PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing
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Figure 1: Structural image editing. Left to right: (a) the original image; (b) a hole is marked (magenta) and we use line constraints
(red/green/blue) to improve the continuity of the roofline; (c) the hole is filled in; (d) user-supplied line constraints for retargeting;
(e) retargeting using constraints eliminates two columns automatically; and (f) user translates the roof upward using reshuffling.

Abstract

This paper presents interactive image editing tools using a new
randomized algorithm for quickly finding approximate nearest-
neighbor matches between image patches. Previous research in
graphics and vision has leveraged such nearest-neighbor searches to
provide a variety of high-level digital image editing tools. However,
the cost of computing a field of such matches for an entire image
has eluded previous efforts to provide interactive performance. Our
algorithm offers substantial performance improvements over the
previous state of the art (20-100x), enabling its use in interactive
editing tools. The key insights driving the algorithm are that
some good patch matches can be found via random sampling, and
that natural coherence in the imagery allows us to propagate such
matches quickly to surrounding areas. We offer theoretical analysis
of the convergence properties of the algorithm, as well as empirical
and practical evidence for its high quality and performance. This
one simple algorithm forms the basis for a variety of tools — image
retargeting, completion and reshuffling — that can be used together
in the context of a high-level image editing application. Finally, we
propose additional intuitive constraints on the synthesis process that
offer the user a level of control unavailable in previous methods.

CR Categories: 1.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques; 1.4.9 [Computing Method-
ologies]: Image Processing and Computer Vision—Applications

Keywords: Approximate nearest neighbor, patch-based synthesis,
image editing, completion, retargeting, reshuffling

1 Introduction

As digital and computational photography have matured, researchers
have developed methods for high-level editing of digital pho-
tographs and video to meet a set of desired goals. For example,
recent algorithms for image retargeting allow images to be resized
to a new aspect ratio — the computer automatically produces a good

likeness of the contents of the original image but with new dimen-
sions [Rubinstein et al. 2008; Wang et al. 2008]. Other algorithms
for image completion let a user simply erase an unwanted portion
of an image, and the computer automatically synthesizes a fill re-
gion that plausibly matches the remainder of the image [Criminisi
et al. 2003; Komodakis and Tziritas 2007]. Image reshuffling al-
gorithms make it possible to grab portions of the image and move
them around — the computer automatically synthesizes the remain-
der of the image so as to resemble the original while respecting the
moved regions [Simakov et al. 2008; Cho et al. 2008].

In each of these scenarios, user interaction is essential, for several
reasons: First, these algorithms sometimes require user intervention
to obtain the best results. Retargeting algorithms, for example,
sometimes provide user controls to specify that one or more regions
(e.g., faces) should be left relatively unaltered. Likewise, the best
completion algorithms offer tools to guide the result by providing
hints for the computer [Sun et al. 2005]. These methods provide
such controls because the user is attempting to optimize a set of
goals that are known to him and not to the computer. Second,
the user often cannot even articulate these goals a priori. The
artistic process of creating the desired image demands the use of
trial and error, as the user seeks to optimize the result with respect
to personal criteria specific to the image under consideration.

The role of interactivity in the artistic process implies two prop-
erties for the ideal image editing framework: (1) the toolset must
provide the flexibility to perform a wide variety of seamless edit-
ing operations for users to explore their ideas; and (2) the perfor-
mance of these tools must be fast enough that the user quickly sees
intermediate results in the process of trial and error. Most high-
level editing approaches meet only one of these criteria. For ex-
ample, one family of algorithms known loosely as non-parametric
patch sampling has been shown to perform a range of editing tasks
while meeting the first criterion — flexibility [Hertzmann et al. 2001;
Wexler et al. 2007; Simakov et al. 2008]. These methods are based
on small (e.g. 7x7) densely sampled patches at multiple scales, and
are able to synthesize both texture and complex image structures
that qualitatively resemble the input imagery. Because of their abil-
ity to preserve structures, we call this class of techniques structural
image editing. Unfortunately, until now these methods have failed
the second criterion — they are far too slow for interactive use on all
but the smallest images. However, in this paper we will describe an
algorithm that accelerates such methods by at least an order of mag-
nitude, making it possible to apply them in an interactive structural
image editing framework.

To understand this algorithm, we must consider the common com-
ponents of these methods: The core element of nonparamet-
ric patch sampling methods is a repeated search of all patches



in one image region for the most similar patch [ 4 D
in another image region. In other words, given

images or regions A and B, find for every L if
patch in A the nearest neighbor in B under a ‘

-
patch distance metric such as L,. We call this ‘}f\
mapping the Nearest-Neighbor Field (NNF), |j
illustrated schematically in the inset figure. 1\

Approaching this problem with a naive brute [p ===
force search is expensive — O(mM?) for image .G
regions and patches of size M and m pixels, did i
respectively. Even using acceleration methods ‘
such as approximate nearest neighbors [Mount
and Arya 1997] and dimensionality reduction,
this search step remains the bottleneck of non-
parametric patch sampling methods, preventing them from attain-
ing interactive speeds. Furthermore, these tree-based acceleration
structures use memory in the order of O(M) or higher with rela-
tively large constants, limiting their application for high resolution
imagery.

To efficiently compute approximate nearest-neighbor fields our new
algorithm relies on three key observations about the problem:

Dimensionality of offset space. First, although the dimensional-
ity of the patch space is large (m dimensions), it is sparsely pop-
ulated (O(M) patches). Many previous methods have accelerated
the nearest neighbor search by attacking the dimensionality of the
patch space using tree structures (e.g., kd-tree, which can search
in O(mMlogM) time) and dimensionality reduction methods (e.g.,
PCA). In contrast, our algorithm searches in the 2-D space of pos-
sible patch offsets, achieving greater speed and memory efficiency.

Natural structure of images. Second, the usual independent
search for each pixel ignores the natural structure in images. In
patch-sampling synthesis algorithms, the output typically contains
large contiguous chunks of data from the input (as observed by
Ashikhmin [2001]). Thus we can improve efficiency by performing
searches for adjacent pixels in an interdependent manner.

The law of large numbers. Finally, whereas any one random
choice of patch assignment is very unlikely to be a good guess,
some nontrivial fraction of a large field of random assignments will
likely be good guesses. As this field grows larger, the chance that
no patch will have a correct offset becomes vanishingly small.

Based on these three observations we offer a randomized algorithm
for computing approximate NNFs using incremental updates (Sec-
tion 3). The algorithm begins with an initial guess, which may be
derived from prior information or may simply be a random field.
The iterative process consists of two phases: propagation, in which
coherence is used to disseminate good solutions to adjacent pixels
in the field; and random search, in which the current offset vector
is perturbed by multiple scales of random offsets. We show both
theoretically and empirically that the algorithm has good conver-
gence properties for tested imagery up to 2MP, and our CPU im-
plementation shows speedups of 20-100 times versus kd-trees with
PCA. Moreover, we propose a GPU implementation that is roughly
7 times faster than the CPU version for similar image sizes. Our
algorithm requires very little extra memory beyond the original im-
age, unlike previous algorithms that build auxiliary data structures
to accelerate the search. Using typical settings of our algorithm’s
parameters, the runtime is O(mMlogM) and the memory usage is
O(M). Although this is the same asymptotic time and memory as
the most efficient tree-based acceleration techniques, the leading
constants are substantially smaller.

In Section 4, we demonstrate the application of this algorithm in the
context of a structural image editing program with three modes of
interactive editing: image retargeting, image completion and image

reshuffling. The system includes a set of tools that offer additional
control over previous methods by allowing the user to constrain the
synthesis process in an intuitive and interactive way (Figure 1).

The contributions of our work include a fast randomized approxi-
mation algorithm for computing the nearest-neighbor field between
two disjoint image regions; an application of this algorithm within a
structural image editing framework that enables high-quality inter-
active image retargeting, image completion, and image reshuffling;
and a set of intuitive interactive controls used to constrain the opti-
mization process to obtain desired creative results.

2 Related work

Patch-based sampling methods have become a popular tool for
image and video synthesis and analysis. Applications include
texture synthesis, image and video completion, summarization and
retargeting, image recomposition and editing, image stitching and
collages, new view synthesis, noise removal and more. We will next
review some of these applications and discuss the common search
techniques that they use as well as their degree of interactivity.

Texture synthesis and completion. Efros and Leung [1999] in-
troduced a simple non-parametric texture synthesis method that
outperformed many previous model based methods by sampling
patches from a texture example and pasting them in the synthe-
sized image. Further improvements modify the search and sam-
pling approaches for better structure preservation [Wei and Levoy
2000; Ashikhmin 2001; Liang et al. 2001; Efros and Freeman 2001;
Kwatra et al. 2003; Criminisi et al. 2003; Drori et al. 2003]. The
greedy fill-in order of these algorithms sometimes introduces incon-
sistencies when completing large holes with complex structures, but
Wexler et al. [2007] formulated the completion problem as a global
optimization, thus obtaining more globally consistent completions
of large missing regions. This iterative multi-scale optimization
algorithm repeatedly searches for nearest neighbor patches for all
hole pixels in parallel. Although their original implementation was
typically slow (a few minutes for images smaller than 1 MP), our
algorithm makes this technique applicable to much larger images
at interactive rates. Patch optimization based approaches have now
become common practice in texture synthesis [Kwatra et al. 2005;
Kopf et al. 2007; Wei et al. 2008]. In that domain, Lefebvre and
Hoppe [2005] have used related parallel update schemes and even
demonstrated real-time GPU based implementations. Komodakis
and Tziritas [2007] proposed another global optimization formu-
lation for image completion using Loopy Belief Propagation with
an adaptive priority messaging scheme. Although this method pro-
duces excellent results, it is still relatively slow and has only been
demonstrated on small images.

Nearest neighbor search methods. The high synthesis quality
of patch optimization methods comes at the expense of more
search iterations, which is the clear complexity bottleneck in all
of these methods. Moreover, whereas in texture synthesis the
texture example is usually a small image, in other applications
such as patch-based completion, retargeting and reshuffling, the
input image is typically much larger so the search problem is even
more critical. Various speedups for this search have been proposed,
generally involving tree structures such as TSVQ [Wei and Levoy
2000], kd-trees [Hertzmann et al. 2001; Wexler et al. 2007; Kopf
et al. 2007], and VP-trees [Kumar et al. 2008], each of which
supports both exact and approximate search (ANN). In synthesis
applications, approximate search is often used in conjunction with
dimensionality reduction techniques such as PCA [Hertzmann et al.
2001; Lefebvre and Hoppe 2005; Kopf et al. 2007], because
ANN methods are much more time- and memory-efficient in low
dimensions.  Ashikhmin [2001] proposed a local propagation
technique exploiting local coherence in the synthesis process by



limiting the search space for a patch to the source locations of its
neighbors in the exemplar texture. Our propagation search step
is inspired by the same coherence assumption. The k-coherence
technique [Tong et al. 2002] combines the propagation idea with a
precomputation stage in which the k nearest neighbors of each patch
are cached, and later searches take advantage of these precomputed
sets. Although this accelerates the search phase, k-coherence still
requires a full nearest-neighbor search for all pixels in the input,
and has only been demonstrated in the context of texture synthesis.
It assumes that the initial offsets are close enough that it suffices to
search only a small number of nearest neighbors. This may be true
for small pure texture inputs, but we found that for large complex
images our random search phase is required to escape local minima.
In this work we compare speed and memory usage of our algorithm
against kd-trees with dimensionality reduction, and we show that
it is at least an order of magnitude faster than the best competing
combination (ANN+PCA) and uses significantly less memory. Our
algorithm also provides more generality than kd-trees because it
can be applied with arbitrary distance metrics, and easily modified
to enable local interactions such as constrained completion.

Control and interactivity. One advantage of patch sampling
schemes is that they offer a great deal of fine-scale control. For ex-
ample, in texture synthesis, the method of Ashikhmin [2001] gives
the user control over the process by initializing the output pixels
with desired colors. The image analogies framework of Hertz-
mann et al. [2001] uses auxiliary images as “guiding layers,” en-
abling a variety of effects including super-resolution, texture trans-
fer, artistic filters, and texture-by-numbers. In the field of image
completion, impressive guided filling results were shown by an-
notating structures that cross both inside and outside the missing
region [Sun et al. 2005]. Lines are filled first using Belief Propa-
gation, and then texture synthesis is applied for the other regions,
but the overall run-time is on the order of minutes for a half MP
image. Our system provides similar user annotations, for lines and
other region constraints, but treats all regions in a unified iterative
process at interactive rates. Fang and Hart [2007] demonstrated a
tool to deform image feature curves while preserving textures that
allows finer adjustments than our editing tools, but not at interac-
tive rates. Pavic et al. [2006] presented an interactive completion
system based on large fragments that allows the user to define the
local 3D perspective to properly warp the fragments before corre-
lating and pasting them. Although their system interactively pastes
each individual fragment, the user must still manually click on each
completion region, so the overall process can still be tedious.

Image retargeting. Many methods of image retargeting have ap-
plied warping or cropping, using some metric of saliency to avoid
deforming important image regions [Liu and Gleicher 2005; Setlur
et al. 2005; Wolf et al. 2007; Wang et al. 2008]. Seam carving [Avi-
dan and Shamir 2007; Rubinstein et al. 2008] uses a simple greedy
approach to prioritize seams in an image that can safely be removed
in retargeting. Although seam carving is fast, it does not preserve
structures well, and offers only limited control over the results.
Simakov et al. [2008] proposed framing the problem of image and
video retargeting as a maximization of bidirectional similarity be-
tween small patches in the original and output images, and a similar
objective function and optimization algorithm was independently
proposed by Wei et al. [2008] as a method to create texture sum-
maries for faster synthesis. Unfortunately, the approach of Simakov
et al. is extremely slow compared to seam carving. Our constrained
retargeting and image reshuffling applications employ the same ob-
jective function and iterative algorithm as Simakov et al., using
our new nearest-neighbor algorithm to obtain interactive speeds. In
each of these previous methods, the principal method of user con-
trol is the ability to define and protect important regions from dis-
tortion. In contrast, our system integrates specific user-directable
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Figure 2: Phases of the randomized nearest neighbor algorithm:
(a) patches initially have random assignments; (b) the blue patch
checks above/green and left/red neighbors to see if they will im-
prove the blue mapping, propagating good matches; (c) the patch
searches randomly for improvements in concentric neighborhoods.

constraints in the retargeting process to explicitly protect lines from
bending or breaking, restrict user-defined regions to specific trans-
formations such as uniform or non-uniform scaling, and fix lines or
objects to specific output locations.

Image “reshuffling” is the rearrangement of content within an
image, according to user input, without precise mattes. Reshuffling
was demonstrated simultaneously by Simakov et al. [2008] and
by Cho et al. [2008], who used larger image patches and Belief
Propagation in an MRF formulation. Reshuffling requires the
minimization of a global error function, as objects may move
significant distances, and greedy algorithms will introduce large
artifacts. In contrast to all previous work, our reshuffling method
is fully interactive. As this task might be particularly hard and
badly constrained, these algorithms do not always produce the
expected result. Therefore interactivity is essential, as it allows the
user to preserve some semantically important structures from being
reshuffled, and to quickly choose the best result among alternatives.

3 Approximate nearest-neighbor algorithm

The core of our system is the algorithm for computing patch
correspondences. We define a nearest-neighbor field (NNF) as
a function f : A — R? of offsets, defined over all possible patch
coordinates (locations of patch centers) in image A, for some
distance function of two patches D. Given patch coordinate a in
image A and its corresponding nearest neighbor b in image B, f(a)
is simply b —a. We refer to the values of f as offsets, and they are
stored in an array whose dimensions are those of A.

This section presents a randomized algorithm for computing an
approximate NNF. As a reminder, the key insights that motivate
this algorithm are that we search in the space of possible offsets,
that adjacent offsets search cooperatively, and that even a random
offset is likely to be a good guess for many patches over a large
image.

The algorithm has three main components, illustrated in Figure 2.
Initially, the nearest-neighbor field is filled with either random
offsets or some prior information. Next, an iterative update process
is applied to the NNF, in which good patch offsets are propagated
to adjacent pixels, followed by random search in the neighborhood
of the best offset found so far. Sections 3.1 and 3.2 describe these
steps in more detail.
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Figure 3: [llustration of convergence. (a) The top image is reconstructed using only patches from the bottom image. (b) above: the
reconstruction by the patch “voting” described in Section 4, below: a random initial offset field, with magnitude visualized as saturation
and angle visualized as hue. (c) 1/4 of the way through the first iteration, high-quality offsets have been propagated in the region above
the current scan line (denoted with the horizontal bar). (d) 3/4 of the way through the first iteration. (e) First iteration complete. (f) Two
iterations. (g) After 5 iterations, almost all patches have stopped changing. The tiny orange flowers only find good correspondences in the

later iterations.
3.1 Initialization

The nearest-neighbor field can be initialized either by assigning ran-
dom values to the field, or by using prior information. When ini-
tializing with random offsets, we use independent uniform samples
across the full range of image B. In applications described in Sec-
tion 4, we use a coarse-to-fine gradual resizing process, so we have
the option to use an initial guess upscaled from the previous level
in the pyramid. However, if we use only this initial guess, the al-
gorithm can sometimes get trapped in suboptimal local minima. To
retain the quality of this prior but still preserve some ability to es-
cape from such minima, we perform a few early iterations of the
algorithm using a random initialization, then merge with the up-
sampled initialization only at patches where D is smaller, and then
perform the remaining iterations.

3.2 lteration

After initialization, we perform an iterative process of improving
the NNF. Each iteration of the algorithm proceeds as follows:
Offsets are examined in scan order (from left to right, top to
bottom), and each undergoes propagation followed by random
search. These operations are interleaved at the patch level: if P; and
S denote, respectively, propagation and random search at patch j,
then we proceed in the order: Py, Sy, P,S2,..., By, Sn.

Propagation. We attempt to improve f(x,y) using the known
offsets of f(x—1,y) and f(x,y— 1), assuming that the patch offsets
are likely to be the same. For example, if there is a good mapping
at (x—1,y), we try to use the translation of that mapping one
pixel to the right for our mapping at (x,y). Let D(v) denote the
patch distance (error) between the patch at (x,y) in A and patch
(x,y) + v in B. We take the new value for f(x,y) to be the arg min

of {D(f(x,y)), D(f(x=1,)), D(f(x,y = 1))}

The effect is that if (x,y) has a correct mapping and is in a coherent
region R, then all of R below and to the right of (x,y) will be
filled with the correct mapping. Moreover, on even iterations we
propagate information up and left by examining offsets in reverse
scan order, using f(x+ 1,y) and f(x,y+ 1) as our candidate offsets.

Random search. Let vy = f(x,y). We attempt to improve f(x,y)
by testing a sequence of candidate offsets at an exponentially
decreasing distance from vj:

u; =V0+W(XiRi (D)

where R; is a uniform random in [—1,1] x [—1,1], w is a large
maximum search “radius”, and o is a fixed ratio between search
window sizes. We examine patches for i = 0,1,2,... until the
current search radius wa' is below 1 pixel. In our applications w is

the maximum image dimension, and & = 1/2, except where noted.
Note the search window must be clamped to the bounds of B.

Halting criteria. Although different criteria for halting may be
used depending on the application, in practice we have found it
works well to iterate a fixed number of times. All the results shown
here were computed with 4-5 iterations total, after which the NNF
has almost always converged. Convergence is illustrated in Figure 3
and in the accompanying video.

Efficiency. The efficiency of this naive approach can be improved
in a few ways. In the propagation and random search phases, when
attempting to improve an offset f(v) with a candidate offset u,
one can do early termination if a partial sum for D(u) exceeds the
current known distance D(f(v)). Also, in the propagation stage,
when using square patches of side length p and an L; norm, the
change in distance can be computed incrementally in O(p) rather
than O(p?) time, by noting redundant terms in the summation
over the overlap region. However, this incurs additional memory
overhead to store the current best distances D(f(x,y)).

GPU implementation. The editing system to be described in Sec-
tion 4 relies on a CPU implementation of the NNF estimation al-
gorithm, but we have also prototyped a fully parallelized variant
on the GPU. To do so, we alternate between iterations of random
search and propagation, where each stage addresses the entire offset
field in parallel. Although propagation is inherently a serial oper-
ation, we adapt the jump flood scheme of Rong and Tan [2006]
to perform propagation over several iterations. Whereas our CPU
version is capable of propagating information all the way across a
scanline, we find that in practice long propagations are not needed,
and a maximum jump distance of 8 suffices. We also use only 4
neighbors at each jump distance, rather than the 8 neighbors pro-
posed by Rong and Tan. With similar approximation accuracy, the
GPU algorithm is roughly 7x faster than the CPU algorithm, on a
GeForce 8800 GTS card.

3.3 Analysis for a synthetic example

Our iterative algorithm converges to the exact NNF in the limit.
Here we offer a theoretical analysis for this convergence, showing
that it converges most rapidly in the first few iterations with
high probability. Moreover, we show that in the common case
where only approximate patch matches are required, the algorithm
converges even faster. Thus our algorithm is best employed as
an approximation algorithm, by limiting computation to a small
number of iterations.

We start by analyzing the convergence to the exact nearest-neighbor
field and then extend this analysis to the more useful case of con-



vergence to an approximate solution. Assume A and B have equal
size (M pixels) and that random initialization is used. Although
the odds of any one location being assigned the best offset in this
initial guess are vanishingly small (1/M), the odds of at least one
offset being correctly assigned are quite good (1— (1 —1/M)™)) or
approximately 1 — 1/e for large M. Because the random search is
quite dense in small local regions we can also consider a “correct”
assignment to be any assignment within a small neighborhood of
size C pixels around the correct offset. Such offsets will be cor-
rected in about one iteration of random search. The odds that at
least one offset is assigned in such a neighborhood are excellent:
(1—(1—C/M)M) or for large M, 1 — exp(—C).

Now we consider a challenging synthetic test case
for our algorithm: a distinctive region R of size
m pixels lies at two different locations in an oth- o
erwise uniform pair of images A and B (shown
inset). This image is a hard case because the
background offers no information about where the
offsets for the distinctive region may be found. [
Patches in the uniform background can match a
large number of other identical patches, which are
found by random guesses in one iteration with o
very high probability, so we consider convergence
only for the distinct region R. If any one offset in
the distinct region R is within the neighborhood C of the correct
offset, then we assume that after a small number of iterations, due
to the density of random search in small local regions (mentioned
previously), that all of R will be correct via propagation (for nota-
tional simplicity assume this is instantaneous). Now suppose R has
not yet converged. Consider the random searches performed by our
algorithm at the maximum scale w. The random search iterations
at scale w independently sample the image B, and the probability p
that any of these samples lands within the neighborhood C of the
correct offset is

p=1-(1-C/M)" @

Before doing any iterations, the probability of convergence is p.
The probability that we did not converge on iterations 0,1, ..., — 1
and converge on iteration 7 is p(1 — p)’. The probabilities thus form
a geometric distribution, and the expected time of convergence is
(r) =1/p—1. To simplify, let the relative feature size be y=m/M,
then take the limit as resolution M becomes large:

() [1—(1—Cc/M)™]~1 -1 3)
) = [1—exp(-Cy)~'-1 )

lim
M—oo

; _ -1_1_ 1
By Taylor expansion for small 7, (t} = (Cy)~ =5 =M/(Cm) -3
That is, our expected number of iterations to convergence remains
constant for large image resolutions and a small feature size m
relative to image resolution M.

We performed simulations for images of resolution M from 0.1 to 2
Megapixels that confirm this model. For example, we find that for a
m = 207 region the algorithm converges with very high probability
after 5 iterations for a M = 2000% image.

The above test case is hard but not the worst one for exact matching.
The worst case for exact matching is when image B consists of a
highly repetitive texture with many distractors similar to the distinct
feature in A. The offset might then get “trapped” by one of the
distractors, and the effective neighborhood region size C might be
decreased to 1 (i.e., only the exact match can pull the solution out
of the distractor during random search). However in practice, for
many image analysis and synthesis applications such as the ones we
show in this paper, finding an approximate match (in terms of patch
similarity) will not cause any noticeable difference. The chances

Time [s] Memory [MB]

Megapixels | Ours kd-tree | Ours kd-tree
0.1 | 0.68 152 1.7 33.9

02| 1.54 37.2 34 68.9

0.35 | 2.65 87.7 5.6 118.3

Table 1: Running time and memory comparison for the input shown
in Figure 3. We compare our algorithm against a method commonly
used for patch-based search: kd-tree with approximate nearest
neighbor matching. Our algorithm uses n = 5 iterations. The
parameters for kd-tree have been adjusted to provide equal mean
error to our algorithm.

of finding a successful approximate match are actually higher when
many similar distractors are present, since each distractor is itself an
approximate match. If we assume there are Q distractors in image
B that are similar to the exact match up to some small threshold,
where each distractor has approximately the same neighborhood
region C, then following the above analysis the expected number of
iterations for convergence is reduced to M/(QCm) —0.5.

3.4 Analysis for real-world images

Here we analyze the approximations made by our algorithm on real-
world images. To assess how our algorithm addresses different de-
grees of visual similarity between the input and output images, we
performed error analysis on datasets consisting of pairs of images
spanning a broad range of visual similarities. These included inputs
and outputs of our editing operations (very similar), stereo pairs'
and consecutive video frames (somewhat similar), images from the
same class in the Caltech-256 dataset? (less similar) and pairs of
unrelated images. Some of these were also analyzed at multiple
resolutions (0.1 to 0.35 MP) and patch sizes (4x4 to 14x14). Our
algorithm and ANN+PCA kd-tree were both run on each pair, and
compared to ground truth (computed by exact NN). Note that be-
cause precomputation time is significant for our applications, we
use a single PCA projection to reduce the dimensionality of the in-
put data, unlike Kumar et al. [2008], who compute eigenvectors for
different PCA projections at each node of the kd-tree. Because each
algorithm has tunable parameters, we also varied these parameters
to obtain a range of approximation errors.

We quantify the error for each dataset as the mean and 95th
percentile of the per-patch difference between the algorithm’s RMS
patch distance and the ground truth RMS patch distance. For 5
iterations of our algorithm, we find that mean errors are between
0.2 and 0.5 gray levels for similar images, and between 0.6 and 1.5
gray levels for dissimilar images (out of 256 possible gray levels).
At the 95th percentile, errors are from 0.5 to 2.5 gray levels for
similar images, and 0.9 to 6.0 gray levels for dissimilar images.

Our algorithm is both substantially faster than kd-tree and uses
substantially less memory over a wide range of parameter settings.
For the 7x7 patch sizes used for most results in the paper, we find
our algorithm is typically 20x to 100x faster, and uses about 20x
less memory than kd-tree, regardless of resolution. Table 1 shows
a comparison of average time and memory use for our algorithm
vs. ANN kd-trees for a typical input: the pairs shown in Figure 3.
The rest of our datasets give similar results. To fairly compare
running time, we adjusted ANN kd-tree parameters to obtain a
mean approximation error equal to our algorithm after 5 iterations.

The errors and speedups obtained are a function of the patch size
and image resolution. For smaller patches, we obtain smaller
speedups (7x to 35x for 4x4 patches), and our algorithm has higher
error values. Conversely, larger patches give higher speedups (300

lhttp ://vision.middlebury.edu/stereo/data/scenes2006/
2h1:tp ://www.vision.caltech.edu/Image_Datasets/Caltech256/



times or more for 14x14 patches) and lower error values. Speedups
are lower at smaller resolutions, but level off at higher resolutions.

In our comparison, we also implemented the fully parallelized
algorithm from Section 3.2 (proposed for GPU usage) on a multi-
core CPU architecture. In this context, its errors are comparable
with the original CPU algorithm, and although it is roughly 2.5x
slower than the CPU algorithm on a single core, the run-time scales
linearly with the number of cores.

Recent work [Kumar et al. 2008] indicates that vp-trees are more
efficient than kd-trees for exact nearest-neighbor searches. We
found this to be the case on our datasets. However, exact matching
is far too slow for our applications. When doing approximate
matching with PCA, we found that vp-trees are slower than kd-
trees for equivalent error values, so we omitted them from our
comparison above.

4 Editing tools

In this section, we discuss some of the novel interactive editing
tools enabled by our algorithm. First, however, we must revisit
the bidirectional similarity synthesis approach [Simakov et al.
2008]. This method is based on a bidirectional distance measure
between pairs of images - the source (input) image S and a target
(output) image 7. The measure consists of two terms: (1) The
completeness term ensures that the output image contains as much
visual information from the input as possible and therefore is a
good summary. (2) The coherence term ensures that the output is
coherent w.r.t. the input and that new visual structures (artifacts) are
penalized. Formally, the distance measure is defined simply as the
sum of the average distance of all patches in $ to their most similar
(nearest-neighbor) patches in 7 and vice versa:

dmmplete (S7T) dcohere (SvT)

1 . 1 .

dpps(S,T) = N*SSCZS%I;ID(SJ)‘FN*“;?CI?D(%S) (5)
where the distance D is the SSD (sum of squared differences) of
patch pixel values in L*a*b* color space. For image retargeting,
we wish to solve for the image T that minimizes dgpg under the
constraints of the desired output dimensions. Given an initial guess
for the output image, Tj, this distance is iteratively minimized by
an EM-like algorithm. In the E step of each iteration i, the NN-
fields are computed from S and 7; and “patch-voting” is performed
to accumulate the pixel colors of each overlapping neighbor patch.
In the M step, all the color “votes” are averaged to generate a
new image 7;;;. To avoid getting stuck in bad local minima, a
multi-scale “gradual scaling” process is employed: 7 is initialized
to a low-resolution copy of S and is gradually resized by a small
factor, followed by a few EM iterations after each scaling, until the
final dimensions are obtained. Then, both 7 and § are gradually
upsampled to finer resolutions, followed by more EM iterations,
until the final fine resolution is obtained.

In addition to image retargeting, Simakov et al. [2008] showed that
this method can be used for other synthesis tasks such as image
collages, reshuffling, automatic cropping and the analogies of these
in video. Furthermore, if we define a missing region (a “hole”) in an
image as T and the rest of the image as S, and omit the completeness
term, we end up with exactly the image and video completion
algorithm of Wexler et al. [2007]. Importance weight maps can be
used both in the input (e.g., for emphasizing an important region),
and in the output (e.g., for guiding the completion process from the
hole boundaries inwards).

The randomized NNF algorithm given in Section 3 places no
explicit constraints on the offsets other than minimizing patch
distances. However, by modifying the search in various ways, we

(a) input

(b) hole and guides
W L .

(c) completion result

- -

(d) input
. BT

(f) completion (close up)

@) guided (close up)

(g) same input

(h) hole and guides

Figure 4: Two examples of guided image completion. The bird is
removed from input (a). The user marks the completion region and
labels constraints on the search in (b), producing the output (c) in
a few seconds. The flowers are removed from input (d), with a user-
provided mask (e), resulting in output (f). Starting with the same
input (g), the user marks constraints on the flowers and roofline
(h), producing an output (i) with modified flower color and roofline.

can introduce local constraints on those offsets to provide the user
with more control over the synthesis process. For image retargeting,
we can easily implement importance masks to specify regions
that should not deform at all [Avidan and Shamir 2007; Wolf
et al. 2007; Rubinstein et al. 2008; Simakov et al. 2008] or scale
uniformly [Wang et al. 2008], as in previous work. However, we
can also explicitly define constraints not well supported by previous
methods, such as straight lines that must remain straight, or objects
and lines that should move to some other location while the image
is retargeted. We can clone objects (“copy and paste”) or define
something else that should replace the resulting hole. Objects can
be scaled uniformly or non-uniformly (e.g, for “growing” trees
or buildings vertically) in the context of structural image editing.
All these are done naturally by marking polygons and lines in the
image. A simple bounding box for objects often suffices.

Some of these image editing tools are new and others have been
used before in a limited context. However, we believe that the
collection of these tools — in conjunction with the interactive
feedback provided by our system — creates new powerful image
editing capabilities and a unique user interaction experience.

4.1 Search space constraints

Image completion of large missing regions is a challenging task.
Even the most advanced global optimization based methods [Wexler
et al. 2007; Komodakis and Tziritas 2007] can still produce incon-
sistencies where structured content is inpainted (e.g., a straight line
that crosses the missing region). Furthermore, in many cases the
boundaries of the missing region provide few or no constraints for
a plausible completion. Sun et al. [2005] proposed a guided struc-
ture propagation approach, in which the user draws curves on top
of edges that start outside the hole and defines where they should
pass through it. This method propagates structure nicely along the
curves, but the overall process is still slow (often in the order of
a few minutes for a 0.5 megapixel image) and sometimes requires
further manual intervention.

In our work, we have adopted the same user interaction approach,
allowing the user to draw curves across the missing region. The



(a) original (b) retargeted  (c) with constraints

Figure 5: Model constraints. The original image (a) is retargeted
without constraints, producing broken boundaries in (b). When
constraints shown as colored lines are added, the boundaries
remain straight (c).

(a) original

Figure 6: Free lines and uniform scale constraints. The original
image (a) is retargeted without constraints (b). Constraints indi-
cated by colored lines produce straight lines and the circle is scaled
down to fit the limited space (c).

curves can have different labels (represented in our interface us-
ing different colors) to indicate propagation of different structures.
However unlike Sun et al. [2005], which utilizes separate comple-
tion processes for curves and textured regions, our system synthe-
sizes both simultaneously in the same unified framework. This is
accomplished by limiting the search space for labeled pixels in-
side the hole to the regions outside the hole with the same label.
(Paradoxically, adding these extra constraints accelerates the con-
vergence properties by limiting the search space.) Figure 1 illus-
trates the effect of these search space constraints for image com-
pletion. In addition to curve and edge structures, the same tool can
be used to specify particular contents for some portions of the hole.
This type of interaction is similar to the “texture by numbers” ap-
proach [Hertzmann et al. 2001] when applied to image completion.
We show examples of these cases in Figures 1 and 4.

4.2 Deformation constraints

Many recent retargeting methods allow the user to mark seman-
tically important regions to be used with other automatically-
detected cues (e.g., edges, faces, saliency regions) [Avidan and
Shamir 2007; Simakov et al. 2008; Wang et al. 2008]. One impor-
tant cue that has been overlooked by previous methods are the lines
and objects with straight edges that are so common in images of
both man-made scenes (indoor photos, buildings, roads) and in nat-
ural scenes (tree trunks, horizon lines). Keeping such lines straight
is important to produce plausible outputs. However, marking a line
as an important region in existing techniques usually forces the line
to appear in its entirety in the output image, but does not guarantee
that the line will not bend or break (see Figures 11). Moreover often
we do not care if the line gets shorter or longer in the output, as long
as it remains straight. We show additional examples of straight-line
constraints in Figures 5 and 6.

Model constraints. To accomplish this, we extend the BDS
formulation from a free optimization to a constrained optimization

T
NN(q; Esti
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P; ‘..O ?.;—“5» “_O‘
Y [ X q; 0.1,\,
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Figure 7: Model constraints. Ly is a straight line in the source
image S. For point p; on Ly, the nearest neighbor in T is NN(p;).
A point q; in T has nearest neighbor NN(q;) that lies on L. We
collect all such points NN (p;) and g; and robustly compute the best
line M in T, then project the points to the estimated line.

(b) our reshuffling

(c) Patch Transform

(a) input

Figure 8: Examples of reshuffling. Input images are shown
in the first and fourth column. The user annotates a rough
region to move, and the algorithm completes the background in a
globally consistent way. “Patch Transform” results are shown from
Cho et al. [2008], which takes minutes to run, and our algorithm,
which runs interactively.

problem, by constraining the domain of possible nearest neighbor
locations in the output for certain subsets of input points. Following
the notation of equation (5), let {p;} € Ly refer to all the pixels
belonging to the region (or line) L; in the input image S, and
let {g;} € T|NN(q;) € Ly refer to all the points g; in the output
T whose nearest neighbors lie in the region L, (see notations in
Figure 7). The objective from equation (5) then becomes:

argmindpps s.t. . (pi,NN(pi),q;,NN(q;)) =0  (6)

where we have K models .}, (k € 1...K) to satisfy. The meaning
of () = 0 is as follows: in the case of lines, satisfying a model
means that the dot product of the line 3-vector (/, in homogeneous
coordinates) and all the points in the output image should be zero,
i.e., NN(p;)T1 = 0. In the case of regions, we limit ourselves here
to 2D homography transformations (H) and therefore satisfying
the model means that the distance of all projected points and the
corresponding NN points in the output image should be zero, i.e.,
Hypi—NN(p;) =0.

Now the question remains how best to impose these constraints on
the solution. We observed that during the “gradual scaling” process
lines and regions deform only gradually due to lack of space.
This gives us an opportunity to correct these deformations using
small adjustments after each EM iteration. So, in order to satisfy
the additional constraints, we apply an iterative correction scheme
using the RANSAC [Fischler and Bolles 1981] robust estimation
method after each iteration. We assume that in each iteration



most of the locations of NN(p;) as well as g; almost satisfy the
desired model, and we estimate this model robustly by discarding
outliers. The estimated model is used to project the output points

—

onto NN(p;) and ¢}, and to correct the NN fields accordingly. For
regions, outlier points are corrected but we obtained better results
for lines by excluding outliers from the voting process.

We found the following models to be useful for constrained retar-
geting and reshuffling applications: Free lines, with output points
constrained to lie on a straight line with unconstrained translation
and slope (see Figure 6); Fixed-slope lines, with slope identical to
the input, but free translation (see Figure 5); Fixed-location lines,
with fixed slope and user-defined translation, for which there is no
model to estimate, but the points are still projected onto the line
allowing its length to change (see Figure 12(n) where the water-
line was dragged down with a line constraint); Translating regions,
with free translation but fixed scale (see Figure 11(right) where the
car and bridge were marked as a translating region); and Scaled
regions, with user-defined uniform scale and free translation (see
Figure 6).

Hard constraints (a.k.a. “reshuffling”). The model constraints
described in the previous section usually succeed in preserving lines
and regions. However, in difficult cases, with large scale factors —
or when there are contradictions between the various constraints —
they cannot all be well satisfied automatically. In other cases, such
as in image reshuffling [Simakov et al. 2008; Cho et al. 2008], the
user may want to strictly define the location of a region in the output
as a hard constraint on the optimization. This can be easily done in
our framework, by fixing the NN fields of the relevant region points
to the desired offsets according to these hard constraints. After each
EM iteration we simply correct the offsets to the output position,
so that the other regions around the objects gradually rearrange
themselves to align with these constrained regions. For an object
that moves substantially from its original output location, we give
three intuitive options to the user to determine the initialization of
the contents of the hole before the optimization starts: swap, in
which the system simply swaps the pixels between the old and new
locations; interpolate, in which the system smoothly interpolates
the hole from the boundaries (as in Wexler et al. [2007]); and
clone, in which the system simply clones the object in its original
location. For small translations these all generate similar outputs,
but for large objects and large motions these options lead to entirely
different results (see Figure 12).

Local structural scaling. A tool shown in Figure 9 allows the user
to mark an object and rescale it while preserving its texture and
structure (unlike regular scaling). We do this by gradually scaling
the object and running a few EM iterations after each scale at the
coarse resolution, just as in the global retargeting process.

4.3 Implementation details

Small changes of orientation and scale in some of the deformation
models (e.g., free lines and scaled regions) can be accomplished
by simply rearranging the locations of existing patches. For
larger angle and scale changes that may be required for extreme
retargeting factors, one may have to rotate/scale the patches as
well. In each of the above cases we use a weighted version of
equation (5) (see [Simakov et al. 2008]) and we increase the weight
of patches in the important regions and lines by 20%. We also
note that finer levels of the pyramid have better initial guesses, and
therefore the search problem is easier and fewer EM iterations are
needed. We thus use a high value (typically 20-30) of EM iterations
at the coarsest level, and at finer levels we use a number of EM
iterations that decreases linearly with the pyramid level. For the
last few levels of the pyramid, global matching is less necessary, so

(c) bush marked by user (d) scaled up, preserving texture.

Figure 9: Examples using local scale tool. In both examples, the
user marks a source polygon, and then applies a nonuniform scale
to the polygon, while preserving texture.

we find that reducing the random search radius to w = 1 does not
significantly affect quality.

5 Results, discussion, and future work

As we have discussed, our nearest-neighbor framework can be
used for retargeting, completing holes, and reshuffling content in
images. We have compared performance and quality with several
other competing methods in these domains.

Figures 10 and 11 illustrate differences between the results pro-
duced by our method and those of Rubinstein et al. [2008] and
Wang et al. [2008]. In Figure 10, both existing retargeting methods
deform one of the two children in the photograph, whereas our sys-
tem allows us to simply reshuffle one of the children, thus gaining
more space for retargeting, and the background is automatically re-
constructed in a plausible manner. In Figure 11, we see that “seam
carving” introduces unavoidable geometric distortions in straight
lines and compresses repeating elements. In contrast, our method
allows us to explicitly preserve perspective lines and elide repetitive
elements.

By marking out mask regions, users can interactively fill nontrivial
holes. For example, in Figure 1, we use our system to perform some
long-overdue maintenance on an ancient Greek temple.

Our reshuffling tools may be used to quickly modify architectural
dimensions and layouts, as shown in Figure 12. Visually plausible
buildings — albeit occasionally fantastical! — can be constructed
easily by our algorithm, because architecture often contains many
repeating patterns. Reshuffling can also be used to move human or
organic objects on repeating backgrounds, as previously illustrated
in Figure 8. However, in some cases line constraints are needed
to fix any linear elements of the background that intersect the
foreground object, as demonstrated in Figure 10, in which a line
constraint is used to constrain the shadow in the sand.

The nature of our algorithm bears some superficial similarity to
LBP and Graph Cuts algorithms often used to solve Markov Ran-
dom Fields on an image grid [Szeliski et al. 2008]. However, there
are fundamental differences: Our algorithm is designed to opti-
mize an energy function without any neighborhood term. MRFs
often use such a neighborhood term to regularize optimizations
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Figure 11: Retargeting: (a) Input image, annotated with constraints, (b) [Rubinstein et al. 2008], (c) Our output.

with noisy or missing data, based on coherency in an underlying
generative model. In contrast, our algorithm has no explicit gen-
erative model, but uses coherency in the data to prune the search
for likely solutions to a simpler parallel search problem. Because
our search algorithm finds these coherent regions in early iterations,
our matches err toward coherence. Thus, even though coherency is
not explicitly enforced, our approach is sufficient for many prac-
tical synthesis applications. Moreover, our algorithm avoids the
expensive computations of the joint patch compatibility term and
inference/optimization algorithms.

As with all image synthesis approaches, our algorithm does have
some failure cases. Most notably, for pathological inputs, such as
the synthetic test case of Section 3.3, we have poor convergence
properties. In addition, extreme edits to an image can sometimes
produce “ghosting” or “feathering” artifacts where the algorithm
simply cannot escape a large local minimum basin. However, we
point out that the speed of our algorithm makes it feasible to either
introduce additional constraints or simply rerun the algorithm with
a new random seed to obtain a different solution. Although such
repeated trials can be a burden with a slower algorithm, in our
experiments we occasionally enjoyed such explorations of the space
of creative image manipulations!

Among the many exciting avenues for future work in this domain,
we highlight several important ones:

Extending the matching algorithm. By using a queue at every
pixel, rather than computing a single nearest neighbor, one could
compute k nearest neighbors. This may allow the k-coherence
strategy to be used with our algorithm. In general, we find that the
optimal random sampling pattern and halting criteria are functions
of the inputs. For some inputs, such as small highly regular
textures, less or no random search is required. For other inputs
with large structures, such as in Figure 12, the full random search is
needed. By exploring these tradeoffs and further investigating GPU
implementations, additional speed gains may be realized, opening
up new applications in real-time vision and video processing.

Other applications. Although we have focused on creative im-
age manipulation in this paper, we also hope to implement com-
pletion, retargeting, and reshuffling for video. Fully automatic
stitching of photographs to form a collage was demonstrated by
Rother et al. [2006], and it was shown that bidirectional simi-

larity [Simakov et al. 2008] can be used to generate image col-
lages, so our method is extensible to collages as well. Fitzgib-
bon et al. [2003] obtained state-of-the-art results for new view syn-
thesis by using a patch-sampling objective term and a geometry
term. Dense nearest neighbor patch search was also shown to be
useful for image denoising [Buades et al. 2005] and learning based
superresolution [Freeman et al. 2002]. These are all excellent can-
didates for acceleration using our algorithm. We also hypothesize
that by operating in the appropriate domain, it may be possible to
apply our techniques to perform retargeting, hole filling, and reshuf-
fling on 3D geometry, or 4D animation or volumetric simulation
sequences. Finally, although the optimization we perform has no
explicit neighborhood term penalizing discontinuous offsets (as re-
quired in stereo and optical flow), we believe its speed may be of
use as a component in vision systems requiring fast, dense estimates
of image correspondence, such as object detection and tracking.

In conclusion, we have presented a novel algorithm for quickly
computing approximate nearest-neighbor fields between pairs of
images or image regions. This algorithm makes such nearest-
neighbor matching fast enough that a wide variety of patch-based
optimization approaches for image synthesis can now be applied
in a real-time interactive interface. Furthermore, the simplicity of
the algorithm makes it possible to introduce a variety of high-level
semantic controls with which the user can intuitively guide the
optimization by constraining the nearest-neighbor search process.
We believe we have only scratched the surface of the kinds of
interactive controls that are possible using this technique.
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Figure 12: Modifying architecture with reshuffling. (a-c) The
window position for (a) an input image is (b) moved to the right
or (c) to the lower story of the building. (d-f) Hard constraints
on a building are used to make various renovations. (g) Another
house and (h-j) combinations of retargeting and reshuffling produce
more extreme remodeling variants. (k-n) The buildings in (k) the
input image are (1) horizontally swapped (m) cloned, (n) vertically
stretched, (0) and widened.
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