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Figure 1: (a) Input image; (b) Image decomposed into components; (c) Best match for each component found from training examples; (d)
Corresponding drawings of components in (c); (e) Composite drawing of separate parts as the final drawing.

Abstract
Creating a portrait in the style of a particular artistic tradition or a
particular artist is a difficult problem. Elusive to codify algorith-
mically, the nebulous qualities which combine to form artwork are
often well captured using example-based approaches. These meth-
ods place the artist in the process, often during system training, in
the hope that their talents may be tapped.

Example based methods do not make this problem easy, how-
ever. Examples are precious, so training sets are small, reducing
the number of techniques which may be employed. We propose a
system which combines two separate but similar subsystems, one
for the face and another for the hair, each of which employs a
global and a local model. Facial exaggeration to achieve the desired
stylistic look is handled during the global face phase. Each subsys-
tem uses a divide-and-conquer approach, but while the face subsys-
tem decomposes into separable subproblems for the eyes, mouth,
nose, etc., the hair needs to be subdivided in a relatively arbitrary
way, making the hair subproblem decomposition an important step
which must be handled carefully with a structured model and a de-
tailed model.
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1 Introduction
We describe in this paper an interactive computer system for gen-
erating human portrait sketches. Our system takes a human face
image as input and outputs a sketch that exhibits the drawing style
of a set of training examples provided by an artist. Our artist created
the training set in the style of Japanese cartooning, or “manga”. Our
training data has two prominent characteristics. First, each exam-
ple sketch is a highly abstract representation of the original source
image, using realistic as well as exaggerated features to achieve
an evocative likeness. Second, the training set contains a limited
number of examples, as is often the case in example-based art ap-
plications. From this limited set, we can construct sketches for any

image that satisfies certain input requirements.
Our system tackles this problem with a learning based rendering

approach. Although there have been several successful similar ef-
forts, discovering the relation between the source portrait and the
corresponding sketch is a problem worth continued study. The Im-
age Analogy [11] technique synthesizes a new “analogous” image
B′ that relates to an input image B in “the same way” as the exam-
ple image A′ relates to A. This technique, while good at mimicking
the local relationships from image pair (A′,A) to (B′,B), lacks the
power to capture the high level structural information present in
our data. Another system, Example Based Sketch Generation [5],
assumed a Markov Random Field (MRF) property in order to use
non-parametric sampling of sketch point. It does not address face
exaggeration and hair rendering which is handled in our system.
Where our work improves upon the existing body in this area is
this: in addition to making use of local information, we use the
inherent structure in the data for a global synthesis step.

We propose a composite sketching approach for our system. The
basic idea is to first decompose the data into components that are
structurally related to each other, such as the eyes or mouth. Af-
ter these have been independently processed, these components are
carefully recomposed to obtain the final result. These two steps for
both face and hair form the core of our system. Generating evoca-
tive sketches of hair is one of our primary results. The principal
advantage of our component-based approach is its capacity to cap-
ture large-scale correlation within the components and its ability to
create an overall picture in the style intended by the artist. This can
be seen in Figure 1.

2 Related work
NPR and digital arts. Many non-photorealistic rendering (NPR)
techniques have been proposed to generate digital artwork. Sys-
tems have been created to emulate watercolor and impressionism.
More relevant to our work, however, are the NPR results of pen-
and-ink [8; 19; 20; 22; 23] and technical illustration [17; 18]. NPR



techniques have also been used to depict facial images with an artis-
tic style. Examples include digital facial engraving [15] and carica-
ture generation [3]. However, most of these are concerned with em-
ulating traditional artist tools to assist users in drawing pictures with
a certain style. There are rare attempts to generate digital paintings
by learning from artists.

Modeling and rendering hairs. Hair is an integral part of a
person’s appearance. A portrait does not look natural without a
realistic-looking hair style. To date, hair rendering remains one of
the most difficult graphics problems, although much progress has
been made on photo-realistic hair rendering [12]. Most of the work
in this area is based on 3D hair model editing and rendering. Recent
work by Grabli et al. [10] attempts to automatically reconstruct a
hair model from photographs. Little work has been done on non-
photo realistic hair rendering from an input image, which is the
focus of this paper, especially in an stylized way.

Example-based learning and synthesis. Recently, a number of
example-based approaches have been proposed for texture synthe-
sis and image synthesis including image analogies by Hertzmann et
al. [11], face hallucination by Baker and Kanade [2], and learning
using low-level vision [9]. The basic idea is to analyze the statistical
relationship between the input and output images, and model the de-
tails of the artist’s style with the learned statistical model rather than
with hand-crafted rules. Indeed, it is natural to specify artistic styles
by showing a set of examples. Chen et al. [5], for instance, devel-
oped an example-based facial sketch generating system. Using in-
homogeneous non-parametric sampling, they were able to capture
the statistical likelihood between the sketch and the original image,
which allowed them to fit a flexible template to generate the sketch.
However, this method is limited to generating sketches with stiff
lines. Chen et al. [4] recently improved their system by combining
features in both sources and drawings.

3 System Framework

Our goal when we designed our algorithms was to create a system
that could leverage the artist’s skill with a high degree of automa-
tion after an initial training phase. Our artist created a training set
designed to span the gamut of east Asian female faces. Based in
part on our artist’s knowledge, we divided our portrait system into
a face subsystem and a hair subsystem.

The face subsystem divides the problem into meaningful compo-
nents, by segmenting the problem into subproblems for each of the
natural facial features, i.e. eyes, mouth, hair. A component-level
model handles the overall arrangement, and a local model adjusts
this initial result. The hair subsystem, on the other hand, segments
the problem in a more-or-less arbitrary way, based on an insight of
our artist. These subproblems are tackled independently, but care
must then be taken when reassembling the hair so as to create a uni-
form whole. The face subsystem is covered in the next section, and
the hair subsystem in Section 5.

4 Composing a Face

Suppose {(I′i , Ii), i = 1 : n} is the training set, where each Ii is a color
face image and I′i the corresponding sketch drawn by the artist. Our
objective is to construct a model

p(I′|I,(I′i , Ii), i = 1 : n) (1)

to take an input image I and generate a sketch I′ that matches the
style of the training examples.

We split the model into two layers, global and local. The global
layer aims to capture how the artist places each face element in the
sketch image. The local layer tries to mimic how the artist draws
each independent element locally. More formally, we have assumed

Figure 2: The framework of face subsystem.

the following

p(I′|I,(I′i , Ii)) = p(I′l |Il ,(I′li , Il
i ))p(I′g|Ig,(I′gi , Ig

i )), (2)

which indicates that the global and local styles of a drawing are
independent and their models could be constructed separately.

The overall steps of the face subsystem are shown in Figure 2.
In the training phase, we decompose the training example into a
global set {I′gi , Ig

i } and a local set {I′li , Ig
i }. In the synthesis phase,

each input image is first split into a global feature vector Ig and a
local feature vector Il . Then we explore the global set {I′gi , Ig

i } to
find for Ig a good match I′g in the sketch space. In the same way, the
match for Il can be found as I′l . Finally, I′g and I′l are recomposed
to form the final result.

4.1 Drawing the facial component with the local model
In practice, a human face is decomposed semantically into 6 local
components, one for each of the major facial elements, of 4 types.
They are left & right eyebrows, left & right eyes, a nose, and a
mouth. Each type of feature is further divided into several proto-
types based on their appearance in the training data.

As shown in Figure 4, the eyebrow component has two proto-
types which are classified as thick and thin. The eye component has
11 prototypes which could be roughly clustered into 2 classes, those
with or without a contour above the eye and below the eyebrow. The
nose component has 3 prototypes and the mouth component has 4.

For each new component, we extract the accurate shape and as-
sociated texture information using a refined Active Shape Model
(ASM) [7]. Then we determine to which prototype the component
belongs and its associated warping parameters. We build a different
classifier for each type of component and use these to cluster the in-
put components into the appropriate prototype. k-Nearest Neighbor
(kNN) interpolation is then used within the prototype set to calcu-
late warping parameters. With prototype information and warping
parameters, we are able to draw the face element locally.

4.2 Composing the face using the global model
Captured implicitly in the global model is the style which the artist
uses to arrange each face element on a canvas. Most artists em-
ploy a semi-regular formula for drawing facial caricatures. They
use a standard face as a frame of reference for determining how to
exaggerate a subject’s features. The two critical guides are the rela-
tionship of elements to others of their own kind and the relationship
of elements to their surrounding and adjacent elements.
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Figure 3: The effect of the local and global model. (a) The input
image; (b) Sketch created with local model; (c) Sketch after global
model incorporated.
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Figure 4: The prototypes extracted from the training set.

For the representation of Ig, we carefully chose 14 features from
a pool of approximately 30 recommended facial features in a cari-
cature drawing textbook [16]. They are

w1/w w2/w w3/w w4/w w5/w w6/w w7/w
h1/h h2/h h3/h e1 e2 e3 e4

. (3)

These relations describe the proportion of the face devoted to a par-
ticular facial feature. w4/w, for instance, relates the width of the
head to the width of the mouth. By not tying these relations to fixed
values, the model can adjust the size of the features as the overall
size of the head is changed. For any input face image I, we first
use an Active Appearance Model (AAM) [6] to determine the 87
control points. We then use these control points to generate Ig. To
determine the placement of these face elements on the cartoon can-
vas, each element needs five parameters {(tx, ty),(sx,sy),θ}. (tx, ty)
represents the translation of the element in the x and y directions
respectively. (sx,sy) are the scaling parameters and θ is the rela-
tive rotation angle. Additionally, the face contour needs the warp
parameter cw. Together, these constitute I′g. As shown in Figure 3,
while each of the facial features drawn using the local model are
correct, their overall composition is lacking. The global model im-
proves the sketch, making a more vivid overall face.

Learning the relation between I′g and Ig from a set of examples
is non-trivial. Instead of simple linear mapping, we use k-NN in-
terpolation to reproduce this non-linear mapping. We also make
use of heuristic methods adopted by the artist. A previous system
by Liang et al. [14] used partial least squares to learn facial fea-
tures automatically. Since the number of examples is usually very
limited and hand-annotating each example is a relatively minor ad-
ditional cost over their initial creation, we believe our method is
more appropriate and robust.

5 Composing hair
Hair cannot be handled in the same way as the face. This is due to
a number of reasons. First, hair has many styles and is not struc-
tured in the same regular way that faces are, so building a model
is not straightforward. The hair is in many ways a single unit, of-
ten rendered using long strokes, making meaningful decomposition
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Figure 5: 14 features defined for a global model.

challenging. Even if we decompose the hair into regions, recom-
position remains a difficult step. Finally, there is no clear corre-
spondence between regions of two different hairstyles. Lacking a
correspondence, we cannot use blending techniques.

Due to these factors, we synthesize the hair independently from
the face, employing a different mechanism. The overall flow of our
hair system is shown in Figure 7. First the image is dissected into 5
regions we call the structural components. Our subject’s structural
components are matched against the database and the best match
is selected for each. The n-best matches can be chosen to create
a range of pictures for the user. These matched components are
warped and assembled into an overall model for the hair. To this,
details are added based upon the subject image. This process is
detailed in the remainder of the section.

5.1 Hair composite model
Two key aspects make it possible to render the hair. Critically, the
global hair structure or impression is more important than the de-
tails, especially for a highly-stylized look like manga. Attention to
basic detail is not necessary since a person’s hair details are rarely
static. Wind, rain, rushed morning preparations, or severe sleep
deprivation brought on by Siggraph deadlines, can all affect the de-
tails of one’s hair. Figure 6 shows the three best results for a single
subject’s hair. All exhibit the correct shape, and picking between
them can be at the behest of the user or chosen automatically by the
system.

As suggested by our artist, we coarsely segment the hair into five
segments, as shown in Figure 7. Each is in a fixed position and may
divide long strokes that are fixed later on. We chose these segments
because each indicates important global information about the hair,
so we name these our “structural components”. In addition to the
structural (global) model, we also use a detail model. Artists often
use detail to add uniqueness and expression to a portrait. These
details confuse the global model, but we take them into account
with a detail model, the final phase in our hair sketch synthesis.

5.2 Extracting the image features for the hair
When an input image is presented to the system we first perform
an image processing step. We use this step to determine the image
features of the hair which we can then match against the database.
The two techniques we employ are an estimated alpha mask and
hair strand orientation fields, as shown in Figure 8.

First, an alpha mask is calculated to separate the hair region from
background and face. A pixel used for hair can often be blended
with those used for the background and face, which is why an alpha
mask is needed, rather than a simple bit mask. Knockout [1] is used
to generate the mask, as shown in Figure 8(a).

Hair orientation is a very useful feature for determining the
placement of strokes. We begin by using steerable filters to cal-
culate the orientation of each pixel in the hair as demarcated by the
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Figure 7: Hair System Flow
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Figure 6: (a) An input image; (b)(c)(d)Three results for the input
image. They all have the correct structural information.

alpha mask. Weighted smoothness is then used to propagate ori-
entation information from high strength regions to regions which
are weak, in order to stifle noise in the original orientation field.
These automatic orientation calculations alone cannot yield an ac-
curate picture of what the hair is like. Some information, such as
where the hair grows from is not easily calculated, so we require the
user to annotate the input image to indicate hair growth (part). This
is done with a simple brush stroke, as shown in Figure 8(b). The
growth direction from this region can be calculated as the hair tends
to grow away from the growth region, the information propagated
outward subject to a smoothness constraint using belief propaga-
tion [21]. The final result is shown in Figure 8(c).

5.3 Fitting structural components

For an input hair component H, we seek to find the most similar
example in the training set. For effective matching, all the examples

(a) (c)(b)

Figure 8: For the input image from Figure 7: (a) Estimated alpha
mask; (b) User defined hair growing region on a smoothed edge
field by red brushes; (c) Estimated hair growing field.

Examples

Styles

Structural
Component

Figure 9: Structural Components of hair.

are clustered into several styles, each of which has a roughly similar
look and coarse geometric correspondence. This correspondence is
determined by a set of key points, which are indicated manually in
the training data, as shown in Figure 9. For an input image, finding
the best training example to use is divided into two steps: first we
classify H into the correct style and then we find the best training
example in that style to match H.

As previously mentioned, hair components of the same style
share a set of corresponding key points, which we denote as the
shape S = [x1,y1, ...xm,ym], where m is the number of key points.
Then, we can deform hair components with the same style to a same
standard shape using a multi-level freeform deformation warping
algorithm [13]. The mean shape of training examples is chosen as
the standard shape for each style.

After deforming hair to the same shape, we choose the hair
orientation vector and alpha value of each pixel as the appear-
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Figure 10: Detail components of the hair are divided into boundary
details and bang details.

ance features of the hair. We denote the hair orientation vec-
tor as G = [gx1,gy1,gx2,gy2, ...gxn,gyn] and the alpha value as
α = [α1,α2, ...αn], where n is the number of pixels in the compo-
nent region. Because bangs and hair tails have toothed shapes and
the primary characteristics for these hair features is their length and
the average density along their orientation path, we use an elliptic
Gaussian kernel to smooth the alpha values.

Given all this, for two hair components with the same style, we
can define the distance function of the their appearances as:

E(H1,H2) = ||G1 −G2||+w||α1 −α2|| (4)

where w is a weight.
For the ith style, with the labelled key points for each example,

we get the appearance features of each example and average them to
get the mean appearance H̄i. And we can fit the key points of hair H
in the ith style by minimizing E(H, H̄i) using an active appearance
algorithm [6].

Also we can define the distance between hair H and the ith style,
and determine the best style of the hair by minimizing it:

Ei(H) = ωi ·E(H, H̄i), (5)

where ωi is a constant weight for each style, such that the mean of
the Ei(H) for the example hair components equal to 1.

After we determine the style of the input hair H and fit the key
points S, we find the best matched training example by minimizing
the distance combining the shape and appearance features:

min
j

E(H,Hj)+γ||S−S j|| (6)

where Hj is the jth example in the particular style, γ is a weight to
balance the effect of the shape distance and appearance distance.

5.4 Fitting detail components
In addition to finding the best structural components, we also need
to determine the detail information present in the input image. Dif-
ferent kinds of detail require slightly different approaches. We de-
fine two classes of detail, “boundary” and “bang” detail, as shown
in Figure 10. Boundary details are typified by wispy strands of hair
parallel to the main region of hair. Bangs are strands of hair which
fall away from the bulk of the hair onto the face.

Boundary details fall into three categories, as shown in Fig-
ure 11. The alpha values and orientations for these patterns are
quite different, so we can use a small window to enable classifica-
tion of each point, providing a way to sort the boundary details into
their appropriate categories. We summarize this information for

(a) (b) (c)

Figure 11: Three patterns of the boundary and their image features.
The yellow block is the local coordinates along the boundary.

(a) (b) (c) (d)

Figure 12: Fitting the bang detail components. (a) Input hair with
structure spline; (b) Within the boundary of the hair in green, we
trace the orientation field starting from the yellow line; (c) The
length of the traced streamline along the boundary; (d) The blue
line is the traced bang skeleton.

the boundary details in the training samples, estimating a Gaussian
distribution for each kind of pattern.

Bang detail components are used to detect the bang, such as in
Figure 12(a). The first step to finding bangs uses a low threshold
to segment out the bang regions in the alpha mask, indicated by
the green boundary in Figure 12(b). The orientation field can be
inspected in this region to find bangs, using a threshold to weed
out bangs of trivial length, where this threshold is indicated by the
yellow line. Next, we determine the length of the bang line, as
shown in Figure 12(c). Connecting this with the smoothed bang
gives us our detail bang component, as shown in Figure 12(d).

5.5 Synthesizing the hair sketch
The strokes in the training samples are all divided into two classes
in the training phase: boundary strokes and streamline strokes. We
define the points in the strokes crossing the boundary of a structural
component to be “link points”.

Face contour exaggeration requires that we adjust the lower part
of the inner hair boundary using the corresponding face contour.
Then the strokes of the matched structural components are warped
to the target coordinates using corresponding boundaries as shown
in Figure 13(a). Matching the link points in different structural
components must ensure that the link points match to those in the
same class (boundary to boundary, streamline to streamline), and
that the matching distance is minimized. This can be handled using
bipartite graph matching, as shown in Figure 13(b).

For each matched pair of link points, we adjust them to the av-
erage position and link the corresponding strokes, smoothing along
the stroke and varying the width and style to make the drawing more
expressive. We consider the styles of the two linked strokes, adjust-
ing to get a good match, as shown in Figure 13(c). Unmatched
streamline strokes are removed if they are too short, otherwise they
are extended, tapering the end to trail off their effect on the image.
Final results are shown in Figure 13(d).

Detail components are connected to strokes generated by the
component match. In the training data, details are connected to
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Figure 13: Composing the structural components. (a) Warp strokes of matched structural components to target image. The red line is the
boundary between different components; (b) Find a match for each link point. The red round point is the link point of the boundary stroke
and the green rectangle point is that of the streamline stroke. The red circle shows the match. (c) Link and smooth matched stroke. For
unmatched link point of streamline, detection of too short strokes which is shown in the green circle, other link points shown in the red circle
should be extended. (d) Remove short strokes and adjust the streamline to get the final result.

(a) (b) (c)

Figure 14: Add the detail strokes. (a) Strokes of the detail com-
ponent with ”link point”; (b) Warp strokes from local coordinates
to the target coordinates; (c) Link detail strokes to the reference
stroke.

reference strokes. These link points are used in a similar way to
the link points in the global phase, such as in Figure 14(a). First,
the stroke of the matched detail is warped to the target coordinates
from the global phase, as shown in Figure 14(b). Reference strokes
are cut and the detail is inserted, smoothing any discontinuities in
the linkage. This gives us our final result, as shown in Figure 14(c).

6 Examples

As shown in Figure 15, for an input image (Figure 15(a)), we de-
compose it into parts. For each part, we classify it into one pro-
totype and draw it using the examples (Figure 15(b)). Then we
exaggerate it using the global model and get the final result in Fig-
ure 15(c). We can see that the final result of our system is locally
similar to the previous one, but the size of the mouth and the shape
of the contour are notably different to make it more “manga”. In
comparison, we show the sketch result without local model varia-
tion or a global model in Figure 15(d), which is similar to the result
in [5]. Our result is obviously more expressive.

Users may prefer a particular prototype of the local component
or the exaggeration effect. Our system allows the user to change
the result interactively to find the result with the best style as in
Figure 15(e-f).

For the hair of the input image in Figure 16(a), we decompose
it into structural components and detail components. The result of
composing structural components captures the global style of the
hair as in Figure 16(b). And then we add unique detail to make it
more expressive as in Figure 16(c). With the two level components
model, we can obtain better results especially with a small set of
examples. In comparison, we let the structural components contain

(a)

(d)

(b) (c)

(e) (f)

Figure 15: Results of face part.(a) The original face image; (b) The
result of local model; (c) The result of local model plus global
model; (d) Result without local model and global model. (e)(f)
Results with user selected local prototypes.

all of the strokes and get the result in Figure 16(d). It has the same
structural information as the previous result; however, it does not
match the details of the input image absolutely.

Also, the user can generate the result interactively. But the goal
of our system is to draw the hair from the input image. So, for each
component, we show the n-best match examples, and the user need
only click the mouse and select one of them. The user can also
remove detail components if they prefer an abstract one. The result
of different choices is shown in Figure 16(e-f).

Combining the face and the hair, we need to remove the bound-
ary strokes of the hair that overlap the face contour. In Figure 18,
we show some results generated by our system. Neck, shoulder, and
clothing are chosen from a set of templates supplied by our artist.
52 separate training examples were used for this system.

7 Discussion

We believe that adapting a global/local hybrid was an effective ap-
proach for generating face portrait sketches. The face, being more
structured than the hair, was a clear fit for this approach, but the
hair worked exceptionally well once a recomposition fixing stage
was added. Systems like this have many applications, such as creat-
ing virtual personas for cartoon style online games or chat environ-



Figure 17: Two examples of the Manga style training data in our system. We use 52 in the working system.

(b) (c)

(d) (e) (f)

(a)

Figure 16: Compare the effect of adding detail strokes. (a) The
original image; (b) Result of composing structural components; (c)
Composing with detail components; (d) Result of one level model
where all of the details strokes remain in structural components.
(e)(f) Composed hair by user selected components.

ments. Obvious extensions would be to use this system to automati-
cally create sketched portraits for places where a sketch is preferred
over a photograph, such as on the cover of The Wall Street Journal
provided that an appropriately styled training set is used. Allowing
people to explore a change of look is another application.

Our system has some limitations we hope to address in future
work. We obviously want to add to our training set so we can en-
compass faces of many racial backgrounds. Our use of white back-
ground portraits was a very good fit for the relatively pale skin of
east Asian females and may work well for Caucasian races, but may
be a poor fit for people whose ancestors are from southern Asia,
Africa, and Polynesia, for example. Vastly different hair styles,
such as dread locks or a mohawk may not fit well into our frame-
work at present. Clearly, we also want to render male images as
well, which presents the additional challenge of facial hair, blurring
the line between the facial and hair subsystems. A third subsystem
to handle facial hair, which is different in many ways from scalp
hair, may be in order. Aging, injury, spectacles, and jewelry, are all
obvious extensions.
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Figure 18: Manga style portraits generated by our system.


