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Abstract

In this paper, we show how wavelet analysis can be used to provide
an efficient solution method for global illumination with glossy and
diffuse reflections. Wavelets are used to sparsely represent radiance
distribution functions and the transport operator. In contrast to pre-
vious wavelet methods (for radiosity), our algorithm transports light
directly among wavelets, and eliminates the pushing and pulling
procedures.

The framework we describe supports curved surfaces and spatially-
varying anisotropic BRDFs. We use importance to make the global
illumination problem tractable for complex scenes, and we use a fi-
nal gathering step to improve the visual quality of the solution.

1 Introduction

Radiosity algorithms assume that all reflection is ideally diffuse.
This assumption, while making the computation of global illumina-
tion more tractable, ignores many important effects, such as glossy
highlights and mirror reflections. Though more expensive, the sim-
ulation of directional reflection is essential for realistic image syn-
thesis.

One promising approach to solving directional light transport is
the finite element method, as pioneered by Immel et al. [15] and
Shao et al. [20], and later refined by Sillion et al. [21]. Recently,
Gortler et al. [13] and Schröder et al. [19] proposed an algorithm
based on wavelets that focuses effort on the significant energy trans-
fers, for the simpler case of radiosity. These works use the “non-
standard” decomposition of the transport operator, and represent ra-
diosity as a weighted sum of scaling functions. In addition, they re-
quire the use of “Push” and “Pull” procedures to distribute radiosity
among levels of a hierarchy in each iteration.

Building on this work, we have developed a four-dimensional
wavelet representation for spatially- and angularly-varying radi-
ance distributions. However, in contrast to the approach taken by
Gortler et al., our algorithm uses the “standard” decomposition of
the transport operator, and represents radiance in terms of wavelets
rather than scaling functions. Our method does not require the push-
ing and pulling procedures.

We also incorporate importance-driven refinement, as described by
Smits et al. [22] for radiosity, to avoid unnecessary work in comput-
ing viewpoint-dependent solutions of complex scenes. In addition,
our implementation supports curved surfaces and anisotropic bidi-
rectional reflectance distribution functions. The framework we de-
scribe naturally accommodates spatial variations, described by tex-
ture maps, in both emission and reflectance. Finally, to improve the
visual quality of the image, a final gathering step is used [18].
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2 Finite Elements for Radiance

In this section, we briefly review the equation that governs light
transport, and describe how the finite element method can be used
to compute approximate solutions.

2.1 Radiance

Let x, y, and z be points in space. Radiance L(y ! z) is defined
as the power emanating from y, per unit solid angle in the direction
towards z, per unit projected area perpendicular to that direction.

At equilibrium, radiance satisfies the following transport equa-
tion [10]:

L(y! z) = Le(y! z) +

Z
x

fr(x, y, z) G(x, y) L(x! y) dx. (1)

In this equation, Le(y! z) is the emitted radiance from y in the di-
rection towards z, and dx is an infinitesimal area around pointx. The
term fr(x, y, z) is the bidirectional reflectance distribution function,
or BRDF, describing the ratio of reflected radiance (in the direction
towards z) to the differential irradiance (from the direction ofx) that
produces it. Finally, the geometric term G(x, y) is given by

G(x, y) � V(x, y) �
cos �x cos �y

jjx� yjj2
,

where V(x, y) is a visibility term that is 1 or 0, depending on whether
or not x and y are visible to one another, and�x and �y are the angles
between the line segment xy and the respective normals of differ-
ential areas at x and y. The geometric term describes how radiance
leaving a differential area at x in the direction towards y arrives as
differential irradiance at y.

The transport equation (1) can be rewritten in operator form as

L = Le + T L. (2)

Here, the transport operator T is defined by

(T L)(y! z) �

Z
x

fr(x, y, z) G(x, y) L(x! y) dx,

where (T L)(y ! z) denotes the result of T operating on L(x ! y)
to produce a function whose argument is (y! z).

2.2 Discretization

Let B(x! y) = (b1(x! y), b2(x! y), . . . ) be a basis for the space
of radiance distributions. The unknown radiance distribution can be
projected onto the basis B by writing L as a series expansion,

L(x! y) =
1X
i=1

`i bi(x! y).

This equation can be written in matrix form as L(x!y) = B(x!y)L,
where L is an infinite column matrix whose i-th entry is `i. When no



confusion can arise, we suppress the arguments and simply writeL =
BL.

In the original formulation of radiosity, piecewise-constant func-
tions were used as a basis [12]. In subsequent work on radiosity,
Zatz [26] and Troutman and Max [24] used orthogonal polynomials,
and Gortler et al. [13] used wavelets. In the more general context
of radiance, the distribution of light leaving a patch has both spa-
tial and angular variation. Immelet al. [15] used piecewise-constant
basis functions for both spatial and angular variation. Later, Sil-
lion et al. [21] used spherical harmonics for the angular variation
and piecewise-constant basis functions for the spatial variation. In
Sect. 3 we motivate and introduce our choice of basis, a wavelet ba-
sis for both spatial and angular variation.

Regardless of the choice of basis functions, we can obtain a system
of equations for the unknown entries of L by substituting L = BL
and Le = BLe into the transport equation (2), and using linearity of
the operator T to yield

BL = BLe + T (BL) = BLe + (T B)L.

Let hf j gi denote the standard inner product,
R

yx
f (x!y)g(x!y)dx dy.

If F = (f1, f2, : : :) and G = (g1, g2, : : :) are two row matrices of
functions, let [hF jGi] be the matrix whose ij-th entry is hfi j gji.
For clarity, we assume an orthonormal basis throughout this paper
(introduction of dual basis functions [7, 19] is necessary for non-
orthonormal bases). By applying the linear operator [hB j �i] to both
sides of the equation above and using orthonormality of the basis
functions, we arrive at the infinite system of linear equations

L = Le + TL, (3)

where T = [hB j T Bi] is an infinite matrix representing the transport
operator T . The rs-th entry of T is a transport coefficient, represent-
ing the influence of the coefficient of bs on the coefficient of br. It
can be written explicitly as

Tr s = hbr j T bsi

=

Z
xyz

br(y! z) fr(x, y, z) G(x, y) bs(x! y) dz dy dx, (4)

where the notation r  s is to emphasize that Tr s represents the
influence of the sender s on the receiver r.

3 A Wavelet Basis for Radiance

In this section we construct a basis for efficiently representing radi-
ance distributions. Recent results by Beylkinet al. [4, 5], Alpert [1],
Gortler et al. [13], Hanrahan et al. [14] and others indicate that sig-
nificant performance gains can be achieved using a multiresolution
basis. We first present some background on multiresolution analy-
sis, and then describe one-dimensional wavelet bases and how they
can be extended to four-dimensional bases for radiance distribu-
tions.

3.1 Multiresolution Analysis

Multiresolution analysis as formulated by Mallat [16] provides a
convenient framework for studying multiresolution bases. There
are two basic ingredients for a multiresolution analysis: an infinite
chain of nested linear function spaces V0 � V1 � V2 � � � � and an
inner product hf j gi defined on any pair of functions f , g 2 Vj. The
space Vj contains functions of resolution j, with resolution increas-
ing as j increases. Scaling functions refer to bases for the spaces Vj.
A function can be approximated by a sum of scaling functions.
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Figure 1 Some box functions �j
i(u) and Haar wavelets j

i (u).

Alternatively, we can represent the same approximation as coarse
scaling functions in V0 along with detail at finer and finer resolu-
tions. Detail is represented by functions in the orthogonal comple-
ment spaces Wj defined by

Wj � ff 2 Vj+1 j hf j gi = 0 8g 2 Vjg.

Wavelets refer to bases for the orthogonal complement spaces Wj;
the spaces Wj are therefore called wavelet spaces.

Orthogonal complements are often written as Vj+1 = Vj �Wj since,
intuitively, wavelet space Wj includes the functions that are in Vj+1

but “missing” from Vj. More formally, any function f j+1 2 Vj+1 can
be written uniquely as an orthogonal decomposition f j+1 = f j + f j

?,
where f j 2 Vj and f j

? 2 Wj. The space Vj can be fully decomposed
as

Vj = V0 �W0 � � � � �Wj�1.

A multiresolution basis for Vj can be formed by selecting a scaling
function basis for V0 and wavelet bases for the spacesW0, : : : , Wj�1.
The scaling functions spanning V0 represent coarse variation, while
the wavelets provide detail at increasing resolutions.

For a more complete introduction to wavelets and their applications
in computer graphics, see Stollnitz et al. [23].

3.2 Choice of Wavelet Basis

The simplest multiresolution basis in one dimension is the Haar
basis [13]. The space Vj consists of piecewise-constant functions
on [0, 1] with discontinuities atf0, 1=2j , 2=2j , : : : , 1g. The space Vj

is spanned by the Haar scaling functions �j
i(u), while the wavelet

space Wj is spanned by piecewise-constant wavelets j
i(u). A few

Haar scaling functions and wavelets are shown in Fig. 1.

There are many alternatives to the Haar basis, each with advantages
and disadvantages. One requirement for an efficient adaptive algo-
rithm is the availability of fast quadrature formulas for the scaling
functions and wavelets (and their duals, if non-orthonormal bases
are used). In addition, due to the high dimensionality of the radi-
ance transport problem, it is advantageous to have only one scaling
function in space V0: a single scaling function leads to a single inter-
action between two patches at the coarsest level, while (as shown in
Sect. 3.3) having two one-dimensional scaling functions leads to 16
four-dimensional scaling functions, requiring 256 interactions be-
tween two patches at the coarsest level. Finally, bounded-interval
wavelets are preferable to wavelets with unbounded support, since it
is unclear how radiance distributions would be artificially extended
beyond the geometric extent of surface patches.

Among the wavelet bases that have the advantages outlined above,
there are both continuous and discontinuous choices. There are cur-
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Figure 2 Mapping the hemisphere to the unit square: we use
gnomonic projection (a), followed by a radial “stretch” (b).

rently two families of bounded-interval continuous wavelets avail-
able in the literature: Daubechies wavelets adapted to the bounded
interval [9], and bounded-interval B-spline wavelets [8]. Note that
having continuous basis functions on each patch is not sufficient
to ensure a continuous solution: continuity must also be enforced
across boundaries of adjacent patches, or else the basis functions
must be defined over complex shapes with arbitrary topology (for
example, the complex floor shape in Fig. 4 in the color section).

We have experimented with bounded-interval B-spline wavelets [7],
Daubechies wavelets, and the Haar basis. Of these, the Haar ba-
sis has many advantages, including orthogonality, compact support,
and simple quadrature formulas. Although flatlets [13] have more
vanishing moments1 than the Haar basis, flatlets have wider support,
requiring costly quadrature formulas. Multiwavelets [13] are con-
structed from higher-order polynomials, which also require costly
quadrature formulas. The main disadvantage of the Haar basis, its
discontinuities, can be ameliorated by performing a final gathering
step during rendering [18].

3.3 A Four-Dimensional Wavelet Basis

Four-dimensional basis functions are required for representing ra-
diance distributions: two variables describe spatial variation across
a surface, and two variables describe angular variation. As is com-
mon, we split the surfaces into patches such that the spatial variables
on each patch can be parameterized on the unit square [0, 1]2. The
domain of the radiance distributions is then [0, 1]2�H2, where H2 is
the unit hemisphere. By mapping H2 onto [0, 1]2, we can use tensor
products of one-dimensional basis functions for angular variations,
just as we do for spatial variations.

We use gnomonic projection to map between points inH2 and points
on a disc with radius �=2. As shown in Fig. 2(a), gnomonic projec-
tion maps great circles through the pole of H2 to radial lines, and
preserves arc length along these curves. We use this map because it
is easily computed and introduces only mild distortion. This projec-
tion is followed by a radial “stretch” of the disc to exactly cover the
unit square, as shown in Fig. 2(b). The composition of these map-
pings is a continuous and invertible mapping between H2 and the
unit square.

Sillion et al. [21] use spherical harmonics as basis functions for an-
gular variations in radiance. These functions have the advantage of
being naturally defined on the sphere, thereby eliminating the need
for projection to the plane. The number of basis functions to repre-
sent a directional radiance distribution with spherical harmonics is
comparable to the number needed in the Haar wavelet basis, so there
is no immediate advantage of using the Haar wavelet basis. How-
ever, the Haar wavelets have local support while spherical harmon-
ics have global support. Therefore, the transport matrix is dense for
a spherical harmonics basis but sparse for a Haar wavelet basis.

We use the “nonstandard” wavelet basis [4], constructed from ten-
sor products of univariate basis functions as follows. Let u =
(u1, u2, u3, u4) denote a point in [0, 1]4, and let i = (i1, i2, i3, i4) de-
note a 4-component multi-index of integers. The four-dimensional

1As discussed by Alpert [1] and Gortleret al. [13], for a smooth operator,
an increased number of vanishing moments will increase the sparsity of the
discrete approximation to that operator.

scaling functions for Vj take the form

����j
i(u) � �j

i1
(u1)�j

i2
(u2)�j

i3
(u3)�j

i4
(u4).

That is, the scaling functions for resolution j consist of all possi-
ble products of the one-dimensional scaling functions for resolu-
tion j. The four-dimensional wavelets spanning the orthogonal com-
plement Wj are formed by taking all other products of scaling func-
tions and wavelets for resolution j. These wavelets consist of 15
types:

��� j
i(u), �� �j

i(u), ��  j
i(u), : : : ,     j

i(u).

We take as our basis B the set of basis functions spanning
V0, W0, W1, : : : for each patch in the scene.

4 A Wavelet Radiance Algorithm

We now turn to our wavelet-based radiance solution method. In
some respects, our algorithm is similar to the approach described by
Gortler et al. [13] for wavelet radiosity. However, there are a num-
ber of ways—in addition to the higher dimensionality—in which
our algorithm differs significantly from previous radiosity work.
Most significantly, our use of the standard operator decomposition
eliminates the need for pushing and pulling procedures, and permits
refinement of links at either end. We also describe how our refine-
ment oracle serves to drive an adaptive quadrature scheme.

4.1 Main Algorithm

Initially, we project Le into space V0, the space spanned by the
scaling functions, to give L̃e. We also compute (as described in
Sect. 4.2) the entries of T corresponding to interactions of scaling
functions in V0 with one another, giving T̃. Quantities with a tilde
are approximate, both because they represent truncated versions of
infinite matrices and because they are computed numerically.

The main part of the algorithm alternates between computing an ap-
proximate radiance solution L̃ and improving the finite representa-
tion of the transport operator T̃:

procedure WaveletRadiance(T̃, L̃e):
L̃  L̃e
repeat

L̃  GaussSeidel(T̃, L̃, L̃e)
T̃  Refine(T̃, L̃)

until visual convergence of L̃
end procedure

The main loop iterates until visual convergence is achieved, that is,
until further refinement does not change the computed image sig-
nificantly. We use Gauss-Seidel iteration to solve an approximate
version of the discrete transport equation (3) given by

(I� T̃) L̃ = L̃e.

The main algorithm calls on a refinement oracle, described in
Sect. 4.3, to refine the radiance transport matrix.

Just as in previous hierarchical radiosity algorithms [10], the matri-
ces T̃, L̃, and L̃e are never formed explicitly. Entries of L̃ and L̃e are
associated with the surface patches, while entries of T̃ are stored as
“links” between radiance coefficients.

Note that the algorithm presented by Gortler et al. [13] requires
“Push” and “Pull” procedures to distribute transported radiosity
among the levels of a hierarchy between Gauss-Seidel iterations.
By using the standard operator decomposition and representing ra-
diance in terms of wavelets rather than scaling functions, our al-
gorithm eliminates the pushing and pulling procedures. On the
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other hand, the nonstandard operator decomposition is in theory
more sparse than the standard decomposition for an operator that
is smooth. It is not clear whether or not this theoretical advantage
of the nonstandard decomposition has a practical implication for a
piecewise-smooth operator like the light transport operator.

4.2 Computing Transport Coefficients

Each transport coefficient Tr s is defined in Equation (4) as an inner
product that results in a six-dimensional integral. For example, the
influence of wavelet  � �i,s(us) on wavelet  ���i,r(ur) is Tr s =
h ���i,r j T  � �i,si. If we write u = (x,!), where x = (u1, u2)
denotes spatial components and! = (u3, u4) denotes angular com-
ponents, then the inner product takes the form

Tr s = h ���i,r j T  � �i,si (5)

=

Z
 ���i,r(xr ,!r) fr(xs, xr,!r) G(xs, xr) � �i,s(xs,!s) d!r dxr dxs

=

Z �Z
 ���i,r(xr ,!r) fr(xs, xr,!r) d!r

�

�G(xs , xr) � �i,s(xs,!s) dxr dxs.

Here !s is considered to be a function of xs and xr, since the direc-
tion at the sender must lie along the line between sending and re-
ceiving positions. Note that only the BRDF and the receiving basis
function depend on !r. Our numerical integration routine samples
these two functions in its innermost loop, while the remaining func-
tions are evaluated only as the positional variables change.

We approximate integrals such as the one above using (slightly
jittered) uniform sampling of the integrand. More accurate rules
such as Gauss-Legendre or Gauss-Kronrod quadrature could also be
used [7, 13, 26].

4.3 Refinement

In many applications of wavelets in numerical analysis, the goal is
to obtain a sparse representation of a given matrix, thereby making
repeated matrix–vector multiplications much faster [4]. In wavelet-
based approaches to global illumination, the cost of explicitly con-
structing an entire transport matrix far outweighs the expense of any
matrix–vector multiplications that follow. Therefore, it is essential
to restrict the number of computed transport coefficients.

The goal of the refinement oracle is to determine where to refine T̃
to better approximate T. The two most important sources of error
are:

� truncation error due to significant entries missing from T̃, and

� quadrature error in computing the entries of T̃.

In this section we describe how our oracle reduces truncation error.
Section 4.4 outlines a method for simultaneously reducing quadra-
ture errors.

Our refinement oracle is a generalization of the brightness refine-
ment criterion for hierarchical radiosity [14] and the oracle used by
Gortler et al. for wavelet radiosity [13]. The idea is to estimate the
amount of light that would be transported if a new transport coeffi-
cient were to be added to T̃. If this quantity falls below some thresh-
old, then it is likely that the expensive computation of the transport
coefficient can be avoided without resulting in significant error in
the solution.

For a given link � between a pair of sending and receiving basis
functions, we consider refining both at the sending end and at the

receiving end of�. In either case, we multiply a sending basis func-
tion coefficient by an estimate of the transport coefficient for the
link �new under consideration. In our implementation, the transport
coefficient for �new is estimated by the variation in the kernel evalu-
ations for �. (This variation is stored along with the transport coef-
ficient on link �.) By contrast, Gortler et al. use a polynomial inter-
polant rather than sample variation to estimate kernel smoothness.

Suppose the oracle decides to refine the receiving end of a link.
Then new links are created as follows: When refining a link to a
scaling function in space V0, links to all 15 wavelets in space W0

are created. When refining a link to a wavelet in space Wj, links to
the overlapping wavelets of the same type in Wj+1 are created. (In
the case of the Haar basis, 24 = 16 new links are created.) A similar
process occurs when the oracle decides refinement is needed at the
sending end of a link.

Note that our refinement procedure can refine each end of a link
independently, and in our algorithm links are never destroyed. By
contrast, the approach described by Gortler et al. removes a link at
one level of the hierarchy and replaces it with multiple links at a finer
level of detail, thereby refining both ends simultaneously.

4.4 Adaptive Quadratures

If we always use a numerical integration rule of high accuracy to
compute transport coefficients, computation may be wasted evalu-
ating the kernel for many interactions that have little effect on the
final image. On the other hand, the significant coefficients have to
be computed accurately; otherwise, the solution will not converge to
the correct value. It is therefore advantageous to use an adaptive in-
tegration technique that reduces error only for significant transport
coefficients.

For time efficiency, we would like to store the values of all kernel
evaluations that have already been computed in order to reuse them
for improved quadratures. Unfortunately, space limitations prohibit
this approach. Instead, we store only the evaluations from the most
recently computed transport coefficient. These new kernel evalua-
tions can be used to update any transport coefficient whose sending
and receiving basis functions overlap with those of the new transport
coefficient.

When a transport coefficient Tr s is refined and a new entry Tr0 s0

is computed, we check whether or not a transport coefficient be-
tween basis functions with the same supports asr0 and s0 has already
been computed. If so, we need do no more; if not, the samples used
to compute Tr0 s0 are used to update Tr s. Updating a transport co-
efficient is done in two steps. First, the original samples of the inte-
grand within the supports of r0 and s0 are recomputed and subtracted
from Tr s. Next, the new kernel evaluations are multiplied by the
appropriate basis functions, weighted by area, and added to Tr s.
This approach to adaptive quadrature is less expensive than simply
recomputing Tr s more accurately upon refinement, since we reuse
the costly kernel samples whenever possible.

Although we have only implemented this adaptive integration tech-
nique for the Haar basis, it could be extended to other wavelet bases.
However, it is not immediately apparent how this approach would
generalize to integration rules using nonuniform sampling.

5 Implementation features

In this section, we describe features of our implementation. Ob-
jects in the scene can consist of flat quadrilaterals and tensor-product
Bézier patches, and can have isotropic or anistropic reflection. The
light sources can have spatial and angular variation. We use impor-
tance to restrict refinement to the light transports that influence the
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Figure 3 Ward’s reflection model: (a) anisotropic reflection with
�u = 0. 1,�v = 0. 5; (b) isotropic reflection with�u = �v = 0. 2;
(c) anisotropic reflection with�u = 0. 5,�v = 0. 1.

final image the most, and employ a final gathering step to improve
the visual quality of the solution.

5.1 Surface Geometry

Any parametric surface representation can be used by our algorithm,
so long as we are able to compute a position, surface normal, and dif-
ferential area associated with a given parametric point (u1, u2), and
determine the intersection of a ray with the surface. Our implemen-
tation currently handles tensor-product Bézier patches and quadri-
laterals. It would also be striaghtforward to add nonuniform rational
B-spline surfaces. The images in Fig. 3 show a teapot consisting of
28 Bézier patches.

5.2 Reflection Models and Texture Maps

We use the Ward isotropic and anisotropic reflection models [25]
since they are physically valid and fast to evaluate. Examples of this
reflection model can be seen in Fig. 3. In addition, we use spatially
varying reflectances to simulate details of the materials in the scene.
We take the BRDF to be the product of a spatially-varying texture
and the angular variation of the Ward model. Figure 4 demonstrates
both texture-mapped and anisotropic reflectance functions.

In the course of numerically approximating a transport coefficient,
the geometric term and the BRDF are sampled at a number of points.
The reflectance for each point is determined by a look-up in a texture
map, multiplied by the angular variation given by Ward’s model.
Gershbein et al. [11] present an alternative approach, using wavelet
decompositions of textures for radiosity.

5.3 Light Sources

By storing the wavelet decomposition of an image as the initial coef-
ficients on a patch, we can model a light source that emits a spatially-
varying radiance (like a television screen). In general, not all co-
efficients of the emitting image will have links from them, but the
coefficients are ready to be transported into the scene if the refine-
ment procedure so decides. This technique allows a complex envi-
ronment to be displayed using simple geometry.

A simple approach to angular variation is to let the emission depend
upon direction. For example, we model “spotlights” using a Phong-
like function, in which emission is proportional to some power of
the cosine of the angle between the emission direction and the sur-
face normal of the patch. The spotlights appear dark from most di-
rections because of the very narrow distribution of light they emit.

We demonstrate the use of spotlights and a spatially-varying emit-
ter (the outdoor environment seen through the window) in Fig. 4.
More complex effects such as a slide projector or sunlight through
a stained-glass window could be modeled by combining spatial and
angular variations in an emitter.

5.4 Importance

In order to maintain a tractably small problem for complex scenes,
we use importance-driven refinement for a view-dependent solu-
tion. Importance was described in Smits et al. [22] for radiosity
and in Christensen et al. [6], Aupperle and Hanrahan [2], and Pat-
tanaik [17] for radiance. Briefly, importance measures the fraction
of light leaving a point that will reach the eye.

The algorithm combines estimates of importance and radiance to
drive the global solution, allowing it to exploit view-dependent in-
formation as part of an adaptive refinement scheme. We use exitant
directional importance [6], since it satisfies the same transport equa-
tion as radiance. Importance can therefore be discretized in the same
manner as radiance and transported by the same links. The only dif-
ference between importance and radiance is that radiance is emitted
by light sources, while exitant directional importance is emitted by
the eye.

Smits et al. [22] showed that importance gives a substantial speed-
up for a complex diffuse scene. For glossy reflections, the gain in
speed is even greater, due to the directionality of radiance and im-
portance: a directional interaction is refined only if the amount of
transported radiance in that direction is both large and important.
Note that we can get arbitrarily large speed-ups, compared to a so-
lution obtained without using importance, by choosing a sufficiently
complex scene where many parts do not contribute significantly to
the final image.

The first three images of Fig. 4 show a complex scene viewed from
above. The radiance emitted by the spotlights and reflected in the
scene is shown in Fig. 4(a). Importance is emitted from the eye and
reflected to the important parts of the scene, as shown in Fig. 4(b).
This picture demonstrates how small a fraction of the model signif-
icantly influences the solution visible from the eye. Figure 4(c) is a
gray-scale encoding of the number of links between the basis func-
tions on each surface patch. This “refinement image” verifies that
most work is performed in areas that are both bright and important.

5.5 Final Gather

Following the ideas that Reichert [18] used for radiosity, we have
implemented a final radiance gathering step. For each pixel in the
image, we perform a final gathering of light to the surface point that
corresponds to the midpoint of the pixel. For each sending basis
function, we evaluate a simplified version of the integral in Equa-
tion (5). Since the receiving position is fixed and the radiance is
reflected towards the eye, the integration is over only sending po-
sitions.

Formally, this final gather corresponds to changing to a piecewise-
constant basis, where the support of each basis function is the pro-
jection of a pixel onto a surface in the scene. This basis is tailored to
be visually pleasing. The final gather smooths the discontinuities in
the wavelet representation and makes highlights, textures, and shad-
ows crisper. The improvement brought about by the final gather can
be seen by comparing Figs. 4(d) and 4(e).

Another way of thinking about the final gathering step is in the con-
text of distribution ray tracing. When a ray emanating from the eye
intersects a surface in the scene, a group of reflected rays are traced
from the intersection point to points on other surfaces in the scene.
A constant number of rays are cast to the support of each basis func-
tion in the radiance solution, so the directions of the rays are guided
by the radiance solution,. Thus, the most refined areas of the radi-
ance solution are sampled the most by the distribution of reflected
rays. Note that the costly “explosion” of the number of recursive
bounces used in distribution ray tracing is avoided, and that the fi-
nal gather requires no additional memory.
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(a) (b) (c)

(d) (e)

Figure 4 Solutions for a complex scene: (a) radiance seen from above; (b) importance seen from above; (c) gray-scale representation of refine-
ment; (d) radiance solution without final gather; (e) radiance solution with final gather.

6 Results

As a test scene, we used a maze of hallways with a glossy Bézier-
patch teapot in the center (see Fig. 4). The scene consists of 152
patches, including 28 Bézier patches, and has 8,802 mutually visi-
ble pairs of patches. The teapot’s reflectance function is anisotropic
with specularities �u = 0. 2 and �v = 0. 5, specular reflectivity
�s = (0. 1, 0. 1, 0. 1), and diffuse reflectivity �d = (0. 2, 0. 15, 0).
The illumination consists of 24 “spotlights,” patches that emit direc-
tional radiance. There is a patch outside the window that emits light
according to a scanned image of an outdoor scene, giving the ap-
pearance of a full environment beyond the window. There is also a
small patch representing the eye in the hallway in front of the teapot.
The eye patch emits importance in the direction of the teapot, just
like a spotlight emits light.

The program uses the four-dimensional wavelet basis described in
Sect. 3.3 and begins by creating 8,802 links between scaling func-
tions in V0. In the first refinement, 7,491 new links are created,
and in the next refinement 123,560 new links are created. Running
times on a DEC Alpha machine were approximately five minutes to
compute the initial transport coefficients between scaling functions
in V0, then 110 minutes to iterate the main algorithm and refine as
far as V4 in important parts of the scene, and 15 minutes to render a
600 � 600 image using ray casting and evaluation of the solution.
The final gather takes another two hours, so the time for the final
gather is comparable to the computation-time for the solution.

Note the interreflections: there is significant color bleeding from the
brightly illuminated teapot to the dim ceiling, and the white squares
on the pedestal are brightly reflected in the bottom of the teapot.

7 Conclusion

We have presented an efficient method for simulating light trans-
port in an environment with diffuse and glossy reflections. We use
wavelet basis functions to represent the four-dimensional radiance
distribution associated with surfaces in a scene. Wavelets adapt to
the solution, so in areas with little spatial or angular variation a
coarse solution is computed, and in areas with greater detail a more
refined solution is found.

In contrast to previous algorithms for wavelet radiosity, we use a
standard decomposition of the transport operator, and we represent
radiance as a weighted sum of wavelets rather than scaling func-
tions. We do not use pushing and pulling procedures, and we are
able to refine just that end of a link for which the estimated improve-
ment is greatest. In order to obtain accurate numerical integration
without the expense of extraneous samples, we have also developed
adaptive integration rules for the transport coefficients.

Radiance transport is formulated as a multidimensional Fredholm
integral equation of the second kind. Thus, our approach may ben-
efit other fields in which such equations arise—numerical analysis,
finite element analysis, and particle transport simulation, for exam-
ple.

There are a number of areas in which we foresee future work. A
comparison of wavelet bases for radiance should examine rates of
convergence, quadrature expense and accuracy, continuity proper-
ties, and the amount of work required to obtain a solution of a given
accuracy. Standard and nonstandard operator decomposition should
be compared for a piecewise-smooth kernel typical of global il-
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lumination with partial occlusion. It would also be interesting to
compare wavelets for two-point transport with a three-point trans-
port algorithm, as described by Aupperle and Hanrahan [3, 2] for
piecewise-constant basis functions. Finally, an investigation of the
final gathering step should determine whether or not it improves the
numerical accuracy of the solution in addition to improving its vi-
sual appearance.

There are many possible extensions to the present algorithm.
Wavelet bases are not suited to the representation of ideal specular
reflections. Instead, a ray tracing step for ideal specular reflection
could be incorporated in the same fashion as in Sillion et al. [21].
Furthermore, surfaces that transmit light in addition to reflecting it
could be incorporated into our algorithm by using a wavelet basis
defined for the entire sphere of directions.
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