
Efficient Content-Based Retrieval: Experimental Results

Andrew P. Berman and Linda G. Shapiro
Department of Computer Science and Engineering

University of Washington
PO Box 352350

Seattle, WA 98195
aberman@cs.washington.edu and shapiro@cs.washington.edu

1 Introduction

The goal of our research has been to create technology
useful in a generalized system for content-based image
retrieval. Such a system should search and retrieve images
quickly, and do so over a wide variety of queries. As
user definitions of similarity may change from session to
session, we believe that flexibility in query formulation is
an important quality for content-based retrieval systems.
This flexibility can be achieved by providing the user with a
large set of distance measures that determine the similarity
between a user query and a database image and a small set
of methods for combining several of them for a trial query.
Distance measure calculation requires accessing either the
images being compared, or pre-computed associated data.
An image database can consist of millions of images, each
one taking many megabytes of storage space. Distance
measure calculations can be individually expensive as well.
Thus, a system that must calculate the distance from the
query image to each image in a large database may exhibit
unsatisfactory performance.

For certain distance measures and data sets, indexing
or clustering schemes can be used to reduce the number
of direct comparisons. For example, one could order
images based on overall brightness to conduct fast searches
based on similar brightness. But such schemes are highly
dependant on internal characteristics of the particular
distance-measure algorithms, and do not serve the needs of
a more general-purpose system.

We have designed and implemented a prototype database
system that allows the user a great deal of flexibility in run-
time distance measure creation. The system can also reduce
the number of direct distance measure calculations between
a given query object and the database elements. FIDS, or
“Flexible Image Database System,” has been tested on a
database of thirty seven thousand images. FIDS allows the

user to find approximate matches to query images using
complex combinations of dozens of pre-defined distance
measures. FIDS can often return results without directly
comparing the query image to more than a small percentage
of the original database. In Figure 1, FIDS was presented
with the query image at the far left. The figure shows the
results of FIDS searching through 37; 748 images to find
close matches to the query, using a texture-based distance
measure. The operation took just a few seconds, and only
used 55 direct comparisons to find the results.

There are algorithms in the literature based on the triangle
inequality that can reduce the number of distance measure
calculations[1, 2, 3, 6, 8] in object retrieval. These meth-
ods have the advantage of being applicable to any distance
measure that satisfies the triangle inequality. FIDS uses al-
gorithms based on the triangle inequality that are extensions
to the methods in the literature. We have published papers
that described the use of the triangle inequality for efficient
multiple-distance-measure retrieval[6], the selection of key
images for indexing[4], the additional use of a data structure
called the triangle trie to make retrieval time sublinear[7],
and the details of the FIDS system[5]. In this paper, we
briefly summarize those aspects and present a set of exper-
iments that thoroughly evaluates the FIDS techniques and
system.

2 The use of combinations of multiple dis-
tance measures

A distance measure is a function that computes and
returns a value corresponding to the similarity between two
objects according to the predefined criteria. Formally, func-
tion d(X;Y ) with non-negative real values is a metric if it
satisfies the identity axiom: d(X;Y ) = 0 () X = Y ,
the symmetry axiom: d(X;Y ) = d(Y;X), and the triangle
axiom: d(X;Y ) + d(Y; Z) � d(X;Z). Relaxing the



Figure 1. Result of a query submitted to FIDS. The query image is on the far left.

identity axiom so that d(X;Y ) may be equal to 0 whenX 6= Y yields the definition of a pseudo-metric. The
distance measures discussed in this paper are all assummed
to be pseudo-metrics.

One can create an immense number of distance mea-
sures for images based on any set of features and an arbi-
trary scoring mechanism. We cannot program all these dis-
tance measures in advance. This difficulty motivates the
idea of giving the user a pre-defined set of base distance
measures that he or she can combine to create more com-
plex measures. We proposed[5] the following set of oper-
ations to enable more expressive queries (d1:::dn represent
distance measures): addition: d = d1 + d2; weighting:d = cd1; c � 0; max: d =Max(d1; d2; : : : ; dn); and min:d =Min(d1; d2; : : : ; dn). These operations are all invari-
ant under inequality. Weighting and addition are already
commonly used in both commercial and research systems
[11, 10]. Min and Max allow expressions with the boolean
operators AND and OR. Fagin[9] has also proposed extend-
ing multimedia queries to boolean combinations, usingMin
and Max to implement them.

3 Indexing with the triangle inequality

Traditional database searches are based upon retrieval
of entries which contain a keyword that is a precise match
to the user’s query. There have been a host of algorithms
developed for data structures such as hash tables and B-trees
that can be used in exact match searches. In contrast, a
content-based retrieval system using similarity measures
assumes no exact matches. Thus, the well-known algo-
rithms for exact matching cannot be used. There is a need
to develop robust data structures and algorithms that can
handle searches for inexact matches efficiently.

The indexing scheme and algorithm described here,
defined informally as the bare-bones triangle inequality
algorithm, outputs a value for each database image corre-
sponding to a lower bound on the distance between that
image and the query image. This set of values can be

used in several different ways: to discard images that are
shown to be too far from the query image to be a potential
match or to sequence the images in increasing order of their
calculated lower bounds.

Let I represent a database object, Q represent a query ob-
ject, K represent an arbitrary fixed object known as a key,
and d represent some distance measure that is a metric. As d
is a pseudo-metric, the two triangle inequalities, d(I;Q) +d(Q;K) � d(I;K) and d(I;Q) + d(I;K) � d(Q;K),
must be true. We can combine them to form the following
inequality, which places a lower bound on d(I;Q):d(I;Q) � jd(I;K)� d(Q;K)j (1)

Equation (1) can be extended naturally by substituting a set
of keys K = (K1; : : : ;KM) for k as follows:d(I;Q) � max1�s�M jd(I;Ks) � d(Q;Ks)j (2)

Consider a large set of database objects, S = fI1; : : : ; Ing
and a much smaller set of key objects,K = fK1; : : : ;Kmg.
Pre-calculate d(Is;Kt) for all f1 � s � mg�f1 � t � ng.
Now consider a request to find all database objectsIs such that d(Is; Q) � t for some query imageQ and threshold value t. We can calculate lower
bounds on fd(I1; Q); : : : ; d(In; Q)g by calculatingfd(Q;K1); : : : ; d(Q;Km)g and repeatedly using equation
(2). If we prove that t is less than d(Is; Q), then we
eliminate Is from our list of possible matches to Q. After
the elimination phase, we may search linearly through the
uneliminated objects, comparing each to Q in the standard
fashion.

We extended the above scheme to work with combina-
tions of distance measures[6]. The intuition is that lower
bounds on the distance between two objects for distance
measures d1 and d2 can often be used to calculate a lower
bound between the objects for distance measure d whend can be calculated as a combination of d1 and d2. Our
results show that the type of elimination described above
can be extended to any monotonically non-decreasing func-

2



91

(W,X)

3

8 Distances to Key B

Distances to Key A

(Z)(Y)

4

ROOT

Figure 2. Triangle Trie with two levels.

tion f whose inputs are the outputs of single distance mea-
sures. We have applied this to expressions involving Addi-
tion, Weighting, Max, and Min.

4 The triangle trie

Although much faster than direct comparisons, the basic
triangle-inequality algorithm described above has a running
time of O(nk), where n is the number of images and k is
the number of keys. Running time may become unaccept-
able for very large databases with a large number of keys.
Therefore, we take advantage of a data structure called the
triangle trie[3] to reduce the number of operations.

A triangle trie, otherwise known as a Really Fixed Query
Tree[1], is a data structure developed for approximate-match
searching. A single triangle trie is associated with a dis-
tance measure, a set of key images, and a set of database
elements. It is a form of trie, a tree in which the edges
leading from the root to a leaf “spell out” the index of the
leaf. Figure 2 illustrates a triangle trie with four elements(W;X; Y; Z); and two keys (A;B):The distance fromW toA is 3 and the distance from W to B is 1: This is expressed
in the trie by the path from the root to the leaf containingW .

Suppose we are given query Q and threshold integer t
and wish to find all objects in our database with a distance
from Q of not more than t. Now, consider a node P at
level l with a value of c. Every object referenced in a leaf
descendant from P has a distance of c from the key objectKl. Thus, if jc� d(Q;Kl)j is greater than t, then we know
from the triangle inequality that d(Q; I) is greater than t
for all object I which are descendants of P . Thus, we can
safely prune the search at node P .

The algorithm for searching the database using the trian-
gle trie is straightforward. Compute the distances from Q to
each key: d(Q;K1); : : : ; d(Q;Km). Perform a depth-first
search of the trie. If there is a node P at level l with value c
such that jc� d(Q;Kl)j > t, then prune the search at nodeP . When a leaf is reached, measure the distance from Q to

every object in the leaf and return those objects I for whichd(Q; I) is less than or equal to t. There may be cases where
the distance measure is not integer valued, or where the
distance measure has such a wide variance that any resul-
tant triangle trie would have a very quick fan-out. In these
cases, it may be necessary to map the calculated distances
to a smaller set of values. We call this process binning
the distances. As binning a distance may reduce its accu-
racy, there may be occasional lost opportunities for pruning.

The breadth of a triangle trie expands with its depth,
up to a maximum breadth equal to the number of database
elements. Our work suggests that by using a relatively
short trie, and by storing additional key distances in the
leaves, we can achieve excellent performance with bounded
memory use. Our two-stage algorithm works as follows:
Given database images fI1; : : : ; Ing, keys fK1; : : : ;Kmg,
and distance measure d, we create a triangle trie T of depthTdepth where Tdepth < m. Given query Q, we perform our
search of the trie as described above. This trie traversal is
the first stage. The second stage is to run the the bare-bones
triangle inequality algorithm on the remaining images using
all the keys. Figure 3 shows an example in which a color
measure and threshold were used to eliminate all but 19 of
the 37; 748 images from contention as potential matches
to the query image. However, 37; 748 lower bounds need
to be calculated to eliminate these images without the use
of a triangle trie. By using a triangle trie with 6 levels, we
reduced the number of calculated lower bounds to 7; 448,
an 80 percent reduction.

A triangle trie is designed to enable thresholded database
searches for a single distance measure. However, it is pos-
sible to use multiple triangle tries to enable thresholded
database searches over a composite measure. Searches are
done on the individual tries and the returned sets of images
are either merged or intersected, depending on how the dis-
tance measures are composited.

5 Fast Image Database System: A prototype
for testing

FIDS, the Fast Image Database System, is a prototype
content based image retrieval system. It currently has
over thirty seven thousand images. It contains a number
of distance measures based on color, texture, and feature
detection. Position matching is implemented by providing
gridded versions of basic distance measures. The default
configuration for the system returns the images in order
of their lower bounds calculated by the two-stage pruning
algorithm. Optionally, the system can be configured to
calculate the true distance from the query to the initial
images in the returned list, providing for a more accurate

3



Figure 3. An example using a simple color measure. The query image is on the far left.

result. FIDS is currently located on a Pentium-II 200 mhz
machine running the Windows NT operating system. The
machine contains 192 megabytes of RAM. FIDS is written
in Java version 1:1, and consists of approximately 7000
lines of source code. The images in the database consist of37748 images taken from a commercial CD-ROM image
gallery published by IMSI plus an additional 150 images
taken as part of the Ground-Truth Image Database project
initiated at the University of Washington. The sizes of the
uncompressed images range from 320 by 240 pixels to1200 by 960 pixels. They are stored in JPEG format on a
local hard drive, taking about 900 megabytes of space.

FIDS has a set of base distance measures which can op-
tionally be combined into composite measures. Each base
measure is linked with a set of keysK, a triangle-trieT , and
a table containing the distances from each of the database
images to each of the keys in K. Keeping the images as-
sociated with K in memory would be wasteful. Rather, the
features necessary for distance comparison are stored.

6 Experiments and results

We conducted a number of experiments on various as-
pects of the algorithms and system.The experiments were
performed using various subsets of the following distance
measures: 1) a color-histogram measure, 2) the local-
binary-partitiontexture measure, 3) a Sobel-edge-histogram
texture measure, 4) a wavelet representation comparison
measure, 5) a flesh detection measure, 6) gridded versions
of these measures, and 7) combinations of 1-6 using SUM,
MIN, and MAX to form the composite functions.

The speed of the bare-bones triangle inequality algo-
rithm

We first measured the speed of the bare-bones triangle in-
equality algorithm. The process by which a system using
this algorithm returns a set of matches to a query can be bro-
ken into four steps:� Step 1: The system extracts relevant features from the

query image. In our system, this step takes from a fifti-
eth to a quarter of a second, depending on the distance
measure. Table 1 shows this range in the second col-
umn.� Step 2: the system calculates the distance from the
query image to each of the key images. For the basic
distance measures on our system, this step takes from
about a microsecond per image to more than four-fifths
of a millisecond per image. The third column of table
1 shows the values.� Step 3: The system calculates the lower bound dis-
tances from the query image to each of the database im-
ages.� Step 4: The system returns the images with the small-
est lower bound distances calculated in the previous
step.

The third step above is the deciding factor on through-
put. The timing of the other steps is relatively stable across
database sizes, although the number of keys in step two
which are necessary for adequate performance will tend to
increase as the number of images in the database increases.
We measured a time of approximately 4milliseconds to per-
form the third step on 1,000 images if 35 keys are used. This
represents a throughput of well over two hundred and fifty
thousand images per second, once the feature extraction and
query-key comparisons are finished. By comparison, the fi-
nal column of Table 1 gives the throughput per second for
each distance measure given a system that stores the features
for its images.

Two stage pruning with triangle tries

We next tested the performance of the triangle trie in
image searches. We created a set of triangle tries for each
distance measure, varying the tries by depth and bin size.
The depths ranged from 1 to 11, and the bin size ranged
from 10 to 130 stepping by 10.

4



Distance Measure A B C
Color (4x4x4 RGB) .12 46 2174
Color (8x8x8 RGB) .13 37 2669

LBP .04 28 3623
Flesh .25 .12 833333
Sobel .20 4.1 24937

Wavelet .02 863 115

Table 1. Feature extraction and distance calculation time
for representative distance measures used in FIDS on a
Pentium Pro 200 mhz PC.
A: Feature Extraction Time in Seconds
B: Distance Calculation Time in ms/1000
C: Number Of Distance Calculations per Second

There are 35 key images in our database. Any subset
of them can be used as the keys for the tries. We created
five random orderings of the keys. For each triple of 10
distance measures, 11 depths, and 13 bin sizes, we created
five tries using the appropriate five prefixes of the random
key orderings. For each such trie, we tested five images,
resulting in a total of twenty-five tests for each triple of
distance measure, depth, and bin size. This resulted in a
total of 33; 295 experiments, not including experiments
that were abandoned due to too large a trie being created.
Each experiment was repeated 250 times to improve the
accuracy of the measured time. We recorded the size of the
created tries, the number of matches returned for a search,
the number of internal trie nodes accessed, the number of
leaf trie nodes accessed, and the time it took to walk the trie
and return the matches.

Table 2 shows the results of the tries that had the high-
est speed improvement factors. The gridded version of the
local-binary-partition texture measure had the minimum im-
provement, being about twice as fast with a trie as without
one. At the other end of the scale, the Sobel-edge-histogram
texture measure was almost fifty times as fast with a trie as
without one. This represents a potential processing rate of
almost twelve million images per second. The Triangle Trie
offered improved performance on all of the tested distance
measures.

The accuracy of the triangle-inequality algorithms

To evaluate the efficiency of using the triangle inequality
to return close matches to queries, we performed experi-
ments using both single and composite distance measures.
Given a query and distance measure, the system returns
all the images in the database ordered by calculated lowest
bounds on their distances to the query. We use terms such
as lower-bound sequence or returned ordering to refer to

Measure A B C D E
Sobel 47.8 10 6 0.4 318.6

Gridded Sobel 38.6 30 15 0.7 343.0
Gridded Wavelets 22.3 20 8 1.2 598.6

Gridded Color 15.01 130 11 1.8 882.4
Color 8.8 80 8 4.0 1273.0

Wavelets 3.8 40 4 11.8 2343.6
Gridded Flesh 3.2 30 4 7.0 4588.2

LBPHist 2.8 30 7 20.1 5740.7
Flesh 2.6 80 11 7.4 5980.2

Gridded LBPHist 2.4 80 8 12.1 5465.0

Table 2.Characteristics of the best tries found for each dis-
tance measure, rated by speed factor. Time is in millisec-
onds for a search of 20,000 images and is just for the trie
search itself. Speed Factor is the ratio of time taken for a
search of 20,000 images using the triangle inequality algo-
rithm without the triangle trie to a search using the triangle
trie as a precursor to the triangle inequality algorithm.
A: Speed Factor
B: Bin Size
C: Trie Depth
D: Time
E: Returned Matches

the system’s output. On the other hand, there is the true
sequence or true ordering, which consists of all the images
in the database ordered by their true distance to the query.
The hope is that the images which are at the front of the true
ordering are also at or near the front of the lower-bound
sequence. Measuring the placement of close matches was
the main goal of these experiments.

In order to test the quality of the returned ordering, some
ground truth was required. To achieve this ground truth,
we examined the database by hand and selected 51 pairs of
similar images. For each pair, we queried the system with
one of the images and measured the position of the other
target image in the returned sequence. We then calculated
the true position of the target image and compared the
returned positions to the true positions.

We measured the fraction of matches that were returned
as part of the first 25 images. This corresponds to a scenario
where a user might ask for several images to be returned
for closer examination. We further measured the fraction of
matches that were returned within the first 400 matches, cor-
responding to a scenario in which the user or system is will-
ing to do more work to find a closer match. We also mea-
sured the fraction of images that were returned in their pre-
cise position. As we selected matching pairs of test images
by hand, we had to deal with the possibility that the test im-
age pairs didn’t truly match with respect to the distance mea-
sures on the system. Our experiments were designed to mea-
sure the ability of the system to find the closest images to
queries, so we excluded an image pair from tests on a dis-

5



Distance Percent in first 400
Measures 100% 90-99% 80-89%

Single Measures 3 2 3
AND’ed Measures 7 12 1
OR’ed Measures 16 1 3

SUM’ed Measures 10 10 0
Totals 36 25 7

Table 3. Summary performance of distance measures using
full set of validated images. There were no distance mea-
sures in which less than 80% of the target images were re-
turned in the first 400 images out of 37,748.

Distance Percent in first 25
Measures 100% 90-99% 80-89% 70-79% 50-69%

Single Measures 1 0 1 4 2
AND’ed Measures 2 2 10 6 0
OR’ed Measures 6 0 0 12 2

SUM’ed Measures 4 6 10 0 0
Totals 13 8 21 22 4

Table 4. Summary performance of distance measures us-
ing full set of validated images, showing how many distance
measures of each type returned the target images in the first
25 images.

tance measure if it was discovered that the target image was
not one of the five actual closest images to the query image
for that distance measure. Our database contained 37; 748
images and we used 35 keys for each base measure.

Results

Tables 3 and 4 show the results of experiments using the
full set of valid matches. Depending on the distance mea-
sure, from 50% to 100% of all the matches were within the
first 25 images returned by the system. In almost every case,
over 90% of the matches were within the first 400 returned
images. In a second set of similar experiments, we simulated
a user with a more restricted definition of closeness. For
each distance measure, the query-target pairs were sorted in
increasing order of query-target distance. Only the first half
of these lists were used to compute these results. The results
were markedly better for the experiments using the closer
half of the valid matches. Tables 5 and 6 show the results of
experiments with the restricted set of valid matches. In this
case, only 9 distance measures out of the 68 tested measures

Distance Percent in first 400
Measures 100% 90-99% 80-89% 70-79%

Single Measures 6 0 2 0
AND’ed Measures 20 0 0 0
OR’ed Measures 18 1 0 1

SUM’ed Measures 20 0 0 0
Totals 64 1 2 1

Table 5. Summary performance of distance measures us-
ing closer pairs of validated images. Almost every distance
measure returned all targets within the first 400 images.

Distance Percent in first 25
Measures 100% 90-99% 80-89% 70-79% 50-69%

Single Measures 2 1 2 1 2
AND’ed Measures 13 5 0 2 0
OR’ed Measures 6 0 10 2 2

SUM’ed Measures 16 3 1 0 0
Totals 37 9 13 5 4

Table 6. Summary performance of distance measures us-
ing closer pairs of validated images, showing how many dis-
tance measures of each type returned the target images in the
first 25 images.

had less than 80% of the target images returned within the
first 25 images. Furthermore, in 64 out of 68 distance mea-
sures, every single one of the matches were returned within
the first 400 images.

7 Summary

Extensive testing has shown that the bare-bones triangle
inequality algorithm could be used to sharply reduce the
number of images needed to be directly compared to a
query image for a given distance measure, and that adding
the triangle-trie for a two-stage algorithm can be used to
search for matches faster than even the bare-bones triangle
inequality algorithm. We have developed a method for
using the triangle inequality algorithm for combinations
of distance measures, thus allowing for database systems
which combine flexibility and speed.

There are a number of open problems concerning the var-
ious data structures and algorithms we described. We have
already mentioned some of them, like key selection, number
of keys, trie depth and bin size. More generally, the statisti-
cal behavior of distance measures over different sets of im-
ages influences the behavior of all the algorithms and thus
needs to be explored.

References

[1] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.
Proximity matching using fixed-queries trees. In
Combinatorial Pattern Matching, pages 198–212.
Springer-Verlag, June 1994.

[2] J. Barros, J. French, W. Martin, P. Kelley, and M. Can-
non. Using the triangle inequality to reduce the number
of comparisons required for similarity-based retrieval.
In IS&T/SPIE - Storage and Retrieval for Still Image
and Video Databases, volume IV, Jan 1996.

[3] A. Berman. A new data structure for fast approxi-
mate matching. Technical Report 1994-03-02,Dept. of
Computer Science, University of Washington, 1994.

6



[4] A. Berman and L. Shapiro. Selecting good keys for
triangle-inequality based pruning algorithms. In IEEE
International Workshop on Content-based Access of
Image and Video Databases, 1997.

[5] A. Berman and L. G. Shapiro. A flexible image
database system for content-based retrieval. In 17th In-
ternational Conference on Pattern Recognition, 1998.

[6] A. P. Berman and L. G. Shapiro. Efficient image re-
trieval with multiple distance measures. In Proceed-
ings of the SPIE Conference on Storage and Retrieval
for Image and Video Databases, February 1997.

[7] A. P. Berman and L. G. Shapiro. Triangle-inequality-
based algorithms with triangle tries. In Proceedings
of the SPIE Conference on Storage and Retrieval for
Image and Video Databases, January 1999.

[8] W. A. Burkhard and R. M. Keller. Some approaches
to best-match file searching. Communications of the
ACM, 16(4):230–236, Apr 1973.

[9] R. Fagin. Fuzzy queries in multimedia database
systems. In Proceedings of the 17th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 1–10, June 1998.

[10] M. Flickner, H. Sawhnew, W. Niblack, J. Ashley,
Qian-Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P. Yanker. Query by im-
age and video content: the qbic system. Computer,
28(9):23–32, Sep 1995.

[11] A. Gupta. Visual information retrieval: A vi-
rage perspective. Technical report, Virage, Inc.
http://www.virage.com/wpaper, 1995-1997.

7


