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Abstract. We analyze the problem of reconstructing a 2D function that
approximates a set of desired gradients and a data term. The combined
data and gradient terms enable operations like modifying the gradients
of an image while staying close to the original image. Starting with a
variational formulation, we arrive at the “screened Poisson equation”
known in physics. Analysis of this equation in the Fourier domain leads
to a direct, exact, and efficient solution to the problem. Further analysis
reveals the structure of the spatial filters that solve the 2D screened
Poisson equation and shows gradient scaling to be a well-defined sharpen
filter that generalizes Laplacian sharpening, which itself can be mapped
to gradient domain filtering. Results using a DCT-based screened Poisson
solver are demonstrated on several applications including image blending
for panoramas, image sharpening, and de-blocking of compressed images.

1 Introduction

Accurately and efficiently recovering a depth map or an image from gradients
has become a common problem in computer vision and computer graphics. In
photometric stereo, for instance, one measures gradients (normals) to the sur-
face and then “integrates” them to recover a depth map. In gradient domain
compositing applications, one combines the gradients of multiple images and
then solves for the underlying image most compatible with those gradients. In
both cases, the problem is over-constrained; in general, no function exists whose
gradients match the input gradients. The goal then is to project to the nearest
function whose gradients approximate the inputs. A common approach is to em-
ploy a least squares metric and integrate over the domain, leading to a Poisson
equation. This equation may be solved using, e.g., multigrid methods [1], fast
marching methods [2], or so-called fast Poisson solvers [3].

In many applications the use of fast Poisson solvers based on the Fast Fourier
Transform (FFT) are overlooked. This is due in part to the fact that fast Poisson
solvers are restricted in the class of problems they can handle; e.g., spatially
varying weights are not supported. Further, more complex approaches such as
multigrid methods are perceived to be much faster.

In this paper, we expand the set of gradient domain problems that may
be solved directly and exactly in the Fourier domain by including a data term
that the reconstructed function must also approximate. This extra term enables
operations like modifying the gradients of an image while staying close to the
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original image or combining independently measured depth maps and normals.
We pose the problem in a variational framework and arrive at a modification to
the Poisson equation, a result that corresponds to a 2D version of the “screened
Poisson equation” known in physics [4].

Additional analysis reveals the structure of the spatial filters used to solve
the 2D screened Poisson equation. Further, we show that uniformly scaling the
gradients in an image, which intuitively ought to sharpen it, does in fact pre-
cisely correspond to a linear sharpen filter. This filter generalizes the standard
Laplacian subtraction filter, which we show can also be interpreted in the same
variational framework. In that framework, we show that, unlike Laplacian sub-
traction, gradient scaling includes a penalty term for large gradients.

We demonstrate results using an FFT-based screened Poisson solver for a set
of image operations including image blending for panoramas, image sharpening,
and de-blocking of compressed images. The FFT approach is direct and exact,
unlike efficient least squares solvers which are typically iterated to within some
error tolerance [5, 6]. Though not quite as fast as the fastest solvers, the perfor-
mance does scale well, and the implementation is very simple given commonly
available libraries.

The paper is organized as follows: Section 2 describes previous work. Next in
Section 3 we formulate the problem using a variational framework. In Section 4
we map our variational approach to the Fourier domain followed by a mapping
to the spatial domain in Section 5; in these sections, we also analyze gradient-
based sharpen filters. A description of our FFT-based screened Poisson solver is
presented in Section 6 with results in Section 7. We conclude our paper with a
discussion in Section 8.

2 Related work

Gradient domain problems that map to Poisson equations can arise in numer-
ous scenarios in vision and graphics. Simchony et al. [7] describe a number of
such scenarios in vision including shape-from-shading, the lightness problem,
and optical flow. The problem of integrability of normals, in addition to shape-
from-shading, is important in photometric stereo [8] and Helmholtz stereo [9]. In
computer graphics, gradient domain methods have become an essential tool in
the image processing toolbox. Examples include tone-mapping of high dynamic
range images [10], Poisson image editing [11], and digital photomontage [12].

The introduction of a data function term is less common, though it is a nat-
ural extension and is getting increasing attention. An early example is given by
Horn for shape-from-shading, in the form of a term that minimizes the difference
between the reflectance map and image irradiance, along with the surface gra-
dient [13]. Several papers combine depth information with normals to improve
depth map reconstruction [14–16]. Lischinski et al. [17] apply strokes as data con-
straints for gradient-based scattered data interpolation. More recently, Bhat et
al. [18] have introduced a variety of image operations based on gradients and
data images to enable new image and video processing filters like saliency sharp-
ening, suppressing block artifacts in compressed images, and non-photorealistic
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rendering. All of these methods take a linear (weighted or unweighted) least
squares approach to representing and solving their problems. Agrawal et al. [19]
explore a wide space of formulations (some of them non-linear) for surface re-
construction that includes the possibility of a data term. Agrawal’s thesis [20] is
an excellent survey of surface reconstruction techniques from gradients. In this
paper, we analyze the gradients plus data term using a formulation that corre-
sponds to unweighted least squares, but analyze it in the Fourier domain and
develop a corresponding fast solver.

Linear least squares techniques are among the most common approaches to
solving problems described above. Szeliski [21] provides a nice summary of these
approaches. A particular advantage of these approaches is their flexibility in
modeling irregularly shaped domains and spatially varying weights. Agarwala [5]
develops a quad-tree based solution for gradient domain compositing with uni-
form weights. A number of problems have a regular domain and uniform weights.
Additional solvers include the fast marching method for integrating surface nor-
mals, introduced by Ho et al. [2] and the streaming multigrid method of Kazhdan
and Hoppe [6]. Frankot and Chellapa [22] approached the same problem using a
Fourier basis, and others have adopted cosine basis for their particular boundary
conditions [22][23]. These latter approaches fall into the category of fast Poisson
solvers [3]. We follow this Fourier approach to the problem of gradient domain
integration that includes a data term.

We also note that Weiss [24] provides a method for computing a discrete
spatial filter that minimizes squared differences between filtered versions of an
image and corresponding inputs. Our analysis focuses on the continuous problem,
specifically variational and Fourier analysis of the screened Poisson equation.

3 Variational formulation

In this section, we describe the standard gradient integration problem and its
Poisson solution and then expand this result to include a data function term.

The problem of computing a function f(x, y) whose gradient ∇f(x, y) is as
close as possible to a given gradient field g(x, y) is commonly solved by mini-
mizing the following objective:∫ ∫

‖∇f − g‖2 dx dy. (1)

Note that g is a vector-valued function that is generally not a gradient derived
from another function. (If g were derived from another function, then the optimal
f would be that other function, up to an unknown constant offset.)

It is well-known that, by applying the Euler-Lagrange equation, the optimal
f satisfies the following Poisson equation:

∇2f = ∇ · g, (2)

which can be expanded as fxx + fyy = gx
x + gy

y , where g = (gx, gy). Subscripts
in x and y correspond to partial derivatives with respect to those variables. We
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have superscripted gx and gy to denote the elements of g rather than subscript
them, which would incorrectly suggest they are partial derivatives of the same
function.

We now expand the objective beyond the standard formulation. In particular,
we additionally require f(x, y) to be as close as possible to some data function
u(x, y). The objective function to minimize now becomes:∫ ∫

λd(f − u)2 + ‖∇f − g‖2 dx dy, (3)

where λd is a constant that controls the trade-off between the fidelity of f to the
data function versus the input gradient field.

To solve for the function f that minimizes this integral, we first isolate the
integrand:

L = λd(f − u)2 + ‖∇f − g‖2 = λd(f − u)2 + (fx − gx)2 + (fy − gy)2. (4)

The function f that minimizes this integral satisfies the Euler-Lagrange equation:

∂L

∂f
− ∂

∂x

∂L

∂fx
− ∂

∂y

∂L

∂fy
= 0. (5)

Substituting and differentiating, we then have:

2λd(f − u)− 2(fxx − gx
x)− 2(fyy − gy

y) = 0. (6)

Rearranging gives us:

λdf − (fxx + fyy) = λdu− (gx
x + gy

y) (7)

or equivalently:
λdf −∇2f = λdu−∇ · g. (8)

The left-hand side of this equation is a screened Poisson equation, typically stud-
ied in three dimensions in physics [4]. Our analysis will be in 2D. As expected,
setting λd = 0 nullifies the data term and gives us the Poisson equation.

4 Fourier solution

In this section we analyze the 2D screened Poisson equation the Fourier do-
main. As with fast Poisson solvers, we can solve the screened Poisson equation
(Equation 8) by taking its Fourier transform. First, we adopt the (sx, sy) spatial
frequency notation of Bracewell [25] and recall that for a given function h and
its Fourier transform, F{h} = H, we have F{hx} = i2πsxH, F{hy} = i2πsyH,
F{hxx} = −4π2s2

xH, and F{hyy} = −4π2s2
yH.

Simply transforming the left and right sides of Equation 7 gives us:

λdF + 4π2s2
xF + 4π2s2

yF = λdU − i2πsxGx − i2πsyGy, (9)
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where F , U , Gx, and Gy are the Fourier transforms of f , u, gx, and gy respec-
tively. Solving for F , we find:

F =
λdU − i2πsxGx − i2πsyGy

λd + 4π2
(
s2

x + s2
y

) . (10)

We can interpret this equation as combining, in the numerator, the data func-
tion with “sharpened” versions (after taking derivatives) of the gradient field
components, and then low-pass filtering the result with the denominator, which
tends to dampen high frequencies.

Note that when λd = 0, Equation 10 simplifies to the well-known fast Poisson
solver result:

F =
−i2πsxGx − i2πsyGy

4π2
(
s2

x + s2
y

) . (11)

This solution, however, is undefined at sx = sy = 0, corresponding to an
unknown DC term (constant offset) which must be supplied. Thus, there exists
a null space of solutions, and the operation is not strictly invertible. This obser-
vation is evident by examining the objective in Equation 1, which is invariant to
constant offsets to f . This situation does not arise, however, when a data term
is present λd > 0, in which case we find F (0, 0) = U(0, 0).

4.1 Image sharpening through gradient amplification

The previous section showed how gradient domain functionals that can be writ-
ten in the form given by Equation 3 can be solved in the Fourier domain. It
turns out that many interesting image processing filters can be written quite
intuitively in this form, as will be discussed in Section 7.

In this section, we explore one intuitive example: sharpening an image by
scaling up its gradients. Consider taking an image u and sharpening it by boost-
ing its gradients ∇u by a constant factor cs. Clearly, if one simply required an
output image with scaled gradients, a simple (and optimal) solution would be
to scale the image intensities by cs. But, in addition to possibly pushing the
intensities out of displayable range, this output image has drifted substantially
from the intensities of the input image.

Instead, we can formulate an objective that trades off fidelity to the image
against fidelity to the amplified gradients:∫ ∫

λd(f − u)2 + ‖∇f − cs∇u‖2 dx dy. (12)

This objective function is equivalent to the one in Equation 3, where we now
have g = cs∇u. The Euler-Lagrange solution is then:

λdf −∇2f = λdu− cs∇2u. (13)

Similarly, the Fourier domain versions of gradient functions become: Gx =
i2πsxU and Gy = i2πsyU . Substituting into Equation 10, we obtain:

F =

[
λd + 4π2cs

(
s2

x + s2
y

)
λd + 4π2

(
s2

x + s2
y

) ]
U =

[
1 + 4π2(cs/λd)

(
s2

x + s2
y

)
1 + 4π2(1/λd)

(
s2

x + s2
y

) ]
U. (14)
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Fig. 1. Left: The frequency domain filters for gradient amplification (AGA) and Lapla-
cian subtraction (ALS). Here, we set the parameters as follows: λs = 1, λd = 4, and
cs = 20. Right: The zeroth order modified Bessel function of the second kind, K0(x).
In 2D, K0(r) is rotationally symmetric, and, while infinite at r = 0, is integrable.

For cs > 1, this equation results in boosting the high frequencies of u, and thus
f is a sharpened version of u. As (s2

x + s2
y) →∞, we can see that the frequency

amplification levels off to a constant, i.e., to cs, as illustrated in Figure 1, in
which AGA corresponds to the frequency filter in brackets in Equation 14.

5 Spatial solution

Given our Fourier analysis we can map our problem back into the spatial domain.
We can analyze the denominator in Equation 10 and treat it as a filter being
applied to the numerator. Consider the denominator:

1
λd + 4π2

(
s2

x + s2
y

) . (15)

Since this filter is radially symmetric, we can compute its Fourier transform
using the Hankel transform, with radial frequency ρ =

√
s2

x + s2
y and spatial

radius r =
√

x2 + y2. The following transform is known:

Fρ

{
1

a2 + ρ2

}
= 2πK0(2πar), (16)

where Fρ{} is the Hankel transform from the frequency to the spatial domain,
and K0 is the zeroth order modified Bessel function of the second kind. This
function has the approximate shape of a rotationally symmetric exponential
function over the radius e−r/r and can be seen in Figure 1. (In fact, in three
dimensions, the exponential form e−r/r is known to be the exact solution for
the screened Poisson equation [4].)
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With some simple algebraic manipulations, we arrive at:

Fρ

{
1

λd + 4π2
(
s2

x + s2
y

)}
=

1
2π

K0(2π
√

λdr) =
1
2π

K0(2π
√

λd(x2 + y2)).

(17)
The numerator in Equation 10 corresponds to λdu−gx

x−gy
y in the spatial domain,

and so the final result is the following convolution:

f =
1
2π

K0(2π
√

λd(x2 + y2)) ∗ (λdu− gx
x − gy

y). (18)

Thus, we see that f can be obtained by subtracting the divergence of the gradient
field from the input image u, and then blurring the result with the K0 filter. Note
that as λd increases, the support of this filter becomes smaller; i.e., a stronger
data term shrinks the support of the blurring filter.

5.1 Spatial domain sharpening

Here we determine the spatial domain filter associated with gradient amplifi-
cation. Starting with Equation 14, we can decompose the frequency filter as
follows:

λd + 4π2cs

(
s2

x + s2
y

)
λd + 4π2

(
s2

x + s2
y

) = cs −
λd(cs − 1)

λd + 4π2
(
s2

x + s2
y

) . (19)

The inverse Fourier transform of the first term is a scaled Dirac delta function,
and the second term follows from Equation 17, giving us:

Fρ

{
λd + 4π2cs

(
s2

x + s2
y

)
λd + 4π2

(
s2

x + s2
y

) }
= csδ(x, y)− λd(cs − 1)

2π
K0(2π

√
λd(x2 + y2)).

(20)
Convolving this with the data function then gives:

f(x, y) = csu(x, y)− λd(cs − 1)
2π

K0(2π
√

λd(x2 + y2)) ∗ u(x, y). (21)

Note that when amplifying gradients, cs > 1, so the operation amounts to blur-
ring the image with the K0() filter and subtracting it from the original image.

5.2 Relationship to Laplacian subtraction sharpening

In this section, we relate sharpening by gradient amplification to the more con-
ventional sharpening by Laplacian subtraction. First, we return to the Fourier
domain, define another constant λs = cs/λd, and re-write Equation 14 as:

F =

[
1 + 4π2λs

(
s2

x + s2
y

)
1 + 4π2(1/λd)

(
s2

x + s2
y

)]
U = AGAU. (22)

If we then let λd →∞ while holding λs constant, we arrive at:

F =
[
1 + 4π2λs

(
s2

x + s2
y

)]
U = ALSU. (23)
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This equation is precisely the Fourier transform of a commonly known sharpen
filter (the Laplacian subtraction filter):

f = u− λs∇2u. (24)

Thus, the gradient domain sharpen filter subsumes another common sharpen
filter. At the same time, unlike this common sharpen filter, our new filter has an
additional parameter to control the amount of high frequency gain. As mentioned
above, the parameter cs controls the maximum frequency amplification.

It is interesting to note, as justified in Appendix A, that the Laplacian sub-
traction filter can also be interpreted in a variational framework. In particular,
it minimizes the following:∫ ∫

(f − u)2 − 2λs∇f · ∇u dx dy. (25)

In words, the desired function f must trade off being close to the input image u
against maximizing the dot product between∇f and∇u. The second part of this
objective favors f with large gradients aligned with the input image gradients.

Furthermore, one can take the objective for gradient sharpening (Equa-
tion 12) and show that minimizing it is equivalent to minimizing the following
objective: ∫ ∫

(f − u)2 − 2λs∇f · ∇u +
1
λd
‖∇f‖2 dx dy. (26)

This objective has almost the same form as the Laplacian subtraction objec-
tive, augmented with a penalty on gradient magnitudes. This observation gives
some intuition for the difference between the two sharpen filters in the frequency
domain; while the Laplacian subtraction filter amplifies high frequencies with-
out bound, the gradient amplification filter rolls off to a constant due to the
additional penalty on large gradients (Figure 1).

6 Discrete solution

The Fourier method provides a direct solution to the screened Poisson equation
(Equation 8). In practice, we operate on sampled representations and solve the
problem with discrete derivatives and the discrete Fourier transform (DFT).

In particular, we can first re-write Equation 7 as:

λdf̂ − (d̂x ∗ d̂x ∗ f̂ + d̂y ∗ d̂y ∗ f̂) = λdû− (d̂x ∗ ĝx + d̂y ∗ ĝy), (27)

where d̂x and d̂y are discrete derivative filters in the x and y directions respec-
tively and f̂ , û, ĝx, and ĝy are sampled versions of their continuous counterparts
from Section 4. Typical choices for these discrete derivatives are forward, back-
ward, or central differences. Taking the DFT of this equation gives us:

λdF̂ − D̂2
xF̂ − D̂2

yF̂ = λdÛ − D̂xĜx − D̂yĜy, (28)
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where capitalization indicates having taken the DFT of a given discrete function.
Rearranging, we arrive at:

F̂ =
λdÛ − D̂xĜx − D̂yĜy

λd − D̂2
x − D̂2

y

=
Ĥ

λd − D̂2
x − D̂2

y

, (29)

where, for efficiency, Ĥ is computed as the DFT of ĥ = λdû− d̂x ∗ ĝx − d̂y ∗ ĝy.
In practice, using the DFT is problematic, as it implicitly assumes the input

sequence is periodic, placing the left boundary next to the right, and top next
to bottom, before filtering. Instead, we employ the discrete cosine transform
(DCT), which implicitly performs reflections across boundaries before tiling the
plane periodically. We note that switching to a cosine basis has been explored
by other researchers [22][23] and corresponds to Neumann boundary conditions.

A few implementation details follow. We compute the input gradients in ĝx

and ĝy using backward differences, while the derivative filters d̂x and d̂y are
implemented as forward differences when computing ĥ. Using backward then
forward differences for derivatives also means that the derivative terms in the
denominator of Equation 29 correspond to the DCT of the standard discrete 2D
Laplacian. Because this filter has extremely local support in the spatial domain,
we can compute its transform efficiently using the brute force DCT and without
explicitly storing it.

We employ type-I DCTs using the FFTW library [26]. A single forward
transform is needed to transform ĥ to Ĥ. A single reverse transform is needed
to compute f̂ from F̂ . For color images, this process is repeated for each color
channel independently. The FFTW library can compute transforms in place in
memory with single precision floating point arithmetic; therefore the maximum
amount of memory required by our solver at any given time is four bytes for each
pixel in the image. The FFTW library computes each transform in O(n log n)
time, where n is the number of pixels in the image.

7 Applications and results

In this section, we demonstrate the practical utility of our Fourier domain anal-
ysis of gradient domain problems. We start with several examples in image
processing and then compare performance to several state-of-the-art methods
currently used to solve one of these applications.

7.1 Gradient domain filters and applications

The de-blocking filter proposed by Bhat et al. [18] suppresses blocking artifacts
seen in highly compressed images by selectively attenuating gradients that lie
across macro-block boundaries. The modified gradients are integrated to obtain
a de-blocked image, while a data term ensures the result does not drift too far
from the compressed image. See Figures 2e,2f for an example.

The saliency sharpening filter [18] builds on the gradient amplification sharp-
ening filter presented in Section 4.1 in order to sharpen large scale features in an
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(a) Input image (b) Sharpening (c) Saliency sharpening

(d) Image abstraction (e) Compressed image (f) De-blocking filter

Fig. 2. Image processing with data and gradient terms using the FFT solver. Sub-
figures (b,c,d) show the application of various image enhancement filters on the input
image (a). Note that the blockiness in (b) arises from sharpening JPEG compression
artifacts present in the original image. Sub-figure (f) shows the de-blocking filter applied
to a compressed image (e).

image without amplifying the noise or background clutter. This filter works by
using an edge detector to detect large scale edges in the image and then selec-
tively amplifying only those gradients that lie across large edges. Figures 2b,2c
compare uniform gradient scaling to saliency sharpening.

The image abstraction filter defined by Bhat et al. [18] operates by suppress-
ing small scale textures in an image. Similar to the saliency sharpening filtering,
this filter uses an edge detector to determine which gradients give rise to salient
features in an image. Then it selectively attenuates the non-salient gradients,
thus abstracting away fine texture and noise from the input image (Figure 2d).

In gradient domain compositing applications [12], one combines the gradients
of multiple images and then solves for the underlying image most compatible with
those gradients. When no data function is used these applications can also be
solved using regular Poisson solvers. Our method supports both types of gradient
domain compositing applications – those with or without a data function.

7.2 Comparison to gradient-only methods

We now compare the performance of our method on a gradient domain com-
positing application (no data term) to several state-of-the-art methods. The
application here concerns seamless image stitching to create large panoramic
images. Agarwala [5] presented a method specialized for this application by re-
lying on the solution to the Poisson equation being smooth in most regions
of the domain. He compared the performance of his method (QT) to that of
a preconditioned conjugate gradient solver using two different preconditioners
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Size Time (s) Memory (MB)

Dataset (MP) FS QT SM HB LHAB FS QT SM HB LHAB

St. Emilion 10 31 9 NA 3639 160 40 24 NA 362 1044
Beynac 12 22 8 17 3357 177 48 16 190 435 1252
Rainier 23 79 14 33 6446 268 92 27 110 620 1790
Sedona 36 85 29 NA NA NA 144 52 NA NA NA
Edinburgh 51 187 122 79 NA NA 204 123 203 NA NA
Crag 68 172 78 NA NA NA 272 96 NA NA NA
RedRock 88 270 118 118 NA NA 352 112 133 NA NA

Table 1. A comparison of memory and run-time performance of our method (FS) to
other state-of-the-art methods (QT [5], out-of-core SM [6], HB [21], LHAB) [27]. We
obtained the performance data for the non-Fourier methods from the QT and SM pa-
pers; the in-core speed of SM is better than shown here, but at very significant memory
cost. Our method was evaluated on a different but a comparable speed processor (Intel
Pentium 4 2.66GHz). Note also that the image dimensions in these datasets are not
tuned for FFT, which explains some of the variation in timing with size.

- hierarchical basis (HB) preconditioning [21] and locally adaptive hierarchical
basis (LAHB) preconditioning [27]. More recently (contemporaneous with our
own work), Kazhdan and Hoppe [6] developed a streaming multigrid (SM) Pois-
son solver. We ran our Fourier solver (FS) on the evaluation dataset presented
in the QT paper [5]. Table 1 compares the performance of all these methods.

As can be seen from the evaluation presented in Table 1, our method is
somewhat slower than QT and SM, and substantially better than HB and LAHB.
It should be noted that our method and HB have very low code complexity; each
taking about 100 lines of C++ code to implement using freely available libraries
(FFTW [26] in our case). In contrast, QT, SM, and LAHB are relatively complex
to implement. Also, QT is tuned to the image stitching problem and SM is tuned
to gradient domain integration, while our method solves a more general class of
problems. Of course, the HB and LAHB preconditioners can be used with linear
solvers to handle a still more general class of problems.

The FS timings include a small amount of overhead introduced by FFTW to
determine or “plan” an efficient DCT algorithm given the image dimensions. We
chose the lowest overhead planner. However, if the image dimensions are common
or many transformations are to be applied (e.g., for interactive processing or for
video), then a slower planner can be employed to give more efficient transforms,
and the plan can be stored for later use. In addition, FFTW supports multiple
processors and cores, and in our experiments with up to 8 processors and a good
plan, we have observed roughly linear speed-ups with the number of processors.
The choice of planner is simply a flag passed to the FFTW library, and executing
on multiple processors/cores requires adding a single line of code.

8 Discussion

In this paper, we have shown how gradient domain variational problems that
include a data term can be mapped to a 2D screened Poisson equation. This
problem can be studied in both the Fourier and spatial domain. This analysis
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gives insights into how gradient amplification corresponds to a linear sharpen
filter and can be related to a standard Laplacian subtraction filter. Moreover, we
show that this screened Poisson equation can be solved directly and efficiently
using DCT’s. By handling a data term, we are able to demonstrate a number of
useful applications in image processing. We also note that the DCT formulation
is extremely simple to implement with standard, optimized FFT libraries with
multi-processor support.

The primary limitation of this approach is the inability to handle spatially
varying weights on the gradient and data term constraints. Analysis shows that
inserting such weighting into the variational formulation results in product terms
that become convolutions in the frequency domain. In addition, we require com-
plete, regular domains. Still, a number of applications can operate with con-
stant weights over regular domains, or may potentially be initialized with an
unweighted solution over a regular domain using our DCT solver to speed con-
vergence of a more general solver.
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A Variational formulation of Laplacian subtraction

In Section 4.1, we showed that gradient amplification has a variational formula-
tion that maps to a sharpen filter. Here we show that a more common sharpen
filter – Laplacian subtraction (Equation 24) – can arise from another variational
formulation. Consider the following objective to minimize:∫ ∫

(f − u)2 − 2λs∇f · ∇u dx dy. (30)

We can isolate and expand the integrand:

LLS = (f − u)2 − 2λsfxux − 2λsfyuy. (31)

Applying the Euler-Lagrange equation, the minimizing function must satisfy:

2(f − u)− 2λsuxx − 2λsuyy = 0. (32)

Rearranging gives us:

f = u− λs(uxx + uyy) = u− λs∇ · u. (33)

which is exactly the sharpen filter based on Laplacian subtraction.
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Note that we do not claim that the form of the objective function (Equa-
tion 30) is unique. Indeed, adding other functions that do not include f or its
derivatives to the integrand LLS will yield the same result. Rather, it illustrates
one objective function that has intuitive meeting and does lead to the Laplacian
subtraction filter.

It is also instructive to relate the integrand LLS to the integrand in gradient
amplification:

LGA = λd(f − u)2 + ‖∇f − cs∇u‖2 (34)
= λd(f − u)2 + (fx − csux)2 + (fy − csuy)2. (35)

We can divide this integrand by λd, because it does not affect the minimum
solution. Doing so and expanding gives us:

LGA = (f − u)2 +
1
λd

f2
x − 2

cs

λd
fxux +

c2
s

λd
u2

x +
1
λd

f2
y − 2

cs

λd
fyuy +

c2
s

λd
u2

y. (36)

We can drop the terms that do not depend on f or its derivatives, since again
these do not affect the solution. Thus, we can omit c2

s

λd
u2

x and c2
s

λd
u2

y. After also
substituting λs = cs/λd, we arrive at:

LGA = (f − u)2 +
1
λd

f2
x − 2λsfxux +

1
λd

f2
y − 2λsfyuy (37)

= (f − u)2 − 2λs∇f · ∇u +
1
λd
‖∇f‖2. (38)

We can now see that the gradient amplification integrand can be related to the
Laplacian subtraction integrand very simply:

LGA = LLS +
1
λd
‖∇f‖2. (39)

Again, as λd → ∞ while holding λs constant, the gradient amplification inte-
grand becomes the Laplacian subtraction integrand.
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