
A Mixed-Initiative Tool for Designing
Level Progressions in Games

Eric Butler, Adam M. Smith, Yun-En Liu, and Zoran Popović
Center for Game Science

Department of Computer Science & Engineering, University of Washington
{edbutler,amsmith,yunliu,zoran}@cs.washington.edu

ABSTRACT
Creating game content requires balancing design considera-
tions at multiple scales: each level requires effort and itera-
tion to produce, and broad-scale constraints such as the order
in which game concepts are introduced must be respected.
Game designers currently create informal plans for how the
game’s levels will fit together, but they rarely keep these plans
up-to-date when levels change during iteration and testing.
This leads to violations of constraints and makes changing
the high-level plans expensive. To address these problems, we
explore the creation of mixed-initiative game progression au-
thoring tools which explicitly model broad-scale design con-
siderations. These tools let the designer specify constraints
on progressions, and keep the plan synchronized when levels
are edited. This enables the designer to move between broad
and narrow-scale editing and allows for automatic detection
of problems caused by edits to levels. We further leverage
advances in procedural content generation to help the de-
signer rapidly explore and test game progressions. We present
a prototype implementation of such a tool for our actively-
developed educational game, Refraction. We also describe
how this system could be extended for use in other games
and domains, specifically for the domains of math problem
sets and interactive programming tutorials.

Author Keywords
Game design; design tools; AI-assisted design; educational
games.

ACM Classification Keywords
H.5.0 Information Interfaces and Presentation: General

INTRODUCTION
The design of interactive experiences that consist of a se-
quence of episodes building in complexity is an intricate,
multi-dimensional design problem that often takes experts a
long time to complete. This is particularly apparent in game
design. Designing just a single gameplay element (e.g., puz-
zles, challenges, encounters, levels) requires many iterations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST’13, October 6–9, 2013, St. Andrews, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2271-3/13/10...$15.00.
http://dx.doi.org/10.1145/2501988.2502011

and interactive playtests to uncover a satisfying result. Craft-
ing a coherent and effective sequence of these elements into
an entire game, called a progression, is even more involved
because the experience of playing the game is highly depen-
dent on the way individual components are connected. As
game designers adjust their game at these different scales—
altering details of a single gameplay element and scheduling
appropriate introduction of those details across the game’s en-
tire progression—they wrestle with a mixture of formal and
informal requirements. Keeping all of these concerns in mind
while designing each level is difficult.

Game designers have adopted semi-structured practices for
addressing this complexity. They often create informal notes
and plans that capture a sketch of the progression’s overall
properties and then consult this document while designing in-
dividual levels. Although developers often create complex in-
house tools for authoring game content (e.g., the Dragon Age
Toolset1), these tools focus on individual levels and rarely ex-
plicitly model progressions. As designers improve their level
designs in response to testing, the progression plan is rarely
updated and the high-level structure of the final level progres-
sion is not articulated in general terms again.2 As a result, the
coherence and intent of the original plan can be lost.

We propose the creation of progression design tools that aid
game designers through all stages of design: sketching, rapid
exploration, iteration, and final authoring of a complete game
progression while keeping the progression plan in-context
and up-to-date. Such tools should allow editing of both indi-
vidual elements and progressions over those elements. Build-
ing on the ideas of mixed-initiative planning and constraint-
based game content generation and verification, we demon-
strate a prototype tool using the educational game Refrac-
tion that combines existing single-level editors into a mixed-
initiative progression design tool.

Our focus on tools for designers contrasts with current trends
in game design automation research. Many projects aiming
to reduce designer burden offer fully automatic generators for
individual levels, often focusing on optimizing a fixed metric
for the quality of the level [24]. These systems are not de-
signed to optimize the relative placement of levels within a
1http://social.bioware.com/page/da-toolset
2In a very interesting exception to this trend, fans sometimes
recreate visual progression plans for popular games, such as
Piotr Bugno’s detailed outline of the story and level progres-
sions for Portal 2: http://www.piotrbugno.com/2012/06/
portal-2-timelines/

http://social.bioware.com/page/da-toolset
http://www.piotrbugno.com/2012/06/portal-2-timelines/
http://www.piotrbugno.com/2012/06/portal-2-timelines/

progression. Other fully automated generators explicitly take
user-configurable constraints as input [17, 20]. These gener-
ators are directable down to a fine scale but still require an
external progression plan. Zook et al. [25] describes a system
for fitting a progression of generated challenges in a train-
ing game to an ideal player performance curve; however, the
system requires all design input to take the form of formally
modeled properties such as evaluation functions and causal
coherence constraints. We are interested in allowing the de-
signer input at all scales, so fully automated methods will not
suffice. Mixed-initiative design tools, such as Tanagra [21]
and SketchaWorld [18], pair generative techniques with an in-
teractive editing interface that allows the human and machine
to take turns editing a shared level design. Such tools help the
designer prototype new ideas and check constraints for qual-
ity assurance while still allowing designers to craft levels with
subtle properties that are difficult to formalize. These tools
focus on creating single levels, whereas we want to create
a tool that allows designers to work at multiple scales. How-
ever, we follow similar design process pattern for the problem
of designing coherent progressions of detailed levels.

Effective progression design tools could provide valuable
assistance to the same expert designers who would nor-
mally have designed levels without such support. We expect
that they would be almost required for very large, complex
progressions where manual exploration becomes intractable.
More importantly, however, they would open up possibilities
for end-user progression design. Consider an experienced
teacher who wants to directly manipulate which concepts will
be used in a progression tailored to their class. They might
prefer that the tool automatically generate the relevant chal-
lenges at the scale of individual puzzles everywhere except
where one or two key levels should visually resemble exam-
ples previously shown in class. This property is unlikely to
be supported by any fully automated system.

In this paper, we discuss the requirements of a progression
design tool, and present our prototype implementation for our
actively-developed educational game, Refraction, illustrating
its utility through several case studies. We expect that these
ideas might be explored in domains outside of games such
as interactive programming tutorials and high-school algebra
exercises. This paper makes the following contributions:

• We identify the need for progression design tools and de-
scribe their impact with respect to current practices.
• We sketch a general architecture for progression design

tools, including the use of generative techniques on a per-
level basis where available.
• We present a prototype implementation of our design tool,

attached to our own active design project, Refraction.

REFRACTION
Refraction is a puzzle game, intended for use with elemen-
tary education of fractions, that involves splitting and com-
bining laser beams to form beams of fractional power. The
game consists of a sequence of puzzles in which the player
must direct lasers into targets, a task that requires both spatial
and mathematical problem-solving skills. A sample puzzle is
shown in Figure 1.

Figure 1. A level of Refraction, our actively developed game. We con-
tinue to create and release new level progressions for the game, driving
our need for progression design tools.

Though Refraction has already been released to a wide audi-
ence, it is still under active development. We frequently need
to create new level progressions for ongoing classroom stud-
ies and experiments, often involving adapting the game for
different age groups or testing new mechanics. Thus, we per-
sonally have a strong need for tools that allow us to effectively
and rapidly explore and iterate level progression designs.

CURRENT PRACTICES
Game developers have created a wealth of guidelines and
best-practice suggestions for creating effective level progres-
sions in games. In this section, we review current practices
and discuss which aspects our system aims to improve. These
practices are not well-documented, and there is not a clear ac-
cepted plan for tackling these challenges. Industry magazines
such as Gamasutra3 archive articles and discussions on game
development written by industry members, from which we
draw our information.

Level Progressions
Many games consist of a sequence of distinct elements (e.g.,
levels, stages, challenges, scenarios or puzzles) that the player
encounters. We call this sequence a progression. In Refrac-
tion, the elements are the individual puzzles (involving 2-5
minutes of play), and the progression is the entire sequence
of puzzles (2-5 hours of play). There are many ways to dis-
cretize a game progression; puzzles in Refraction are very
short so make a reasonable choice, but larger games might
model progressions over smaller elements. In this paper, we
will generally refer to the individual elements as levels. Lev-
els cannot be designed entirely in isolation; how they relate to
each other is critical for effective game design. Much of the
effort spent during the iteration process focuses on altering
individual levels to improve the overall progression.

As a result, game design often happens at multiple scales.
At a broad scale, designers create a progression plan, which
3http://gamasutra.com

http://gamasutra.com

documents the features they want each of their levels to have.
These features might include, for example, which mechan-
ics appear in a level or which key dramatic events occur in
the game’s narrative for a story-oriented game. In Refraction,
there are several different types of pieces the player may use,
such as bending pieces, splitting pieces, and adding pieces.
The pieces required to solve any particular level are a feature
we consider during the design process. At a narrow scale, de-
signers are editing the levels themselves, trying to craft levels
that have the complex properties they desire.

There are many design considerations when creating progres-
sion plans. For example, many games introduce different me-
chanics slowly and deliberately to allow the player to learn
each of them without becoming overwhelmed. Game de-
signer Dan Cook associates these mechanics with skill atoms
[6] and suggests diagramming the dependence between atoms
to better understand how a game works. In many cases, the in-
troduction of a new skill atom may depend on the player hav-
ing previously mastered another. For example, in Nintendo’s
Super Mario Bros., the player should learn to jump before
they can learn to jump on an enemy. Similarly, overusing a
certain atom can lead to burnout, and avoiding this requires
additional constraints between levels to be checked. In Re-
fraction, we wish to introduce pieces in a particular order and
pace. Skill atoms may also have intra-level considerations: in
Refraction, for example, some types of pieces cannot be used
unless another type of piece is present in the level.

Another important design consideration of progressions is
pacing. Pacing describes how elements such as complex-
ity, difficulty, and intensity vary over the course of the game.
Game designer Jenova Chen writes [5] about how Csikszent-
mihalyi’s concept of Flow [7] applies to game progressions.
If the difficulty increases too quickly, players can become
frustrated; too slowly, they become bored and disengaged.
Many articles have been written on Gamasutra analyzing and
discussing techniques for effective game pacing 4.

Design Practices
Designers understand the value in explicitly planning their
games’ progressions. Progression design considerations and
progression plans are often sketched out in a design docu-
ment or whiteboard before production of levels. Designers
have written articles endorsing planning game progressions
before production, writing that teams that do not explicitly
create progression plans often end up redoing work after user
testing reveals problems with their progressions, resulting in
a worse final product5. However, the progression may change
greatly during production, user testing, and iteration of levels;
levels and mechanics may be reordered, or mechanics may
be dropped entirely or new ones added. So while planning
progressions beforehand is very useful, if left unaltered, the
progression plans become increasingly inaccurate. Although
game developers frequently spend great effort creating in-

4e.g., http://www.gamasutra.com/view/feature/134815/
or http://www.gamasutra.com/view/feature/132415/
5e.g., http://www.gamasutra.com/view/feature/3848/

house editors and other authoring tools for their games6, to
the best of our knowledge, they do not create editors for their
progression plans that automatically sync with their levels.
For designers to continue to work at this broad scale dur-
ing development, they must first evaluate the current progres-
sion manually, a significant task7. After production, some-
times developers (or even players) recreate visualizations of
the progression realized in the final game. While these may
be used in post-mortem analysis, they are still created mainly
by hand, and are of little utility for design of that game, since
it has already been published and is unlikely to undergo large
changes. Integrating an up-to-date progression plan as part
of the standard editing environment could help the designer
more effectively work at multiple scales.

Because the information about the progression plan is cum-
bersome to keep in sync with the actual level progression,
ensuring that the current levels meet all progression design
considerations is an expensive, error-prone task. Edits to lev-
els frequently change their properties in ways which may, for
example, disrupt desired pacing, or introduce game mechan-
ics too quickly or in the incorrect order. If not noticed by the
designer, these problems will eventually be discovered in user
testing, a relatively expensive resource. Automated detection
of these problems may save time and effort by finding issues
quickly, without designer effort.

We expect having the ability to rapidly explore different pro-
gression plans would enhance the design process. However,
if the designer wishes to make a minor adjustment to the pro-
gression, say moving the introduction of a mechanic to a later
point in the game, this might require significant modifications
to existing levels. While a large portion of game developers
create level editors to help author levels, these adjustments
are still expensive to make. Because of this, designers can be
limited in how easily they can explore the design space.

Current design practices result in several problems we wish
to overcome in the design of our system. Designers are not
able to easily explore progressions because level authoring
is time-consuming. Designs for progressions plans are often
abandoned after level creation begins because they are too
cumbersome to keep up-to-date. As a result, level edits often
introduce problems that are not discovered without significant
inspection and user testing.

PROGRESSION DESIGN TOOLS
In this section, we formalize our design problem and discuss
our goals for an effective game progression design system.

Definitions
We will use levels, progressions, and progression plans as de-
fined previously. Each level has several properties, features
that the designer cares about. Examples include which game
concepts are used in a particular level, or whether a particu-
lar narrative event occurs in a level. There are often a huge
6For example, players can create complex mods and scenarios using
Starcraft 2’s in-house level editor: http://us.battle.net/sc2/
en/game/maps-and-mods/
7Recommendations to do just that come from http://www.
gamasutra.com/view/feature/132256/

http://www.gamasutra.com/view/feature/134815/
http://www.gamasutra.com/view/feature/132415/
http://www.gamasutra.com/view/feature/3848/
http://us.battle.net/sc2/en/game/maps-and-mods/
http://us.battle.net/sc2/en/game/maps-and-mods/
http://www.gamasutra.com/view/feature/132256/
http://www.gamasutra.com/view/feature/132256/

Editing
Constraints Editing

Plans Editing
Levels Playing

Levels

Broad scale Narrow scale

Figure 2. The ideal workflow for our system (a waterfall-like pattern).
Designers must iterate at multiple scales, so our tool aims to allow the
designer to move freely between broad and narrow-scale editing.

number of possible levels that share a particular set of proper-
ties. Likewise, there are many progressions that conform to a
particular progression plan. The designer may have particular
considerations for their game’s progression, such as pacing or
the ordering in which mechanics are introduced. We refer to
all of these considerations definable at the level of the pro-
gression plan as progression constraints (or just constraints).
We use the term (loosely) in the sense of optimization prob-
lems: the designer has a set of constraints in mind, and the de-
sign problem is to generate a progression best satisfying those
constraints. Constraints may be hard (never to be violated),
soft (flexible in exchange for satisfying other constraints at
some cost), or unmodeled (not tracked by the tool). Again,
there will generally be many progression plans that equally
satisfy a particular set of constraints.

Goals of the Design Tool
The tool is intended to be a full-fidelity game editor and for
authoring the final levels seen by players. The system should
support rapid iteration and exploration at multiple scales of
the design: progression constraints, progression plans, and
individual level designs. Designers should be able to playtest
the current progression. Figure 2 demonstrates the desired
workflow for the system. Many constraints and properties can
be formally modeled, so we would like to draw on advances
in procedural content generation to automate generation and
analysis of content where possible. Level generation is not
an option for all types of games, so it is an optional com-
ponent of our tool. It is important to note that many critical
design considerations, such as the moment-to-moment diffi-
culty or affective impact on players, are subjective or cannot
be easily modeled. Thus human editing must be available at
all scales, so the system should integrate existing level editors
that game designers already create. As the designer changes
from broad-scale progression planning to narrow-scale level
editing and back, the system should automatically keep other
parts updated: Edits to levels should be reflected in the pro-
gression plan, and edits to the plan should notify the designer
if plan-level constraints are violated.

APPLICATION TO REFRACTION
To ground this discussion about progressions, levels, and con-
straints, we discuss how these ideas apply in the design of
our game, Refraction. In this section, we discuss progression
constraints and level properties specific to Refraction that we
currently use as well as which game-specific components we

Figure 3. Screenshots of two of the three browser-based editing environ-
ments of our tool, each for editing the game at a different scale. On top is
the progression plan editor, used for directly manipulating the plan. On
the bottom is the level editor, which embeds Refraction’s custom editor.
There are additional views for editing constraints and playtesting.

needed to provide for the implementation. Figure 3 shows
screenshots from our prototype intended to demonstrate how
a designer might control and view plans and levels. We delay
discussing the system components until the next section.

Constraints and Properties
All level properties we model in this prototype describe
whether a particular gameplay concept (or skill atom, to use
Cook’s [6] terminology) is required to solve a level. Table 1
lists a sample of these concepts. Because we currently only
model concepts, all of our level properties are binary, describ-
ing whether a concept is required. Many additional properties
have not yet been modeled, such as how closely the pieces
must be placed together in all possible solutions. Some can-

Concept Description
Bending Must use bending pieces
Splitting Must use splitting pieces
Adding Must use adding pieces
Blockers Must contain obstructive pieces
Wasted Laser Leaves some laser beams unused
Crossed Laser Laser beams are unavoidably crossed

Table 1. A sample of the properties we model for levels in Refraction.
These properties are binary, describing whether or not a particular
gameplay concept is required to solve a level.

not be directly modeled, such as whether a level is fun or
aesthetically pleasing. Though not tracked by our tool, these
can still be addressed through manual edits to level designs.

We have implemented four types of progression constraints.

Prerequisites
Prerequisites are inter-level constraints that define a partial
ordering over the introduction points of the concepts. For
concepts A and B, if A is a prerequisite of B, then the level
of A’s first appearance must precede the level in which B first
appears. For example, we want to introduce pieces that bend
the laser before introducing pieces that split the laser.

Corequisites
Corequisites are intra-level constraints on which concepts can
appear together. A is a corequisite of B if A must show up
in any level that has B. For example, one concept is to re-
quire that the laser be looped around to cross itself. This is
only generally possible if bending pieces are available. Thus,
“Bending” is a corequisite for “Crossed Laser.”

Concept Count
For each level in the progression plan, we compute a illus-
trative proxy measure for “level intensity” (a term often oc-
curring in other designers’ progression plans) as a sum of the
concepts that are in the level. Although this metric does not
correspond directly with real-world difficulty, it is neverthe-
less useful for controlling pacing of the progression at a broad
scale with a few quick adjustments. The constraint assigns
target number of concepts for each level. Our interface al-
lows control via a spline editor, as seen in Figure 5.

Concept Introduction Rate
This constraint controls the rate at which new concepts are
introduced, describing, for each point in the progression, the
number of concepts that should have been introduced by that
point. This constraint, expressed via spline editor, can be
used to ensure concepts are introduced at a pace allowing the
player to master one before proceeding, as well as roughly
showing how the complexity of the game changes at a glance.

Clearly, these concepts are specific to Refraction. However,
the progression constraints are quite general. Given another
game’s set of gameplay concepts, we imagine that prerequi-
sites and corequisites will still be meaningful for shaping pro-
gression plans. The designer could specify constraints that
apply to properties related to categories other than gameplay,
such as aesthetics. For example, a designer might want to
specify that aesthetic properties like background music and
graphical tileset should change in groups, corresponding to
movements to different places in the game’s fictional world.

Game-Specific System Components
Using these particular properties for level generation and
analysis in Refraction requires a subtle technical approach.
Ensuring that a concept is required to solve the level entails
checking that all possible solutions of the puzzle (there are
generally many) use the concept, a computationally difficult
problem. For example, in a level in which the player is ex-
pected to split a laser in two then later add it back together,
careless design might enable the player to use only bending

Constraints

Editor UI Editor UI Editor UI Game

Progression
Plan Levels

generator

analyzer

generator

analyzer

Figure 4. The pieces of our system. Cylinders are models. Ovals rep-
resent editing/viewing interfaces that correspond to the four elements
of the workflow outlined in Figure 2. The square components are the
automated parts that ensure consistency across scales.

pieces to bypass the splitting and adding altogether. Smith et
al. [19] developed a level generator (with Refraction as the
example application) that can enforce this type of constraint
on its outputs. The generator uses answer set programming
(ASP), a declarative constraint-programming technology, to
ensure that specified concepts must be used in all possible
solutions. In addition to reusing this generator in our sys-
tem, we extended it to use the same formal game model to
determine if a designer-altered level requires each gameplay
concept. This level analyzer is used to update the progression
plan after levels are manually edited.

We created a progression plan generator using ASP’s abil-
ity to solve constrained optimization problems. Progression
constraints (e.g., prerequisites) are expressed as soft con-
straints and manual edits locked by the designer as hard con-
straints. Soft constraints are implemented with an integer-
valued penalty function. The generator searches for plans
satisfying all hard constraints with the minimal penalty for
soft constraints. We include additional soft constraints that
add variation to the plan by penalizing repetition. We imple-
mented (in Javascript) a corresponding analyzer that, given a
progression plan, checks for violated constraints.

SYSTEM DESCRIPTION
In this section we describe in detail each of the system com-
ponents we built for our Refraction-based prototype. For each
component, we discuss its role and how our implementation
works. Some of our implementations of these components are
game-specific, while others could be directly reused for other
games. Of course, all parts of the system can be extended
or replaced in the interest of better supporting the designer.
Figure 4 illustrates how the system components fit together.

Model
The model that the tool manipulates consists of three parts,
which directly correspond to the scales of the workflow: the
progression constraints, the progression plan, the progression
itself (the sequence of concrete level designs). The designer
can also output the playable game from the tool.

Working with Progression Plans
The broad-scale iteration loop takes place between manipu-
lating progression constraints and the progression plan. The
system has a set of user interface components used to dis-
play and manipulate the progression constraints. Figure 5

Figure 5. View of the two types of constraint editors in our implemen-
tation, which allow manipulation of the various constraint parameters.
Each interface type is used for multiple constraint types, e.g., the grid is
used for both prerequisites and corequisites. If the current progression
plan violates these constraints, the violations are displayed in red. On
top, the concept count graph shows us that several levels have too many
or too few concepts. The blue curve is the target, and the bars are the
values of the current plan. On bottom, the red cell of the prerequisite
chart shows us that the “adding” concept is erroneously introduced be-
fore the “splitting” concept. Blue indicates an active constraint (dark is
manual, light is inferred via transitivity), while dark gray indicates an
unselectable constraint (e.g., two concepts may not be mutual prerequi-
sites).

shows the set used in our implementation. These components
are responsible both for letting the designer adjust the con-
straint parameters and showing whether the current progres-
sion plan violates these constraints. As the designer changes
the constraint values, the component interfaces update to dis-
play whether the current progression plan satisfies the new
constraints.

The primary component for manipulating the progression
plan is the progression plan editor, shown at the top of Fig-
ure 3. For our implementation, this consists of a grid show-
ing level properties of each level, where the cells are the cur-
rent value of the property for that level. The user can di-
rectly manipulate this grid to change level properties. As the
designer edits the plan, the progression analysis component
checks whether the constraints are still satisfied. This is then
reflected in the constraint editors in real time.

The designer manually manipulates the constraints and pro-
gression plan in order to produce a plan that matches their
intent. However, the progression generation component can
be used for rapidly populating the plan and sampling alterna-
tives. When manually activated by the designer, the progres-
sion generator creates a new progression plan (overwriting
any existing) that best satisfies the current constraints.8 In
8As there are often many progression plans that achieve an equiva-
lent score with respect to the stated constraints, we have configured

order to prevent any manual edits from being overwritten by
generation, our system allows the designer to “lock” a partic-
ular level. The generators will not modify these levels or their
corresponding entries in the property matrix.

Thus, the full iteration loop for this scale is: set values of the
constraints, optionally generate a new progression, manually
edit the progression, check whether these edits violate any
new constraints or unmodeled design criteria, repeat.

Working with Levels
The narrow-scale iteration loop involves manipulating the
progression plan and the levels themselves. The structure
of components at this scale corresponds with the structure
above. First is the previously described progression plan ed-
itor. Like the constraint editors, manipulation of the progres-
sion plan does not immediately change the levels below.

The level editor is used for editing individual levels. Because
levels are always game-specific, a single-level editor must be
supplied by the game’s developers. Developers must also pro-
vide a level analyzer that computes the relevant design prop-
erties for each level. The difficulty of producing such an ana-
lyzer scales with the subtlety of the properties checked: deter-
mining if a level uses a particular piece or is set to use a par-
ticular graphical tileset is easy, but determining the level of
strategy needed to complete the level is harder. When the de-
signer edits a level, the level analyzer is used to immediately
reflect the changes in the progression plan. These changes are
propagated further up to the progression constraints.

For the purposes of automation, the developers may option-
ally provide a level generator. Though the designer could
manually edit levels, certain games, including Refraction,
have generators that divert significant burden from the de-
signer. The level generator, if it exists, can be triggered by the
designer to create levels that match the properties described
in the current plan. Any levels that are “locked” are not over-
written, so manually-tuned levels can be preserved.

This iteration loop corresponds to the one above: edit the
progression plan, optionally generate levels, manually edit
levels, check how the progression (and the progression con-
straints) changed based on these edits, repeat.

Testing the Game
The final component of the system allows for playtesting the
levels directly. Thus the game must have an interface that
accepts new level progressions to be played immediately.

EVALUATION
Our implementation of the prototype system was intended for
internal use by the authors. We evaluate the general architec-
ture and our game-specific implementation through a set of
case studies, exploring new design techniques that our sys-
tem enables. The first case study requires the game-specific
level generator, but the others do not require such technology.

the progression generator to make liberal use of randomness in the
interest of exploring diverse solutions.

Rapid Exploration at a Broad Scale
Assuming the system has a level generator, this tool enables
game designers to rapidly explore different progression plans
and test the plans in playable games. For example, consider a
scenario for Refraction early in the design phase of a new pro-
gression for a new, younger audience. We do not know how
this set of players will respond, so we wish to rapidly explore
and playtest several possible progressions. We might want to
remove “addition pieces” from the game entirely and avoid
introducing the “crossed laser” concept (see Table 1) until late
in the progression. Our tool allows the designer to quickly
sketch these modifications into the progression plan, generate
a new set of levels satisfying the plan, and test these levels
immediately. While these generated levels may lack some of
the unmodeled properties the designer desires, this is accept-
able at an early stage of rapid exploration. The designer also
has the ability to edit the generated levels to suit their needs,
which can be easier than creating new levels from scratch.
Previously, creating even an initial progression with the key
gameplay concepts removed would have entailed massive ef-
fort before the first round of tests.

This rapid exploration applies at the broader constraint scale
as well. Suppose in Refraction we wish to add an additional
prerequisite constraint that “laser crossing” must come after
introducing “splitting pieces.” The tool can automatically cre-
ate a progression plan in conformance with this constraint. It
then populates a sequence of levels compatible with that plan,
allowing a game satisfying the new constraint to be played
with minimal designer effort. Without our system, the de-
signer would have to first manually evaluate where the exist-
ing plan failed, devise a new plan for an adjusted progression
(in notes outside of the editor), then create several new levels,
either by hand or by manually configuring the level gener-
ator. We expect this reduction in friction to enhance rapid
prototyping of progressions.

Automatic Detection of Problems during Iteration
As discussed, levels and progressions undergo a great deal of
iteration during the development process. One of the dangers
of changes during iteration is breaking previously expressed
planning intents, both global progression constraints and level
property constraints.

Consider an example in Refraction where, late in the devel-
opment process, the designer wishes to make a minor adjust-
ment to the mathematical portions of the fifth level of the pro-
gression. They exchange a “splitter piece” with two outputs
for one with three outputs. However, this extra output in-
troduces what we call a “wasted laser,” or a laser that is not
used in the solution. ‘Wasted lasers” is one of the concepts
controlled in the system and is constrained via the prerequi-
site constraint to first appear after another concept, “crossed
lasers,” which has not been introduced by this level. This
could be corrected by adding additional pieces (a new target
to absorb the extra laser), but may go unnoticed by the de-
signer. However, upon saving the change in our tool, the sys-
tem will automatically update the progression plan to reflect
that wasted lasers appear in this early level. Since a prereq-
uisite constraint is now violated, the constraint editor high-

lights this problem to notify the designer. The designer may
then take steps to fix it: one option is moderately editing the
offending level. If the designer prefers to keep the level as-is,
they can generate a new plan for surrounding levels or remove
this prerequisite constraint. We believe that this feature can
make managing large design projects easier by notifying the
designer of automatically detected problems.

Global Optimization of Progression Properties
A designer often needs the progression to satisfy many com-
plex time-varying properties simultaneously. For large pro-
gressions this task is difficult to do manually. For example,
suppose a designer for Refraction is trying to control the pac-
ing of the progression. They are interested in controlling ag-
gregate properties: the number of concepts per level, and the
rate at which new concepts are introduced during the progres-
sion. The designer wants new concepts to be introduced at an
even rate, but they want the number of concepts per level to
vary significantly between levels. These constraints are mod-
eled in our system, so the designer may directly edit curves
(see Figure 5) to control the constraints. Our system’s built-
in progression generator can find the closest feasible solution
through global optimization. As the designer refines these
curves, they can quickly see possible solutions and adjust pa-
rameters appropriately. The designer may also rely on the fact
that all design changes that were manually introduced can be
preserved through the optimization process. We expect this
to ease the process of creating progression plans that satisfy
several complex constraints.

DISCUSSION
We believe that ideas from this system can be applied to a
wide range of games. Some components are game-specific,
such as the level editor and generator. The others, particu-
larly those at the broader scale of progression constraints and
plans, can be reused between games; the pairing of the our
constraint editing interfaces with a generic constrained opti-
mization tool on the back end are generic. The modularity of
our framework allows it to be extended for new games and
for additional functionality. In this section we discuss some
of the limitations and some of the possible ways in which the
system could be extended. We then discuss how these ideas
might be explored in other, non-game domains.

Limitations and Extensions
We have defined progression plans as a sequence of level
properties. In our implementation, these properties are bi-
nary values indicating whether a level contains a particular
concept, but more nuance is certainly possible. For exam-
ple, we may be concerned with how many bending pieces
appear or the overall size of the player’s solution. Having
numeric knobs instead of binary values would enable the de-
signer to specify even more precise progression plans. The
system is also extendable to address some aesthetic concerns;
for example, we might give the designer control of the av-
erage distance between pieces to allow them to create dense
or open-feeling levels. We have already explored constraints
on symmetry, balancing, and packing for Refraction levels,
but elided those properties from the prototype presented here.

These new constraints are significantly more detailed than the
current set and will require new display mechanisms to make
them easy to see and manipulate.

Our prototype supports only a linear progression, limiting its
application to some games. For example, in Nintendo’s Super
Metroid, the player explores a large, nonlinear open world.
The player finds “power ups” in this world that unlock new
abilities, allowing the player to explore previously inacces-
sible locations. Therefore, the “progression” is defined over
which abilities the player has unlocked and which mechan-
ics they understand how to use, rather than a single number
describing how many levels they have completed. While ex-
tensions to the system to support other progression structures
are plausible, most require finding a natural visual depiction
for such structures. Currently, our ability to generate pro-
gressions and levels under hard and soft constraints exceeds
our ability to present useful interfaces that would allow a de-
signer to guide these generators in directions that would sat-
isfy some external intent, so more research must be done to
explore how to depict and interactively manipulate these more
abstract progression mechanisms.

Refraction is a game of relatively small scope, but we be-
lieve this system could be used for much larger games. To re-
main tractable, one strategy would be to only model the most
salient properties of levels and solutions. If complex levels
can be created by connecting detailed tiles (e.g., pre-authored
chunks of terrain in an 3D adventure game), then the repre-
sentation used in progression planning can remain discrete
and visually manageable. Another strategy would be model-
ing at additional scales. For Refraction it was feasible to work
at two scales because puzzles are short enough to be treated
as atomic objects. However, many games have very large
“levels,” such as the single-player campaign missions of real
time strategy games like Blizzard Entertainment’s Starcraft.
While designers may wish to model progressions over the en-
tire game’s missions, the levels themselves are quite long, and
the designer may wish to model an “intra-level” progression
of a single level, or perhaps even modeling the progression
over individual encounters within a level. Such progressions
could be modeled by hierarchically nested progression dia-
grams: scales for each encounter, mission, and overall game.

We have supplied a small example of possible progression
constraints, but they can be extended or new ones introduced.
Luckily, many progression constraints apply generally to a
broad class of games and so can be reused. This is in con-
trast with level constraints, which are almost always game-
specific. For example, many games are concerned with the
order mechanics are introduced, so our prerequisite constraint
can be used in those games. Likewise, many games require
care with pacing, so a constraint dealing with how long con-
cepts should be practiced after introduction before moving on
to new concepts would be generally useful.

The existing user interfaces for constraint editing can be re-
purposed for different kinds of constraints. For example,
in addition to prerequisites and corequisites, we might use
the same interface for constraints such as: mutual exclusion,
where concepts A and B shall not show up in the same level;

sequential exclusion, where if A was used in a previous level,
B cannot be used in the current level; or sequential introduc-
tion, where A must be introduced immediately preceding B.

Similarly, the spline editing interface can be reused for many
designer-specified functions. For example, we can model a
sense of “scale” for Refraction levels by measuring the mini-
mal number of pieces required to complete the level. Our con-
cept count constraint gives a very primitive idea of level in-
tensity, and as long as a designer can usefully employ edits of
this curve in place of lower-level tweaks, it is valuable. How-
ever, it would be desirable to use a function more representa-
tive of real-world difficulty and player experience. Backing
the spline editor with more sophisticated functions, such as
a learning rate derived from an externally-validated learner
model, is an obvious and enticing avenue of future work.

Our system has basic support for preserving manual edits by
“locking” entire levels as fixed with respect to the generators,
but better methods could be applied to make the tool more
useful. An obvious first step is allowing more fine-grained
locking by locking only particular concepts: for example, the
designer may want to ensure that splitting shows up in lev-
els 2–5 but wants to allow the generator to make other de-
cisions for those levels. Allowing the generators to reorder
existing levels or minimally modify levels while preserving
designer-specified features may also make the locking tool
significantly more useful.

Finally, the generators and analyzers can be replaced as tech-
nology improves. Depending on the game, many existing
level generation technologies would fit in the system. While
answer set programming fit our game well for both level and
progression plan generation, we could explore many other op-
timization or planning techniques. For example, for level gen-
eration, a game with continuous physics like Rovio Entertain-
ment’s Angry Birds might use a generate-and-test system that
uses the game’s internal physics engine. Many relatively sim-
ple techniques, such as making an approximate query against
a database of previously authored and annotated plans and
levels, are likely to be fruitful as well.

Application to Other Domains
We believe these ideas can be explored in other domains be-
yond games. Here we propose some potential applications of
this system, looking at two other domains in closer detail.

Example Domain: Teaching Programming
As one example, we consider an interactive application that
teaches programming, similar to Codecademy9. “Levels” in
this domain are individual programming exercises. We spec-
ulate a designer may be concerned with properties such as
which programming concepts (e.g., recursion, conditionals)
are explained or introduced in the exercise, or which con-
cepts the user is assumed to already know. Another may be
the complexity of the exercise, either by number of lines of
code required or whether certain library function calls are re-
quired. Other properties are subjective in nature, such as the

9http://www.codecademy.com

directness of suggestions given to find the solution, the narra-
tive used to give context to the user, or the visual layout of the
exercise in the application and access to related examples.

A designer may wish to ensure several global progression
constraints over the exercises. Concepts should not be used
until an exercise where they are intentionally introduced.
Complexity should vary between exercises to prevent frus-
tration or boredom. Concepts are revisited to give users suffi-
cient practice, and should be recombined with other concepts;
for example, designers may wish for each concept to be used
with at least three other concepts.

This problem domain shares many of the characteristics of
our game design problem (indeed, many of these concerns
map exactly into Cook’s discussion of skill atoms) so it
should likely benefit from using a progression design tool. As
most of our tool components can be directly reused, the de-
signers need only supply an editor for exercises and tools to
compute properties of crafted puzzles. For the computation-
ally complex task of determining if there are alternate solu-
tions to a programming task that avoid the use of certain con-
cepts, program synthesis techniques could be used to search
the constrained space of small programs in a language that fit
a specification [3].

Example Domain: High-School Algebra Problems
We consider creating a homework assignment containing a
progression of algebra problems. There are several level
properties a curriculum designer may wish to control, some
modelable, others subjective: which algebraic concepts are
used (e.g., factoring, cancellation, distribution), how many
steps a particular problem takes to solve, or whether the prob-
lem resembles in-class examples.

We consider several progression constraints a designer might
wish to enforce, such as the partial ordering of concepts (e.g.,
properties of roots before properties of logarithms). Design-
ers may want to introduce new concepts in isolation to allow
students to master them before combining them with others.
They may also wish to ensure the supporting text for each
problem is thematically coherent with nearby problems.

There is existing work moving towards being able to ana-
lyze and generate such math problems automatically. For
instance, Andersen et al. [1] created a framework capable
of automatically generating example problems and progres-
sions for elementary and middle school mathematics. Given
a hand-authored problem, their system can report which path-
way through a mental algorithm the student is likely to take,
thus allowing a metric for analysis and synthesis of problems,
which is also suitable for our progression designer.

More generally, we suspect that the progression designer
could be useful for analysis of the entire math or science cur-
ricula through 13 years of K–12 education, or design of a
problem-based learning course.

RELATED WORK
There is a long history of creating design tools in HCI re-
search. Many tools have been created to support rapid ex-
ploration and prototyping at an early stage. Sketch-based

tools such as Silk [13] and Denim [14] allow the designer to
sketch interfaces with a stylus. Suede [12] explored the rapid
creation of prototypes of speech-based user interfaces using
wizard-of-oz techniques. Similar techniques could be used to
prototype progression design tools in domains where automa-
tion similar to that which we built on is not yet available. In
this case, the ability to sketch in broad-scale properties of a
progression (e.g. a target pacing curve) and sample alternative
plans is still useful even if per-level design is done by hand.

Systems like d.tools [10] support an iteration loop of creat-
ing, testing and analyzing interface prototypes. Because user
testing and iteration is critical when creating game levels and
progressions, our system also aims to support these kinds of
iteration loops, but a manner specific to our domain.

Juxtapose [11] and Side Views [23] are examples that allow
the user to quickly explore alternatives to the current design.
Our tools tries to support this though sampling randomly gen-
erated alternatives under constraints, though adopting a literal
side-by-side view could be more effective.

Much work has been done using constraint solvers in user
interfaces, such as Cassowary [2] and the engine in Amulet
[15]. In contrast to familiar applications of geometric layout
constraints on interface elements, many of our constraints are
much more abstract in nature, such as the nonexistence of
shortcut solutions for a level that is supposed to introduce a
new gameplay concept. Even so, we strongly separate the
definition of the constraint (as driven by the interface of the
design tool) from the back-end search technology used to find
satisfying solutions. Creating generators and analyzers for
Refraction involved setting up constraints and passing these
to a domain-independent solver from the Potassco project [8].

There is also a rich history of work in mixed-initiative plan-
ning and collaboration tools. COLLAGEN increased the
ease with which users could create mixed-initiative planning
tools [16]. The framework specifies an interface with goals,
recipes, and steps, to be implemented by domain-specific
planners. COLLAGEN would then provide a dialogue sys-
tem capable of conversing with the end-user, using the under-
lying planner. More generally, the SHARED-PLAN archi-
tecture underlying COLLAGEN allows computer and human
agents to collaborate together in groups to satisfy goals, such
as planning or interface design [9]. Our tool is more visu-
ally oriented, rather than relying on dialogue as a method of
interaction; in addition, we optimize directly while planning
subject to constraints instead of requiring recipes to search
for solutions.

Mixed-initiative planners have also been used in other do-
mains. NASA’s MAPGEN is actively used to create daily ac-
tivity plans for Mars rovers [4]. OZONE was designed to be
a mixed-initiative constraint-based planning framework with
pluggable components and was used to plan military resource
allocation and transport tasks [22]. Our domain is different in
that designers must both create plans and levels.

CONCLUSION
In this paper, we have identified the potential utility of mixed-
initiative progression design tools for games, described how

such systems could work, and created an implementation to
be used with our own deployed game. Progressions and levels
are both very difficult to design, and it is arduous to juggle all
design considerations while working at multiple scales. For
several types of games, many of these considerations can be
formally modeled, so we can use computation to automate
portions of the process. At the same time, many design con-
cerns are completely subjective, so there is a strong need to
retain human involvement in the creation of final progres-
sion plans and levels for deployment. We expect that game
progression design tools can significantly enhance the game
creation process. There are many other domains where in-
teractive experiences are composed of scaffolded episodes.
Practically all educational and general training environments
fit this paradigm to some extent. We describe how given a
breakdown of key concepts and the ability to automatically
generate levels from parametric specification other domains
directly map to our progression design process.

There are several areas of future work, in addition to potential
extensions mentioned earlier. Experience with this prototype
has already prompted a number of game-specific and general
directions to explore next. For example, in addition to adding
more details to the progression plan (properties and curves),
we want to investigate how concrete patterns discovered in
the level editors (such as a commonly used cluster of pieces)
can be upgraded into plan-scale properties without additional
programming. Meanwhile, broader user studies are required
to determine the effectiveness of this model before we can
make progress on deploying progression design tools for an
audience beyond experienced level designers. More study is
needed to discover how well this system applies to a wider
class of games. Finally, we propose exploring these ideas in
other, non-game domains.

ACKNOWLEDGMENTS
This work was supported by the University of Washington
Center for Game Science, DARPA grant FA8750-11-2-0102,
the Bill and Melinda Gates Foundation, the William and Flora
Hewlett Foundation, and an NSF Graduate Research Fellow-
ship under Grant No. DGE-0718124.

REFERENCES
1. Andersen, E., Gulwani, S., and Popovic, Z. A trace-based framework

for analyzing and synthesizing educational progressions. CHI (2013).

2. Badros, G. J., Borning, A., and Stuckey, P. J. The cassowary linear
arithmetic constraint solving algorithm. ACM Trans. Comput.-Hum.
Interact. 8, 4 (Dec. 2001), 267–306.

3. Basin, D., Deville, Y., Flener, P., Hamfelt, A., and Nilsson, J. F.
Synthesis of programs in computational logic. In PROGRAM
DEVELOPMENT IN COMPUTATIONAL LOGIC, Springer (2004),
30–65.

4. Bresina, J. L., Jónsson, A. K., Morris, P. H., and Rajan, K.
Mixed-initiative planning in mapgen: Capabilities and shortcomings. In
Proceedings of the ICAPS-05 Workshop on Mixed-initiative Planning
and Scheduling, Monterey, CA, Citeseer (2005), 54–61.

5. Chen, J. Flow in games (and everything else). Communications of the
ACM 50, 4 (2007), 31–34.

6. Cook, D. The chemistry of game design. Gamasutra (2007).

7. Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience.
Harper & Row Publishers, Inc., 1990.

8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T.,
and Schneider, M. Potassco: The potsdam answer set solving
collection. AI Communications 24, 2 (2011), 107–124.

9. Grosz, B. J., Hunsberger, L., and Kraus, S. Planning and acting
together. AI Magazine 20 (1999), 23–34.

10. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L., Burr, B.,
Robinson-Mosher, A., and Gee, J. Reflective physical prototyping
through integrated design, test, and analysis. In Proceedings of the 19th
annual ACM symposium on User interface software and technology,
UIST ’06, ACM (2006), 299–308.

11. Hartmann, B., Yu, L., Allison, A., Yang, Y., and Klemmer, S. R. Design
as exploration: creating interface alternatives through parallel authoring
and runtime tuning. In Proceedings of the 21st annual ACM symposium
on User interface software and technology, UIST ’08, ACM (2008),
91–100.

12. Klemmer, S. R., Sinha, A. K., Chen, J., Landay, J. A., Aboobaker, N.,
and Wang, A. Suede: a wizard of oz prototyping tool for speech user
interfaces. In Proceedings of the 13th annual ACM symposium on User
interface software and technology, UIST ’00, ACM (2000), 1–10.

13. Landay, J. A. Silk: sketching interfaces like krazy. In Conference
Companion on Human Factors in Computing Systems, CHI ’96, ACM
(1996), 398–399.

14. Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A. Denim: finding
a tighter fit between tools and practice for web site design. In
Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, CHI ’00, ACM (2000), 510–517.

15. Myers, B., McDaniel, R., Miller, R., Ferrency, A., Faulring, A., Kyle,
B., Mickish, A., Klimovitski, A., and Doane, P. The amulet
environment: new models for effective user interface software
development. Software Engineering, IEEE Transactions on 23, 6
(1997), 347–365.

16. Rich, C., and Sidner, C. Collagen: A collaboration manager for
software interface agents. User Modeling and User-Adapted
Interaction 8, 3-4 (1998), 315–350.

17. Schanda, F., and Brain, M. Diorama.
http://warzone2100.org.uk/, Apr. 2013.

18. Smelik, R., Tutenel, T., de Kraker, K. J., and Bidarra, R. Integrating
procedural generation and manual editing of virtual worlds. In
Proceedings of the 2010 Workshop on Procedural Content Generation
in Games, PCGames ’10, ACM (2010), 2:1–2:8.

19. Smith, A., Butler, E., and Popović, Z. Quantifying over play:
Constraining undesirable solutions in puzzle design. In FDG ’13:
Proceedings of the Eighth International Conference on the Foundations
of Digital Games (2013).

20. Smith, A. M., Andersen, E., Mateas, M., and Popović, Z. A case study
of expressively constrainable level design automation tools for a puzzle
game. In Proceedings of the International Conference on the
Foundations of Digital Games, FDG ’12, ACM (2012), 156–163.

21. Smith, G., Whitehead, J., and Mateas, M. Tanagra: Reactive planning
and constraint solving for mixed-initiative level design. Computational
Intelligence and AI in Games, IEEE Transactions on 3, 3 (2011),
201–215.

22. Smith, S., Lassila, O., and Becker, M. Configurable, mixed-initiative
systems for planning and scheduling. In Advanced Planning, AAAI
Press (1996), 235–241.

23. Terry, M., and Mynatt, E. D. Side views: persistent, on-demand
previews for open-ended tasks. In Proceedings of the 15th annual ACM
symposium on User interface software and technology, UIST ’02, ACM
(2002), 71–80.

24. Togelius, J., Yannakakis, G., Stanley, K., and Browne, C. Search-based
procedural content generation: A taxonomy and survey. Computational
Intelligence and AI in Games, IEEE Transactions on 3, 3 (2011),
172–186.

25. Zook, A., Lee-Urban, S., Riedl, M. O., Holden, H. K., Sottilare, R. A.,
and Brawner, K. W. Automated scenario generation: toward tailored
and optimized military training in virtual environments. In Proceedings
of the International Conference on the Foundations of Digital Games,
FDG ’12, ACM (2012), 164–171.

http://warzone2100.org.uk/

	Introduction
	REFRACTION
	Current Practices
	Level Progressions
	Design Practices

	Progression Design Tools
	Definitions
	Goals of the Design Tool

	Application to REFRACTION
	Constraints and Properties
	Prerequisites
	Corequisites
	Concept Count
	Concept Introduction Rate

	Game-Specific System Components

	System Description
	Model
	Working with Progression Plans
	Working with Levels
	Testing the Game

	Evaluation
	Rapid Exploration at a Broad Scale
	Automatic Detection of Problems during Iteration
	Global Optimization of Progression Properties

	Discussion
	Limitations and Extensions
	Application to Other Domains
	Example Domain: Teaching Programming
	Example Domain: High-School Algebra Problems

	Related Work
	Conclusion
	Acknowledgments
	REFERENCES

