force.
To model the physics of branches, we take the simplified view intro-
duced by Sun et al. [2003]. In particular, the motion of each branch
is constrained by a motion armature; a 2D line segment parameter-
ized by u, which ranges from 0 to 1. This line segment is drawn
by the user for each layer. Note that, to model a correct mechanical
structure, the line segment may need to extend outside the image.
Displacements of the tip of the branch dtip(t) are taken to be per-
pendicular to the line segment. Modal analysis indicates that the
displacement perpendicular to the line for other points along the
branch can be simplified to the form:

d(u, t) =
[

1

3
u4 − 4

3
u3 + 2u2

]

dtip(t) (3)

We approximate the (scalar) displacement of the tip in the direction
of the projected wind force as a damped harmonic oscillator:

d̈tip(t) + γḋtip(t) + 4π2f2
o dtip(t) = w(t)/m (4)

where m is the mass of the branch, fo = k/m is the natural
frequency of the system, and γ = c/m is the velocity damping
term [Sun et al. 2003]. These parameters have a more intuitive
meaning than the damping (c) and stiffness (k) terms found in more
traditional formulations. The driving force w(t) is derived from the
wind force incident on the branch, as detailed below.
Taking the temporal Fourier transform F{} of equation (4) and not-
ing that F{ḋtip(t)} = i2πfF{dtip(t)}, we arrive at

−4π2f2Dtip(f) + i2πγfDtip(f) + 4π2f2
o Dtip(f) =

W (f)

m
(5)

where i =
√
−1 and Dtip(f) and W (f) are the Fourier transforms

of dtip(t) and w(t), respectively. Solving for Dtip(f) and express-
ing the result in complex exponential notation gives

Dtip(f) =
W (f)ei2πθ

2πm
{

[2π (f2 − f2
o)]2 + γ2f2

}1/2
(6)

where W (f) is the Fourier transform of the driving wind force, a
function of frequency f , as defined in equations (8) and (9) below.
The phase shift θ is given by

tan θ =
γf

2π (f2 − f2
o)

(7)

Next, we model the forcing spectrum for wind. An empirical model
made from experimental measurements [Simiu and Scanlan 1986,
p. 55] indicates that the temporal power spectrum of the wind ve-
locity at a point takes the following form:

PV (f) ∼ vmean

(1 + κf/vmean)5/3
(8)

where vmean is the mean wind speed and κ is generally a function
of altitude, which we take to be a constant. The velocity spectrum
is given by the square root of the power spectrum. We therefore
modulate a random Gaussian noise field G(f) with the velocity
spectrum to compute the spectrum of a particular (random) wind
velocity field:

V (f) = G(f)
√

PV (f) (9)

The force due to the wind is complicated by the presence of turbu-
lence [Feynman et al. 1964, Fig. 41-4], but can be generally mod-
eled as a drag force proportional to the squared wind velocity. How-
ever, in our experiments, we have found that making the wind force
directly proportional to wind velocity produces more pleasing re-
sults.

Finally, we assemble Equations (6)-(9) to construct the spectrum of
the tip displacement Dtip(f), take the inverse Fourier transform to
generate the tip displacement dtip(t), and distribute the displace-
ment over the branch according to equation (3). We apply the dis-
placement as a rotation of each point about the root position of the
branch. The displacements of points in the layer away from the mo-
tion armature are given by the displacement of the point on the ar-
mature that is the same distance from the root.

The user can control the resulting motion appearance by indepen-
dently changing the mean wind speed vmean and the natural (oscil-
latory) frequency fo, mass m, and velocity damping term γ of each
branch.

3.3 Water
Water surfaces belong to another class of natural phenomena that
exhibit oscillatory responses to natural forces like wind. In this sec-
tion we describe how one can specify a 3D water plane in a photo-
graph and then define the mapping of water height out of that plane
to displacements in image space. We then describe how to synthe-
size water height variations, again using a spectral method.

The motion armature for water is simply a plane; we assume that
the image plane is the xy plane and the water surface is the xz plane.
To correctly model the perspective effect, the user roughly specifies
where the plane is. This perspective transformation M can be fully
specified by the focal length and the tilt of the camera, which can
be visualized by drawing the horizon [Criminisi et al. 2000].

After specifying the 3D water plane, the water is animated using
a time-varying height field h(q, t), where q = (xq, y0, zq)

T is a
point on the water plane, and y0 = 0 is the elevation of the wa-
ter plane. To convert the height field h to the displacement map
d(p, t), for each pixel p we first find that pixel’s corresponding
point q = Mp on the water plane. We then add the synthesized
height h(q, t) as a vertical displacement, which gives us a point
q′ = (xq, h(q, t), zq)

T . We then project q′ back to the image plane
to get p′ = M−1q′. The displacement vector for d(p, t) = p′ − p
is therefore

d(p, t) = M−1[Mp + (0, h(Mp, t), 0)T] − p (10)

Note that p and p′ are affine points, d is a vector, and M is a 3 × 3
matrix.

The above model is technically correct if we want to displace ob-
jects on the surface of the water. In reality, the shimmer in the water
is caused by local changes in surface normals. Therefore, a more
physically realistic approach would be to use normal mapping, i.e.,
to convert the surface normals computed from the spatial gradi-
ents of h(q, t) into two-dimensional displacements of the reflected
rays. However, we have found that applying this normal mapping
approach without a 3-dimensional model of the surrounding envi-
ronment produces confusing distortions compared to our current

approach, which generally produces pleasing, realistic-looking re-
flections as long as the wave amplitude is relatively small.

To synthesize a time-varying height field for the water, we
use the user-specified wind velocity to synthesize a height field
matching the statistics of real ocean waves, as described by
Mastin et al. [1987]. Note that this approach deals only with
ocean waves, which are gravity waves. Although it does not phys-
ically describe short-length waves, non-wind-generated waves on
rivers/brooks/streams or large waves on shallow water, it gives plau-
sible results for our application.

The spectrum filter we use for waves is the Phillips spec-
trum [Tessendorf 2001], which is a power spectrum describing the
expected square amplitude of waves across all spatial frequencies s

PH(s) ∼ e[−1/(sL)2]

s4
|ŝ · v̂mean|2 (11)

where s = |s|, and L = v2
mean/g, and g is the gravitational con-

stant, and ŝ and v̂mean are normalized spatial frequency and wind
direction vectors in the xz plane, respectively. (We denote 2D vec-
tors in boldface.)

The square root of the power spectrum describes the amplitude of
wave heights, which we can use to filter a random Gaussian noise
field G(s):

H0(s) = aG(s)
√

PH(s) (12)

where a is a constant of proportionality and H0 is an instance of the
height field which we can now animate by introducing time-varying
phase. However, waves of different spatial frequencies move at dif-
ferent speeds. The relationship between the spatial frequency and
the phase velocity is described by the well-known dispersion rela-
tion,

ω(s) =
√

gs (13)

The time varying height spectrum can thus be expressed as

H(s, t) = H0(s)e
iω(s)t + H∗

0 (−s)e−iω(s)t (14)

where H∗

0 is the complex conjugate of H0 [Tessendorf 2001].
We can now compute the height field at time h(q, t) as the two-
dimensional inverse Fourier transform of H(s, t) with respect to
spatial frequencies s. We take the generated height field and tile
the water surface using a scale parameter, β, to control the spatial
frequency.

To recap the process, given the wind speed and direction, we syn-
thesize a spectrum filter using equation (11) and apply it to a spatial
Gaussian noise field to obtain an initial height field (12). This height
field is then animated using equation (14) to synthesize the Fourier
transform H(s, t) of the height field h(q, t) at time t. Taking the
inverse Fourier transform, we recover the height field, use it to tile
the water plane and substitute it into equation (10) to synthesize
motion texture di at time t.

There are thus several motion parameters related to water: wind
speed, wind direction, the size of the tile N , the amplitude scale
a, and the spatial frequency scale β. The wind speed and direc-
tion are controlled globally for the whole animation. We find that a
tile of size N = 256 usually produces nice looking results for the
sizes of images we used. Users can change a to scale the height of
the waves/ripples. Finally, scaling the frequencies by β changes the
scale at which the wave simulation is being done. Simulating at a
larger frequency scale gives a rougher look, while a smaller scale
gives a smoother look. Hence, we call β the roughness in our user
interface.

3.4 Boats
We approximate the motion of a bobbing boat by a 2D rigid trans-
formation composed of a translation for heaving and a rotation for
rolling. A boat moving on the surface of open water is almost al-
ways in oscillatory motion [Sun et al. 2003]. Hence, the simplest
model is to assign a sinusoidal translation and a sinusoidal rota-
tion. However, this often looks fake. In principle, we could build
a simple model for the boat, convert the height field of water into
a force interacting with the hull, and solve the dynamics equation
for the boat to estimate its displacement. However, since our goal
is to synthesize a quickly computable solution, we directly use the
height field of the wave to move the boat, as follows.

We let the user select a line close to the bottom of the boat. Then, we
sample several points qi along the line and assume these points are
on the water plane surrounding the boat. At time t, for each point qi,
we look up its displacement vector d(pi, t) (10) and calculate the
corresponding position p′

i of pi at time t as pi+d(pi, t). Finally, we
use linear regression to fit a line through the displaced positions.
The position and orientation of the fitted line then determine the
heaving and rolling of the boat.

3.5 Clouds
Another common element for scenic pictures is clouds. In principle,
clouds could also be modeled as a stochastic process. However, we
need the stochastic process to match the clouds in the image at some
point, which is harder. Since clouds often move very slowly and
their motion does not attract too much attention, we simply assign
a translational motion field to them. We extend the clouds outside
the image frame to create a cyclic texture using our inpainting algo-
rithm, since their motion in one direction will create holes that we
have to fill.

4 Results
We have developed an interactive system that supports matting, in-
painting, motion editing, and previewing the results. We have ap-
plied our system to several photographs and famous paintings. The
accompanying video provides a sense of the user interface for cre-
ating the animated pictures, as well as a demonstration of the ani-
mated results.

Table 1 summarizes the number of layers of each type created for
the five animated pictures shown in Figure 1, the motion specifica-
tion, along with the time that it took a user to perform the matting
and in-painting steps (which are interleaved in the process, and thus
difficult to separate in time), and the playback speeds. Generally the
matting and in-painting steps take the large majority of the time. In
all cases, the animated paintings take from a little under an hour to
a few hours to create. Note that two of the animated pictures whose
timings are presented above, “Boat Studio” and “Sunflowers,” were
created by a complete novice user who only had a few minutes of
instruction before beginning work on the pictures. We provide play-
back speeds for our current unoptimized software implementation:
Our code presently takes no special advantage of graphics hard-
ware, but all of the operations could be readily mapped to GPUs,
thereby greatly increasing frame rates.

For the Japanese Temple (Figure 1(a)), we model a total of 10
branches on the left and the right. We use a small wave amplitude
(a = 1.0) and high roughness (β = 200) to give the ripples a fine-
grained look. For the harbor picture in Figure 1(b), we animate the
water and have nine boats swing with the water. The cloud and sky
are animated using a translational motion field.

Figure 1(c)-(e) shows three paintings we have animated. Our tech-
nique works reasonably well with paintings, probably because in
this situation we are even less sensitive to anything that does not
look perfectly realistic. For Claude Monet’s painting in Figure 1(c),
we animate the water with lower amplitude roughness to keep the

strokes intact. We also let the boat sway with the water. Another of
Monet’s paintings, shown in Figure 1(d), is a more complex exam-
ple, with more than twenty layers. We use this example to demon-
strate that we can change the appearance of the water by control-
ling the physical parameters. In Figure 3, we show the appearance
of the water under different wind speeds, directions, and simulation
scales.

For Van Gogh’s sunflower painting (Figure 1(e)), we use our
stochastic wind model to animate the twenty-five plant layers. With
a simple sinusoidal model, the viewer usually can quickly figure out
that the plants swing in synchrony, and the motion loses a lot of its
interest. With the stochastic wind model, the flowers’ motions de-
correlate in phase and the resulted animation is more appealing. We
also experimented with a very small amount of scaling along the
branch armature in order to simulate foreshortening of the flowers
as they move in and out of the image plane.

5 Conclusion and future work
In this paper, we have described an approach for animating still
pictures of outdoor scenes that contain dynamic elements that re-
spond to natural forces in a simple quasi-periodic fashion. We see
our work as just a first step in the larger problem of animating a
much more general class of pictures.

Before we began this work, it was not at all clear whether it would
be possible to make still images come to life as animated scenes. We
believe our judicious selection and enhancement of recently devel-
oped matting, inpainting, stochastic motion synthesis, image warp-
ing, and compositing algorithms provides an effective and easy-to-
use system for generating realistic animations from static images.

We point out that our choice of techniques is especially well-suited
to this problem, in that a relatively high-quality composite anima-
tion can be produced even when the results of each automated step
are of objectively lower quality. First, the use of matting produces
layers that are color-coherent along their boundaries, even if the re-
sulting matte does not follow object boundaries. When in motion,
these layers often seem perceptually plausible even when techni-
cally incorrect. Second, the limited amount of displacement we seek
to introduce implies that the inpainting process can be relatively
low-quality and still produce seamless composites. This allows us
to use heuristic measures to reduce the search space and speed up
the inpainting process. Finally, we do not ask end users to keyframe
animations, but rather influence the scene in physical, easily under-
stood terms, such as wind speed and direction. We provide a user
interface that is accessible to users at all levels. Many users are
already familiar with matting and inpainting processes from com-
mercial products such as Photoshop, and the additional burden of
assigning “canned” motion types is minimal.

Our system currently makes a number of assumptions that we
would like to relax. For example, we assume that the elements of the
input image are in their equilibrium positions. This is often not the
case, e.g., for a scene with water that already has ripples. Indeed,
an interesting challenge would be to use these ripples to estimate
the water motion, unwarp the reference image and then animate it
correctly. In addition, we currently ignore the effects of shadows,
transparency, and reflections. For example, the reflections of the
boat move with the deformations of the water, but do not account
for any additional motion due to the boat’s bobbing up and down.
When the motion is large, the results are less realistic. One solution
would be to segment out reflections, transparent layers and shadows
somehow, and let them move with the casting objects accordingly.

Many of our approximations limit the plausibility of very large-
scale motions, in which pixels are warped more than a few dozen
pixels from their source position. For example, we simulate boats
rolling as a 2D rigid motion. It might be possible to fake a slight
3D rotation with a non-rigid distortion, to allow for more plausible

(a) composite (b) lower wind speed (c) wind of different direction (d) rougher water surface

Figure 3 We can control the appearance of water surface by adjusting some physical parameters such as wind speed. We show one of the composites
(a) as the reference, in which the wind blow at 5 m/s in z direction. We decrease the wind speed to 3 m/s (b) and change the wind direction to be along
z axis (c). In (d), we change the scale of the simulation to render water with finer ripples.

Trees Water Boats Clouds Still Layering Animating Rendering Resolution
Japanese Temple 10 1 0 0 2 45 m 10 m 7 fps 900x675

Harbor 0 2 9 1 5 90 m 10 m 3.8 fps 900x600
Boat Studio 0 1 1 0 1 30 m 10 m 10 fps 600x692
Argenteuil 16 1 3 1 3 120 m 15 m 4.1 fps 800x598
Sunflowers 25 0 0 0 1 210 m 20 m 5.1 fps 576x480

Table 1 The number of layers of each type for each of the five examples in Figure 1, along with approximate times in minutes for a user to perform
the layering steps (including matting and inpainting), animating step (including motion specification and editing), and playback speeds.

large-scale motions. Very large warps of the water surface can ap-
pear distorted due to warping from outside the image boundaries,
and when the water waves become large enough under very windy
conditions, we expect to see a number of additional real-world ef-
fects such as water “lapping up” against the shore or boats, “white-
caps,” splashes, or other turbulent surface effects.

Our method currently works best for trees at a distance. For nearby
trees, it is presently difficult and tedious to segment the leaf and
branch structure properly. It would also be interesting to add the
“shimmering” effect of leaves blowing in the wind by applying tur-
bulent flow fields within the tree layers.

There are other classes of motion that could be modeled using a
similar approach. We imagine that waterfalls, ocean waves, flying
birds and other small animals, flame, and smoke may all be pos-
sible. For example, waterfalls could perhaps be animated using a
technique similar to ”motion without movement” [Freeman et al.
1991]. Ocean waves could be simulated using stochastic models,
although matching the appearance of the source image poses some
interesting challenges. Flying birds and other small animals could
be animated using ideas from video sprites [Schödl et al. 2000]. We
believe that it might also be possible to animate fluids like flame or
smoke. However, this would require a constrained stochastic simu-
lation, since the state of simulation should resemble the appearance
of the input image. Recent advances in controlling smoke simula-
tion by keyframes could be used for this purpose [Treuille et al.
2003].

In our system, all the layers are hooked up together to a synthetic
wind force. Currently, the same mean wind velocity is applied ev-
erywhere in the scene. It would be straightforward to extend the for-
mulation to handle complete vector fields of evolving wind forces
in order to provide a more realistic style of animation such as mov-
ing gusts of wind. In addition, we could add more controllability so
that the users could interact with trees individually.

Currently, we use physically-based simulation to synthesize a para-
metric motion field, but the quality of the motion could potentially
be improved using learning algorithms to transfer motion from sim-
ilar type of objects in videos.

Furthermore, our motion model addresses only a restricted range of
motions. We imagine future systems might handle transitions be-
tween different types of motion, animation to or from a rest state,

water features such as streams that move continuously in a single di-
rection, and transitions between different scene states and/or types
of motion (e.g. weather changing from calm to stormy, skies chang-
ing from clear to cloudy, boats traveling to and from the horizon,
etc.).
Our system presently requires a fair amount of user interaction. We
hope to further reduce the time and effort to create these anima-
tions by exploiting continued advances in intelligent image selec-
tion and matting algorithms such as GrabCut [Rother et al. 2004]
or Lazy Snapping [Li et al. 2004]. Furthermore, an automated or
semi-automated region classification to identify features such as
foreground tree branches and water would enable a much more
automated process. For example, one could imagine automatically
identifying the “white water” of a waterfall, and then automatically
animating the waterfall. For a lake with a simple boundary, such as
in Figure 1(a), it might also be possible to automatically segment
the the water region by identifying reflections.
Another possibility would be to use multiple pictures as input.
Most modern digital cameras have a “motor-drive” mode that al-
lows users to take high-resolution photographs at a restricted sam-
pling rate, around 1–3 frames per second. From such a set of pho-
tographs we might be able to automatically segment a picture into
several coherently moving regions and figure out the motion param-
eters from the sample still images. It would also be interesting to
combine high-resolution stills with lower-resolution video to pro-
duce attractive animations. Our approach could also be combined
with “Tour into the picture” to provide an even richer experience,
with the ability to move the camera and less constrained perspective
planes.
In conclusion, we have shown the ease with which it is possible
to breathe life into pictures, based on recently developed matting,
inpainting, and stochastic modeling algorithms. We hope that our
work will inspire other to explore the creative possibilities in this
rich domain.

Acknowledgments
The authors wish to thank Wil Li for narrating our video, and Mira
Dontcheva for user-testing our segmentation and inpainting sytem.
We would also like to thank the reviewers for their helpful com-
ments. This work was supported by the University of Washington
Animation Research Labs, Washington Research Foundation, NSF

grant CCR-0098005, NSC 94-2213-E-002-051, NSC 93-2622-E-
002-033 and an industrial gift from Microsoft Research.

References
AOKI, M., SHINYA, M., TSUTSUGUCHI, K., AND KOTANI, N. 1999.

Dynamic texture: Physically-based 2D animation. In ACM SIGGRAPH
1999 Conference Sketches and Applications, 239.

BARRETT, W. A., AND CHENEY, A. S. 2002. Object-based image editing.
ACM Transactions on Graphics 21, 3, 777–784.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER, C.
2000. Image inpainting. In Proceedings of ACM SIGGRAPH 2000, 417–
424.

CHUANG, Y.-Y., CURLESS, B., SALESIN, D. H., AND SZELISKI, R.
2001. A Bayesian approach to digital matting. In Proceedings of IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR) 2001, vol. II, 264–271.

CRIMINISI, A., REID, I. D., AND ZISSERMAN, A. 2000. Single view
metrology. International Journal of Computer Vision 40, 2, 123–148.

CRIMINISI, A., PEREZ, P., AND TOYAMA, K. 2003. Object removal
by exemplar-based inpainting. In Proceedings of IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR) 2003,
vol. II, 721–728.

DRORI, I., COHEN-OR, D., AND YESHURUN, H. 2003. Fragment-based
image completion. ACM Transactions on Graphics 22, 3, 303–312.

FEYNMAN, R. P., LEIGHTON, R. B., AND SANDS, M. 1964. The Feynman
Lectures On Physics, Volume II: Mainly Electromagnetism and Matter.
Addison Wesley, Reading, Mass.

FREEMAN, W. T., ADELSON, E. H., AND HEEGER, D. J. 1991. Mo-
tion without movement. Computer Graphics (Proceedings of ACM SIG-
GRAPH 91) 25, 4, 27–30.

GRIFFITHS, D., 1997. Lake java applet. http://www.jaydax.co.uk/tutorials/
laketutorial/dgclassfiles.html.

HATHAWAY, T., BOWERS, D., PEASE, D., AND WENDEL, S., 2003.
http://www.mechanicalmusicpress.com/history/pianella/p40.htm.

HORRY, Y., ANJYO, K.-I., AND ARAI, K. 1997. Tour into the picture:
using a spidery mesh interface to make a nimation from a single image.
In Proceedings of ACM SIGGRAPH 1997, 225–232.

JIA, J., AND TANG, C.-K. 2003. Image repairing: Robust image synthesis
by adaptive ND tensor voting. In Proceedings of IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR) 2003,
vol. I, 643–650.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture: a two-level
statistical model for character motion synthesis. ACM Transactions on
Graphics 21, 3, 465–472.

LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy snapping.
ACM Transactions on Graphics 23, 3, 303–308.

LITWINOWICZ, P., AND WILLIAMS, L. 1994. Animating images with
drawings. In Proceedings of ACM SIGGRAPH 1994, 409–412.

MASTIN, G. A., WATTERBERG, P. A., AND MAREDA, J. F. 1987. Fourier
synthesis of ocean scenes. IEEE Computer Graphics and Applications
7, 3, 16–23.

MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent scissors for
image composition. In Proceedings of ACM SIGGRAPH 1995, 191–198.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001. Image-based
modeling and photo editing. In Proceedings of ACM SIGGRAPH 2001,
433–442.

PORTER, T., AND DUFF, T. 1984. Compositing digital images. Computer
Graphics (Proceedings of ACM SIGGRAPH 84) 18, 4, 253–259.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. Grabcut — inter-
active foreground extraction using iterated graph cuts. ACM Transactions
on Graphics 23, 3, 309–314.

RUZON, M. A., AND TOMASI, C. 2000. Alpha estimation in natural im-
ages. In Proceedings of IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR) 2000, 18–25.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video
textures. In Proceedings of ACM SIGGRAPH 2000, 489–498.

SHADE, J., GORTLER, S., HE, L.-W., AND SZELISKI, R. 1998. Layered
depth images. In Proceedings of ACM SIGGRAPH 1998, 231–242.

SHINYA, M., AND FOURNIER, A. 1992. Stochastic motion – motion under
the influence of wind. Computer Graphics Forum 11, 3, 119–128.

SHINYA, M., MORI, T., AND OSUMI, N. 1998. Periodic motion synthesis
and Fourier compression. The Journal of Visualization and Computer
Animation 9, 3, 95–107.

SIMIU, E., AND SCANLAN, R. H. 1986. Wind Effects on Structures. John
Wiley & Sons.

SOATTO, S., DORETTO, G., AND WU, Y. N. 2001. Dynamic textures.
In Proceedings of IEEE International Conference on Computer Vision
(ICCV) 2001, 439–446.

STAM, J., AND FIUME, E. 1993. Turbulent wind fields for gaseous phe-
nomena. In Proceedings of ACM SIGGRAPH 1993, 369–376.

STAM, J. 1995. Multi-Scale Stochastic Modelling of Complex Natural Phe-
nomena. PhD thesis, Dept. of Computer Science, University of Toronto.

STAM, J. 1997. Stochastic dynamics: Simulating the effects of turbulence
on flexible structures. Computer Graphics Forum 16, 3, 159–164.

SUN, M., JEPSON, A. D., AND FIUME, E. 2003. Video input driven
animation (VIDA). In Proceedings of IEEE International Conference on
Computer Vision (ICCV) 2003, 96–103.

SZUMMER, M., AND PICARD, R. W. 1996. Temporal texture modeling.
In Proceedings of IEEE International Conference on Image Processing
(ICIP) 1996, vol. 3, 823–826.

TESSENDORF, J. 2001. Simulating ocean water. ACM SIGGRAPH 2001
course notes No. 47 Simulating Nature: Realistic and Interactive Tech-
niques.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J. 2003.
Keyframe control of smoke simulations. ACM Trans. Graph. 22, 3, 716–
723.

WANG, Y., AND ZHU, S. C. 2003. Modeling textured motion: Particle,
wave and sketch. In Proceedings of IEEE International Conference on
Computer Vision (ICCV) 2003, 213–220.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-
structured vector quantization. In Proceedings of ACM SIGGRAPH
2000, 479–488.

