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a b s t r a c t

This paper presents a new 3D shape representation and classification methodology developed for use in

craniofacial dysmorphology studies. The methodology computes low-level features at each point of a

3D mesh representation, aggregates the features into histograms over mesh neighborhoods, learns the

characteristics of salient point histograms for each particular application, and represents the points in a

2D spatial map based on a longitude–latitude transformation. Experimental results on the medical

classification tasks show that our methodology achieves higher classification accuracy compared to

medical experts and existing state-of-the-art 3D descriptors. Additional experimental results highlight

the strength and advantage of the flexible framework that allows the methodology to generalize from

specific medical classification tasks to general 3D object classification tasks.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Hospitals and clinics are now commonly scanning patients for
diagnostic and clinical purposes. Patients typically encounter a
variety of imaging modalities as an increasing amount of tests are
accomplished through digital imaging. A patient may accumulate
many different types of images such as 2D images, 3D volume CT
scans, 3D surface meshes, 3D fMRI, and even 4D fMRI time series.
Though different image modalities are typically acquired for
clinical purposes, all resulting images are also commonly used for
medical research studies.

Medical researchers at Seattle Children’s Hospital Craniofacial
Center (SCHCC) use CT scans and 3D surface meshes of children’s’
heads to investigate head shape dysmorphology due to craniofa-
cial disorders such as craniosynostosis, 22q11.2 deletion syn-
drome, deformational plagiocephaly, or cleft lip and palate. These
researchers aspire to be able to store, quantify or classify, and
retrieve 3D objects automatically. Current techniques for 2D
image classification and video categorization cannot be directly
translated and applied to 3D object classification as 3D objects
have different data characteristics from the above modalities.
Most existing 3D shape descriptors have only been developed and
tested on general 3D object datasets, while those designed for
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medical purposes must satisfy a specific medical application and
dataset.

Classification of 3D objects requires that objects be repre-
sented in a way that captures the local and global shape
characteristics of the object. This is achieved by creating a 3D
object descriptor or signature, which summarizes the important
shape properties of the object. Unfortunately, finding a good 3D
object descriptor is not a trivial task. The global properties of an
object capture the overall shape of an object, while the local
properties capture the details of an object. The descriptor should
be able to capture a good balance between the local and global
shape properties of the object, so as to allow flexibility in per-
forming different tasks.

Motivated by our existing collaborations with researchers at
SCHCC, a new methodology for representing 3D objects was
developed specifically for medical craniofacial applications. We
are collaborating in two research studies at SCHCC for the study of
craniofacial anatomy. The first study is of children with 22q11.2
deletion syndrome and the second study is of infants with
deformational plagiocephaly.

22q11.2 deletion syndrome (22q11.2DS) is a genetic disease
that is one of the most common multiple anomaly syndromes in
humans [30]. This condition is associated with more than 180
clinical features, including over 25 dysmorphic craniofacial
features. No single clinical feature occurs in every individual with
22q11.2DS, and there is no individual who has all the clinical
features. Abnormal clinical features of individuals with 22q11.2DS
include asymmetric face shape, hooded eyes, bulbous nasal tip,
and retrusive chin, among others. The range of variation in
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individual feature expression is very large. As a result, even
experts have difficulty in diagnosing 22q11.2DS from frontal
facial photographs alone [8]. Early detection of 22q11.2DS is
important as many affected individuals are born with a con-
otruncal cardiac anomalies, mild-to-moderate immune deficien-
cies and learning disabilities, all of which can benefit from early
intervention.

Deformational plagiocephaly (also known as positional
plagiocephaly, or non-synostotic plagiocephaly) refers to the
deformation of the head, characterized by a persistent flattening
on the side resulting in an asymmetric head shape and misalign-
ment of the ears. Deformational plagiocephaly is caused by
persistent pressure on the skull of a baby before or after birth.
Another possible factor, which can lead to deformational
plagiocephaly, is torticollis, a muscle tightness in the neck
resulting in a limited range of motion for the head that
causes infants to look in one direction and to rest on the
same spot of the back of the head. If left untreated, children
with these abnormal head shape conditions may experience a
number of medical issues in their lives, ranging from social
problems due to abnormal appearance to delayed neurocognitive
development.

Our methodology begins with a base framework that extracts
the low-level and mid-level features of the 3D object. A learning
approach is used to identify the interesting local features or
salient points on a 3D object for a particular application. These
feature points are represented in a 2D global spatial map that
becomes a signature for the object. A classifier is trained on the
signatures of the objects for a number of classes and can then be
used to classify new unseen objects. We developed our metho-
dology on a Heads database that was created especially for our
work. This database is relevant for our craniofacial applications
and yet more general, as the database includes head shapes of not
only humans but also other species such as cats, dogs, horses,
bears, and tigers. The methodology was then used in the two
craniofacial applications: 22q11.2 deletion syndrome and defor-
mational plagiocephaly. Finally, the methodology was tested for
generality on the SHape REtrieval Contest (SHREC [49]) general
object database, although this dataset did not satisfy all the
assumptions on which our algorithm is based.

The remainder of this paper is organized as follows. First,
existing shape descriptors for general 3D objects and specific
medical studies of craniofacial features are discussed. Next, our
base framework for feature extraction is described. The datasets
used to develop and test the methodology are then described. The
method for learning the salient points of a 3D object is explained
and applied to the different applications. Then, a 2D longitude–
latitude map signature that captures the pattern of salient points
is defined. In the experimental results section, a set of classifica-
tion experiments, using the 2D map signatures on the 22q11.2DS,
Plagiocephaly, Heads and SHREC datasets, is described and
analyzed. Finally, a summary and suggestions for future work
are provided.
2. Related literature

Shape-based 3D object retrieval and classification has received
increased attention in the past few years due to the increase in the
number of 3D objects available. There have been several survey
papers on the topic [51,52,21,59,17,27,13,14,12,34,41]. Most
recently, an evaluation database was introduced to establish a
benchmark in the field. The various databases in SHREC are now
used to evaluate the effectiveness of various 3D object descriptors
in various retrieval and classification tasks. Results so far show
that no one descriptor performs the best for all kinds of task. Each
descriptor has its own strength and weakness for the different
tasks.

There are three broad categories of 3D object representation:
feature-based methods, graph-based methods, and view-based
methods. Feature-based methods, which are the most popular,
can be further categorized into (1) global features, (2) global
feature distributions, (3) spatial maps, and (4) local features. Early
work on 3D object representation and its application for retrieval
and classification focused more on the global features and global
feature distribution approaches. Global features computed to
represent 3D objects include area, volume or moments [18].
Example of global feature descriptors include global shape
distributions by Osada et al. [39] and modified shape distributions
by Ohbuchi et al. [37]. The global feature methods are computa-
tionally efficient as they reduce the computation space of the 3D
object by describing the object with fewer dimensions; however,
these methods are not discriminative enough when the objects
have small differences such as in intra-class retrieval cases or
classification of very similar objects.

Spatial map representations describe the 3D object by
capturing and preserving physical locations on the object. Saupe
et al. [44] described a spherical extent function that calculates the
maximal extent of a shape across all rays from the origin and
compared two different kinds of representations of the function:
using spherical harmonics and moments. The spherical harmonic
coefficients reconstruct an approximation of the object at
different resolutions. Kazhdan et al. [29] used this idea to show
that spherical harmonics can be used to transform rotation
dependent shape descriptors into rotation independent ones
without the need to pose normalize the objects in advance. Laga
et al. [32,31] and Zhenbao et al. [33] also used spherical wavelet
descriptors to describe 3D objects. Assfalg et al. [2] captured the
shape of a 3D object using the curvature map of the object’s
surface. Our method is quite related to this last approach, but it
differs in that it does not use the curvature information directly.

Recent research is beginning to focus more on the local
approach to representing 3D objects, as this approach has a
stronger discriminative power when differentiating objects that
are similar in overall shape [40]. Local features are often points
that are considered to be interesting or salient on the 3D object.
These points are computed in various ways. Some methods
randomly select points on the surface of the object. Frome et al.
[20], who developed a 3D shape context, and Johnson et al. [28],
who designed spin image descriptors, both randomly selected
points as their basis points. Shilane et al. [47,48] used random
points with harmonic shape descriptors at four different scales.
Castellani et al. [15] proposed a new methodology for detecting
and matching salient points based on measuring how much a
vertex is displaced after filtering. The salient points are char-
acterized using a local description based on a hidden Markov
model. Novatnack et al. [36,35] extracted corners and edges of a
3D model in a discrete scale-space. Akagunduz et al. [1] used a
Gaussian pyramid at several scales to extract the surface extrema
and represented the points and their relationships by a graphical
model.

While feature-based methods use only the geometric proper-
ties of the 3D model to define the shape of the object, graph-based
methods use the topological information of the 3D object to
describe its shape. The graph that is constructed shows how the
different shape components are linked together. The graph
representations include model graphs, Reeb graphs [24], and
skeleton graphs [50]. These methods are known to be computa-
tionally expensive and sensitive to small topological changes.

The most effective view-based shape descriptor currently is
the light field descriptor (LFD) developed by Chen et al. [16]. A
light field around a 3D object is a 4D function that represents the
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radiance at a given 3D point in a given direction. Each 4D light
field of a 3D object is represented as a collection of 2D images
rendered from a 2D array of cameras distributed uniformly on a
sphere. The light field descriptor was evaluated to be one of the
best performing descriptors on the SHREC database. Ohbuchi et al.
[38] used a similar view-based approach to the light field
descriptor. However, their method extracted local features from
each rendered image using the SIFT algorithm. Wang et al. [55]
improved the space usage efficiency of the LFD descriptor by
projecting a number of uniformly sampled random points along
six directions to create six images that are then described using
Zernike moments. Experimental results on the Princeton shape
benchmark database [49] showed that their method’s perfor-
mance was comparable to the LFD descriptor for some categories.

Traditionally, medical studies of craniofacial features have been
through physical examination combined with craniofacial anthropo-
metric measurements [42]. Newer methods of craniofacial assess-
ment use digital images, but hand measurements and hand labeling
of landmarks of these digital images are still commonly used.

Automated methods for analyzing 22q11.2DS are limited, as
craniofacial anthropometric measurements still prevail as the
standard manual assessment method. Boehringer et al. [11]
applied a Gabor wavelet transformation to 2D photographs of
individuals with 10 different facial dysmorphic syndromes. The
generated datasets were then transformed using principal
component analysis (PCA) and classified using linear discriminant
analysis, support vector machines and k-nearest neighbors.
Hammond et al. [23] used the dense surface model approach to
align training samples according to point correspondences. The
approach then produces an ‘‘average’’ face for each population
studied and represents each face by a vector of PCA coefficients.
Neither method is fully automatic as both require manual
landmark placement. Wilamowska, Wu, Heike and Shapiro
[56,58] have tackled the quantification of 3D face shape for study
of 22q11.2DS in ongoing work.

There have also been some semi-automated work on analysis
of deformational plagiocephaly. Hutchison et al. [25,26] devel-
oped a technique called HeadsUp that involves taking a top view
digital photograph of infant heads fitted with an elastic head
circumference band. The elastic band is equipped with adjustable
color markers to identify landmarks such as ear and nose position.
The resulting photograph is then automatically analyzed to obtain
quantitative measurements for the head shape, including cephalic
index, head circumference, distance of ear to center of nose,
oblique length, and oblique ratio. Their results showed that the
cephalic index (CI) and oblique cranial length ratio (OCLR) can
be used as a quantification measurement of shape severity, since
the numbers differ significantly between cases and control.
Zonenshayn et al. [60] used a headband with two adjustable
points (nasion and inion of the head) and used photographs of the
headband shape to calculate the cranial index of symmetry (CIS).
These methods require consistency in setting up the band and
placing the markers, which may lead to non-reproducible results.
In addition, this is a 2D technique, but plagiocephaly and
brachycephaly are three dimensional deformations. We propose
a feature-based approach that uses a learning methodology to
identify the interesting salient points on the object and creates a
global spatial map of the salient point patterns. The approach
described in this paper generalizes and improves our former work
on classification of plagiocephaly [6,3].
3. Base framework

Our methodology was developed for single 3D object
classification as required in craniofacial applications. It does not
handle objects in cluttered 3D scenes nor occlusion. A surface
mesh, which represents a 3D object, consists of points pi on the
object’s surface and information regarding the connectivity
of the points. The base framework for our methodology starts
by rescaling the objects to fit in a fixed size bounding box. The
framework then consists of two phases: low-level feature
extraction and mid-level feature aggregation. The low-level
feature extraction starts by applying a low-level operator to
every point on the surface mesh. After the first phase, every point
pi on the surface mesh will have either a single low-level feature
value vi or a small set of low-level feature values, depending on
the operator used. The second phase performs mid-level feature
aggregation and computes a vector of values for a given
neighborhood of every point pi on the surface mesh. The feature
aggregation results of the base framework are then used to
construct our 3D object representation [5,4].

3.1. Low-level feature extraction

The low-level operators extract local properties of the
surface points by computing a feature value vi for every
point pi on the mesh surface. All low-level feature values
are convolved with a Gaussian filter to reduce noise effects.
Three low-level operators were implemented to test the metho-
dology’s performance: absolute Gaussian curvature, Besl–
Jain curvature categorization, and azimuth–elevation of surface
normal vectors. Fig. 1(a) shows an example of the absolute
Gaussian curvature values of a 3D model. Fig. 1(b) shows
the results of applying a Gaussian filter over the low-level
Gaussian curvature values, while Fig. 1(c) shows the results of
applying the Gaussian filter over the low-level Besl–Jain curvature
values.

3.1.1. Absolute Gaussian curvature

The absolute Gaussian curvature low-level operator computes
the Gaussian curvature estimation K for every point p on the
surface mesh:

K ¼ 2p�
X
f A F

interior_anglef

where F is the list of all the neighboring facets of point p

and the interior angle is the angle of the facets meeting at
point p. This calculation is similar to calculating the angle
deficiency at point p. The contribution of each facet is weighted
by the area of the facet divided by the number of points that form
the facet. The operator then takes the absolute value of the
Gaussian curvature as the final low-level feature value for each
point.

3.1.2. Besl–Jain curvature

Besl and Jain [9] suggested surface characterization of a point p

using only the sign of the mean curvature H and Gaussian
curvature K. These surface characterizations result in a scalar
surface feature for each point that is invariant to rotation,
translation and changes in parameterization. The eight different
categories are: (1) peak surface, (2) ridge surface, (3) saddle
ridge surface, (4) plane surface, (5) minimal surface, (6) saddle
valley, (7) valley surface, and (8) cupped surface. Table 1 lists the
different surface categories with their respective curvature
signs.

3.1.3. Azimuth–elevation angles of surface normal vectors

Given the surface normal vector nðnx;ny;nzÞ of a 3D point, the
azimuth angle y of n is defined as the angle between the positive
xz plane and the projection of n to the x plane. The elevation angle
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Fig. 1. (a) Absolute Gaussian curvature low-level feature value. (b) Smoothed absolute Gaussian curvature values after convolution with the Gaussian filter. (c) Smoothed

Besl–Jain curvature values after convolution. Higher values are represented by cool (blue) colors, while lower values are represented by warm (red) colors. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Besl–Jain surface characterization.

Label Category H K

1 Peak surface Ho0 K40

2 Ridge surface Ho0 K ¼ 0

3 Saddle ridge surface Ho0 Ko0

4 Plane surface H¼ 0 K ¼ 0

5 Minimal surface H¼ 0 Ko0

6 Saddle valley H40 Ko0

7 Valley surface H40 K ¼ 0

8 Cupped surface H40 K40

Fig. 2. Azimuth and elevation angle of a 3D surface normal vector.

I. Atmosukarto et al. / Pattern Recognition 43 (2010) 1502–1517 1505
f of n is defined as the angle between the x plane and vector n

(Fig. 2).

y¼ arctan
nz

nx

� �
; f¼ arctan

nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

xþn2
z Þ

p
 !

where y¼ ½�p;p� and f¼ ½�p=2;p=2�. The azimuth–elevation
low-level operator computes the azimuth and elevation values for
each point on the 3D surface.

3.2. Mid-level feature aggregation

The second phase of our base framework performs mid-level
feature aggregation and computes a number of values for a
given neighborhood of each point pi on the surface mesh. In this
work, we use local histograms to aggregate the low-level feature
values of each point. The histograms are computed by taking a
neighborhood around each point and accumulating the low-level
features in that neighborhood. The size of the neighborhood is
determined by multiplying a constant c, 0oco1, with the
diagonal of the object’s bounding box. This ensures that the size
of the neighborhood is scaled according to the object size, and
that the results are comparable across different objects. The value
of c was determined empirically, in our experiments we used
c¼ 0:05. Aggregating the single-valued low-level feature values
results in a 1D histogram with d histogram bins for every point on
the surface mesh. Aggregating the pair-valued low-level feature
values (such as the azimuth–elevation angle feature values)
results in a 2D histogram constructed of a� b bins, where a and
b are the two different dimension sizes. Fig. 3(a) shows an
example of a 1D histogram aggregating the absolute Gaussian
curvature low-level feature values from points on the nose of a 3D
head object. Fig. 3(b) shows an example of the 2D histogram
aggregating the azimuth–elevation low-level feature values on a
head.

The mid-level features are used to determine salient points of
an object, which are learned for each different application. Thus,
before describing salient point learning and detection, we will
briefly describe the four different datasets used.
4. Datasets

We obtained four different databases to develop and test
our methodology. Each database has different characteristics
that help explore the different properties of our methodology.
The 22q11.2DS database contains 3D face models of individuals
affected and unaffected by 22q11.2 deletion syndrome. The
Plagiocephaly database contains 3D head models of individuals
affected and unaffected by deformational plagiocephaly. The
Heads database contains head shapes of different classes of
animals, including humans. These three databases help explore
the performance of the methodology on data of similar overall
shape with subtle distinctions—the type of data for which our
method was designed. The SHREC 2008 classification benchmark
database was obtained to further test the performance of our
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Fig. 3. (a) 1D histogram aggregating the absolute Gaussian curvature values from points on the nose of a human head. (b) 2D histogram aggregating the azimuth–elevation

vector values at a point on the back of the head.

Fig. 4. Example of 3D face mesh data of children with 22q11.2 deletion syndrome. Fig. 5. Tops of heads of children with deformational plagiocephaly.
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methodology on general 3D object classification, where objects in
the database are not very similar.
4.1. 22q11.2DS dataset

The 3D face models used for these experiments were collected
by the Craniofacial Center of Seattle Children’s Hospital using the
3dMD imaging system. The 3dMD imaging system uses four
camera stands, each containing three cameras. Stereo analysis
yields 12 range maps that are combined using 3dMD proprietary
software to yield a 3D mesh of an individual’s head and a texture
map of the face. Our system uses only the 3D meshes, due
to human subject regulations. An automated system to align the
pose of each mesh was developed, using symmetry to align the
yaw and roll angles and a height differential to align the pitch
angle. Although faces are not truly symmetrical, the pose
alignment procedure can be cast as finding the angular rotations
of yaw and roll that minimizes the difference between the left and
right sides of the face. The pitch of the head was aligned by
minimizing the difference between the height of the chin and the
height of the forehead. In some cases, manual adjustments were
necessary to pose normalize the faces [56,46]. Fig. 4 shows two
examples of affected individuals in the dataset.

The dataset contains 3D meshes for 189 individuals. Metadata for
each 3D mesh consisted of the age, gender, and self-described ethni-
city of the individual plus a label of affected or unaffected. The dataset
consisted of 53 affected individuals and 136 control individuals. The
groundtruth for the individual’s label was determined through
laboratory confirmation for 22q11.2 deletion syndrome.
4.2. Plagiocephaly dataset

The datasets for the plagiocephaly classification experiments
were obtained through a similar data acquisition pipeline as the
22q11.2DS dataset. The resulting 3D meshes are also automati-
cally pose normalized. Fig. 5 shows two examples of individuals
diagnosed with deformational plagiocephaly.

The original dataset consisted of 254 3D head meshes
consisting of 100 controls and 154 cases. Each mesh in the
original dataset was assessed by two human experts who
assigned discrete severity scores based on the degree of the
deformation severity at the back of the head: category 0 (normal),
category 1 (mild), category 2 (moderate), and category 3 (severe).
To avoid inter-expert score variations, heads that were assigned
different scores by the two human experts were removed
from the dataset. The trimmed dataset consisted of 140 3D
head meshes with 50 control individuals in category 0 and
90 case individuals: 46 in category 1, 35 in category 2, and 9 in
category 3.
4.3. Heads dataset

For the Heads database, the digitized 3D objects were ob-
tained by scanning hand-made clay toys using a Roldand-LPX250
laser scanner with a maximal scanning resolution of 0.008 in
for plane scanning mode [43]. Raw data from the scanner
consisted of 3D point clouds that were further processed
to obtain smooth and uniformly sampled triangular meshes of
0.9–1.0 mm resolution. To increase the number of objects for
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Fig. 6. Example of objects in the Heads database.

Fig. 7. Example morphs from the horse class. Morphs were generated by stretching, twisting, or squeezing the original object with different parameters.

Fig. 8. Example of objects in the SHREC 2008 classification database. It can be seen that the intra-class variability in this dataset is quite high as objects in the same class

have quite different shapes.
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training and testing our methodology, we created new objects by
deforming the original scanned 3D models in a controlled fashion
using 3D Studio Max software [7]. The concept of morphable
model was originally developed by Blantz and Vetter [10] in the
context of computer graphics. Global deformations of the models
were generated using morphing operators such as tapering,
twisting, bending, stretching and squeezing. The parameters for
each of the operators were randomly chosen from ranges that
were determined empirically. Each deformed model was obtained
by applying at least five different morphing operators in a random
sequence.

Fifteen objects representing seven different classes were
scanned. The seven classes are: cat head, dog head, human head,
rabbit head, horse head, tiger head and bear head. Each of the 15
original objects were randomly morphed to increase the size
of the database. A total of 250 morphed models per original object
were generated. Points on the morphed model are in full
correspondence with the original models from which they were
constructed. Fig. 6 shows examples of objects from each of the
seven classes, while Fig. 7 shows example of morphs from the
horse class.
4.4. SHREC dataset

For the SHREC database, we selected the dataset from the track
called ‘‘Classification of Watertight Models’’ [22]. The models in
the track were chosen by the organizer to ensure a high level of
shape variability to make the track more challenging, so this
dataset did not satisfy the assumptions on which our algorithm is
based. The models in the database were manually classified using
three different levels of categorization. At the coarse level of
classification, the objects were classified according to both their
shapes and semantic criteria. At the intermediate level, the classes
were subdivided according to functionality and shape. At the fine

level, the classes were further partitioned based on the object
shape. For example, at the coarse level some objects were
classified into the furniture class. At the intermediate level, these
same objects were further divided into tables, seats and beds. At
the fine level, the objects were classified into chairs, armchairs,
stools, sofa and benches. We chose to use the intermediate level of
classification as the fine level had too few objects per class, while
the coarse level had too many objects that were dissimilar in
shape grouped into the same class. The dataset consisted of 425
pre-classified objects. Fig. 8 shows examples of objects in the
benchmark database.
5. Learning salient points

Given the base framework’s ability to compute low-level
feature values at each point of a 3D mesh and to aggregate these
features in neighborhoods about the point, we can now explore
the use of this framework to create a representation for 3D
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objects. Before constructing our 3D object signature, we want to
identify interesting or salient points on the 3D object and use the
characteristics of those points when constructing our signatures.
The identified salient points are application dependent. We
wanted our framework and methodology to be specifically
applicable to classification of craniofacial disorders, such as
22q11.2 deletion syndrome and deformational plagiocephaly,
but also be appropriate for general use in 3D shape classification.

To find salient points on a 3D object, a learning approach was
selected. A salient point classifier is trained on a set of marked
training points on the 3D objects provided by experts in the
particular application. Histograms of low-level features of the
training points obtained using the base framework are then used
to train the classifier. The classifier will then learn the salient
points on the 3D objects based on the application, which lead to
salient regions in our signatures.
Fig. 10. Example of manually marked salient (blue color) and non-salient (red

color) points on a human head model. The salient points include corners of the

eyes, tip of the nose, corners of the nose, corners of the mouth, and chin. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
5.1. Learning salient points for 22q11.2 deletion syndrome

Traditionally, studies of individuals with craniofacial disorders
such as 22q11.2 deletion syndrome have been performed through
in-person clinical observation coupled with craniofacial anthro-
pometric measurements derived from anatomic landmarks [19].
These landmarks are located either visually by clinicians or
through palpation of the skull. Fig. 9 shows the landmark points
that are commonly used for craniofacial measurements.

The salient point classifier was trained on a subset of the
craniofacial anthropometric landmarks marked on 3D head
objects. This was done so that these craniofacial landmarks would
be included in the set of interesting or salient points for
classification of the craniofacial disorders. The particular subset
of landmarks was selected to be well-defined points that both
experts and non-experts could easily identify. The training set
consisted of human heads selected from the Heads database.
Fig. 10 shows an example of manually marked salient points on
the training data. Histograms of low-level features obtained using
the base framework were used to train a support vector machine
(SVM) [45,53] classifier to learn the salient points on the 3D
surface mesh. We used the SVM implemented in WEKA for our
experiments [57]. A training set, consisting of 75 morphs of 5
human heads, was used to train the classifier to learn the
characteristics of the salient points for faces in terms of the
histograms of their low-level features.

Although the salient training points were selected only to be
commonly used craniofacial landmark points, our empirical
studies determined that the classifier actually finds salient regions

with a combination of high curvature and low entropy values.
This result can be observed in the different histograms of salient
and non-salient points in Fig. 11. In the figure, the salient point
histograms have mainly low bin counts in the bins corresponding
Fig. 9. Craniofacial anthropometric landmarks.
to low curvature values and a high bin count in the last (highest)
curvature bin. The non-salient point histograms have mainly
medium to high bin counts in the low curvature bins and in some
cases a high bin count in the last bin. The entropy of the salient
point histograms also tends to be lower than the entropy of the
non-salient point histograms. The classifier approach avoided the
use of brittle thresholds.

Fig. 12 shows results of the salient points predicted on two
faces in the 22q11.2DS database, which include not just
the manually marked points but other points with the same
characteristics. The salient points are colored according to the
assigned classifier confidence score. Non-salient points are
colored in red, while salient points are colored in different
shades of blue with dark blue having the highest prediction score.
5.2. Learning salient points for deformational plagiocephaly

A similar learning-based approach was used to find salient
points for 3D heads with deformational plagiocephaly. The salient
point classifier for deformational plagiocephaly was trained on a
set of points marked on the flat areas at the back of the head of
individuals with deformational plagiocephaly. The training salient
points consisted of 10 marked points on the flat areas of 10 heads
with deformational plagiocephaly, while the non-salient training
points were selected from 10 heads without deformational
plagiocephaly. Histograms of the azimuth–elevation low-level
features obtained using the base framework were used to train a
support vector machine (SVM) classifier to learn the salient points
on the 3D heads. After training was complete, the classifier was
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Fig. 11. Example histograms of salient and non-salient points. The salient point histograms have a high value in the last bin illustrating a high curvature in the region,

while low values in the remaining bins in the histogram. The non-salient point histograms have more varied values in the curvature histogram. In addition, the entropy E of

the salient point histogram is lower than the non-salient point histogram (listed under each histogram).

Fig. 12. Salient point prediction for two faces in the 22q11.2DS dataset. Non-salient points are colored in red, while salient points are colored in different shades ranging

from green to blue, depending on the classifier confidence score assigned to the point. A threshold ðT ¼ 0:95Þwas applied to include only salient points with high confidence

scores. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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able to label each point on a 3D head as either salient or non-
salient and provide a confidence score for each decision. The same
threshold, T ¼ 0:95, was applied to the confidence scores for the
salient points.
5.3. Learning salient points for general 3d object classification

The salient point classifier for general 3D object classification
was trained on selected objects from the Heads database using the
craniofacial landmark points that were used in the 22q11.2DS
application. A small training set consisting of 25 morphs of the cat
head model, 25 morphs of the dog head model, and 50 morphs of
human head models was used to train the classifier to learn the
characteristics of salient points for general 3D object classifica-
tion. Histograms of low-level features obtained using the base
framework were used to train a support vector machine (SVM)
classifier to learn the salient points on general 3D objects.
A threshold T ¼ 0:95 was also applied to the confidence scores
for the classifier salient points. Fig. 13 shows results of the salient
points predicted on instances of the cat, dog and human head
class in the Heads, which include, as previously mentioned, not
just the manually marked points, but other points with the same
characteristics. The salient points are colored according to
the assigned classifier confidence score. Non-salient points are
colored in red, while salient points are colored in different shades
of blue with dark blue having the highest prediction score. While
the classifier was only trained on cat heads, dog heads, and
human heads, it does a good job of finding salient points on the
other classes of heads, and the 3D patterns produced are
repeatable across objects of the same class. Fig. 14 shows the
predicted salient points on new object classes that were not
included in the training phase. We have also tested the trained
classifier on our fourth dataset, the SHREC 2008 Classification
database, and found that the labeled salient points were quite
satisfactory, even though not intended for that purpose. Fig. 15
shows the salient points predicted on a number of objects from
the SHREC 2008 database. Note that on this database, which has a
lot of intra-class shape variance, the salient point patterns are not
consistent across all members of each class.
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Fig. 13. Salient point prediction for (a) cat head class, (b) dog head class, and (c) human head class. Non-salient points are colored in red, while salient points are colored in

different shades ranging from green to blue, depending on the classifier confidence score assigned to the point. A threshold ðT ¼ 0:95Þ was applied to include only salient

points with high confidence scores. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Salient point prediction for (a) rabbit head class, (b) horse head class, and (c) leopard head class from the heads database. Even though all three classes were not

included in the training, the training model was able to predict salient points across the classes.

I. Atmosukarto et al. / Pattern Recognition 43 (2010) 1502–15171510



ARTICLE IN PRESS

Fig. 15. Salient point prediction for (a) human class, (b) bird class, (c) human hand class, and (d) bottle class from the SHREC 2008 database. Note that for classes that have

a lot of intra-class shape variance the salient point patterns are not consistent across all members of those classes as seen in column (a).
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6. 2D longitude–latitude map signature

Most 3D object classification methods require the use of a 3D
descriptor or signature to describe the shape and properties of the
3D objects. Our signature is based on the salient point patterns of
the 3D object mapped onto a 2D plane via a longitude–latitude
transformation. Classification of 3D objects is then performed by
training a classifier using the 2D spatial maps of the objects.

Before mapping the salient point patterns onto the 2D plane, the
salient points are assigned a label according to the classifier confi-
dence score assigned to the point. The classifier confidence score
range is discretized into a number of bins. For our experiments, at
confidence level 0.95 and above, we chose to discretize the confidence
score range into 5 bins. Each salient point on the 3D mesh is assigned
a label based on the bin into which its confidence score falls.

To obtain the 2D longitude–latitude map signature for an
object, we calculate the longitude and latitude positions of all the
3D points on the object’s surface. Given any point pi ðpix; piy; pizÞ,
the longitude position yi and latitude position fi of point pi are
calculated as follows:

yi ¼ arctan
piz

pix

� �
; fi ¼ arctan

piyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

ixþp2
izÞ

q
0
B@

1
CA

where yi ¼ ½�p;p� and fi ¼ ½�p=2;p=2�.
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A 2D map of the longitude and latitude positions of all the
points on the object’s surface is created by binning the longitude
and latitude values of the points into a fixed number of bins. A bin
is labeled with the salient point label of the points that fall into
that bin. If more than one label is mapped to a bin, the label with
the highest count is used to label the bin. Fig. 16 shows salient
point patterns for the cat head, dog head, and human head model
in the Heads database and their corresponding 2D map
signatures. Fig. 17 shows how different objects that belong to
the same class will have similar 2D longitude–latitude signature
maps.
Fig. 16. Salient point patterns on 3D objects of Fig. 12 and th

Fig. 17. Objects that are similar and belong to the same class
To reduce noise in the 2D longitude–latitude map signatures,
we applied a wavelet transformation to the 2D map signatures.
In our experiments, we treated the 2D longitude–latitude map
signatures as 2D images and decomposed the 2D images using
image-based Haar wavelet function. The wavelet function
decomposes the 2D image into approximation and detail
coefficients. The approximation and detail coefficients at the
second level were collected and concatenated into a new feature
vector with dimension D¼ 13� 13� 4. This final feature vector
became the descriptor for each object in the database and was
used for classification. For most of the experiments, the noise
eir corresponding 2D longitude–latitude map signatures.

will have similar 2D longitude–latitude signature maps.
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reduction step was not found to improve the classification
accuracy except for the SHREC dataset (Section 7.4).
7. Experimental results

By creating a signature for each of the 3D objects, we are able
to perform classification of the 3D objects in the database. We
performed several classification experiments on each of the
acquired datasets.
Table 4
Comparison of classification accuracy for 22q11.2DS.

Dataset Our method LFD SPH D2 AAD

F189 0.867 0.741 0.746 0.619 0.73

Table 5
Classification performance for plagiocephaly using the full 254 individuals dataset.

Classifier Accuracy Prec. Recall F-measure TP rate FP rate

Adaboost 0.803 0.805 0.803 0.804 0.803 0.208

SVM 0.787 0.787 0.787 0.787 0.787 0.233
7.1. Experiments on 22q11.2DS dataset

The goal of this experiment is to classify each individual in the
dataset as either affected or unaffected and to measure the
classification accuracy. The salient points classifier was trained on
a subset of the craniofacial anthropometric landmarks marked on
3D human head models as explained in Section 5. Table 2 shows
the classification performance with two different classifiers:
Adaboost and SVM. The classification accuracy for the higher
scoring SVM classifier is 86.7%, beating a study of three human
experts whose mean accuracy was 78% [56].

The classification accuracy of our methodology was compared
to some of the state-of-the-art and best performing 3D object
descriptors in the literature. The following existing descriptors
were used for comparison: light field descriptor (LFD) [16], ray-
based spherical harmonics (SPH) [29], shape distribution of
distance between random points (D2) [39], and absolute angle
distance histogram (AAD) [37]. The light field descriptor (LFD) is a
view-based descriptor that extracts features from 100 2D
silhouette image views and measures the distance between two
3D objects by finding the best correspondence between the set of
3D views for the two objects. The Spherical Harmonics method
calculates the maximal extent of a shape across all rays from the
origin and uses spherical harmonics to represent the function.
The shape function D2 represents 3D objects by calculating the
global shape distribution of distances between two random
points, while the AAD method enhances the D2 shape function
by measuring not only the distance between two random points,
but also the mutual orientation of the surfaces on which the pair
of points is located. Table 3 provides an overall comparison of
our method with the four existing shape descriptors. Results in
Table 4 show that our method achieves higher classification
Table 2
Classification performance for 22q11.2DS.

Classifier Accuracy Prec. Recall F-measure TP rate FP rate

Adaboost 0.804 0.795 0.804 0.791 0.804 0.387

SVM 0.867 0.866 0.868 0.861 0.868 0.27

Table 3
Overall comparison of the various shape descriptors.

LFD SPH

Type Global view-based Global spatial map

Efficiency Medium Fast

Pose-normalization No No

Discriminative power

for large shape diff. High High

Discriminative power

for subtle shape diff. Medium Medium

Applications General 3D General 3D
accuracy of 22q11.2 deletion syndrome than any of these state-of-
the-art methods.

Classification of 22q11.2DS will lead to better understanding of
the connection between the 22q11.2 deletion syndrome genotype
and the phenotype of this syndrome. Being able to connect facial
features to the genetic code will allow for understanding the
etiology of craniofacial malformation and pathogenesis of
22q11.2DS, which, in turn, will be informative of the genetic
control needed for normal craniofacial development.
7.2. Experiments on plagiocephaly dataset

The goal of this experiment is to classify each individual as
either control or case affected by the plagiocephaly condition and
to measure the classification accuracy. The salient points for the
map signature were obtained by using the salient flat point
classifier as explained in Section 5.

Table 5 shows the classification accuracy of the method on the
full 254 individual dataset. The groundtruth for the classification
was the referral doctors’ originally assigned patient status: case or
control. Table 6 shows the classification accuracy of the method
on the trimmed 140-individual dataset in which the experts
agreed. The Adaboost classifier obtains a 80.3% classification
accuracy on the full dataset and an improved 87.9% accuracy on
the trimmed dataset.
D2 AAD Our method

Global feat.dist Global feat. dist. Global local feat.

Fast Fast Medium

Yes Yes Yes

Medium Medium Medium

Low Low High

General 3D General 3D General 3D

Medical 3D

Table 6
Classification performance for plagiocephaly using the trimmed 140 individuals

dataset.

Classifier Accuracy Prec. Recall F-measure TP rate FP rate

Adaboost 0.879 0.878 0.879 0.878 0.879 0.156

SVM 0.85 0.849 0.85 0.849 0.85 0.19
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Table 7
Comparison of classification accuracy for plagiocephaly.

Dataset Our method LFD SPH D2 AAD

Full 254 dataset 0.803 0.72 0.673 0.650 0.685

Trimmed 140 dataset 0.879 0.714 0.743 0.779 0.721
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Fig. 18. Classification accuracy vs. training rotation angle increment.
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The classification accuracy of the methodology for this
application was also compared to existing state-of-the-art
descriptors. Table 7 shows that our method achieves higher
classification accuracy of deformational plagiocephaly compared
to other existing methods, including the LFD descriptor and others
discussed in Section 2.

Classification of this condition can be incorporated into
epidemiologic research on the prevalence and long-term outcome
of deformational plagiocephaly, which may eventually lead
to improved clinical care for infants with deformational plagio-
cephaly.

7.3. Experiments on Heads dataset

The Heads database can be thought of as a first step toward
testing our method on more general shapes still in the craniofacial
category, but for multiple different animals where face shapes can
be quite different.

In the first set of experiments, all objects in the Heads database
were pose-normalized by rotating the heads to face the same
orientation, as was the case for the medical craniofacial datasets.
Classification of the 3D objects in the database was performed by
training a SVM classifier on the salient point patterns of each class
using the 2D longitude–latitude map signature of the objects in
the class. The classifier was trained using the signatures of 25
objects from each class for all seven classes in the database and
tested the classifier model with a new test set consisting of 50
objects per class for each of the seven classes. The classifier
achieved 100% classification accuracy in classifying all the pose-
normalized objects in the database.

Since 3D objects may be encountered in the world at
any orientation, rotation-invariant classification is desirable.
The second set of experiments explored rotation invariance.
To achieve rotation invariance for classification, we trained the
classifier with a number of rotated versions of the 2D map
longitude–latitude signature for each training object. The first
experiment in this set tested the classification accuracy by
training a classifier with rotated versions of the training data
signatures in 451 increments for all three axes. This resulted in
8� 8� 8 rotated signatures for each object in the database. The
classifier was tested on new objects in the same classes. Rotated
versions of the testing data signatures were generated using the
same rotation degree increments as in the training. The classifier
again achieved 100% classification accuracy when classifying
objects that were rotated in this way.

In the second experiment in this set, the classification method
was tested using 15 new testing instances per class that were
rotated randomly. For example, a rotation of (250, 4, 187) was one
of the random rotations that did not match any of the training
rotations. The classifier was still able to achieve 100% classifica-
tion accuracy.

The third set of experiments was to explore the degradation in
the classification accuracy by varying the training rotation angle
increment when generating the signatures for the training data.
Fig. 18 shows the degradation in the classification accuracy as the
training angle increment increases and the number of rotated
training signature instances decreases. The graph shows that the
classification accuracy steadily decreases as the number of rotated
training signatures decreases. In addition, there is a big dip in
the classification performance when the training signatures
are generated at 901 angle increments. This is because the
signatures produced at 901 increments are not representative of
angles in between the multiples of 901. Note that the classifier is
still able to achieve 91% classification accuracy with training
signatures generated at 1001 increments with only 3� 3� 3¼ 27
rotated training signatures per training object, which is much
better than the 8� 8� 8¼ 512 signatures that were originally
used.

7.4. Experiments on SHREC dataset

The SHREC dataset was used to challenge our method on data
unlike those it was designed for and to compare it to other
methodologies that were designed for more general object models
and for many different classes. For this dataset, rotational
invariance was a requirement. To achieve it, we tested two
different pose-normalization methods. The first method, 4Con-

tPCA, is an extension to the commonly used principal component
analysis (PCA) method that aligns 3D models to a canonical
coordinate system. 4ContPCA extends the PCA method by taking
the mesh resolution and sizes of the triangles into consideration
when aligning the models [54]. The second approach to achieve
rotation-invariant classification, IncRot, was to rotate each 3D
object at 1001 increments for all three axes and generated the 2D
longitude–latitude map signature of the object at each rotated
pose. This resulted in a total of 3� 3� 3¼ 27 map signatures for
each object in the database. In both the 4ContPCA approach and
the IncRot approach, the distance between two objects in the
database was the minimum distance between the various rotated
map signatures of the two objects. Since the InctRot method had
better classification performance than the 4ContPCA, we will only
report the classification results using the IncRot pose-normal-
ization method. The map signatures were further transformed
using the wavelet computation. The wavelet coefficient feature
vectors were used for classification.

As with the medical datasets, we compared our results against
the light field descriptor (LFD) [16], the ray-based spherical
harmonics (SPH) [29], the shape distribution of distance between
random points (D2) [39], and the absolute angle distance
histogram (AAD) [37]. Since the number of objects in each class
in the dataset varied greatly, creating an unbalanced dataset, we
were not able to use machine learning algorithms such as SVM
and Adaboost to classify the objects in the dataset. As a result, we
computed the pairwise distance matrix between every object in
the dataset, and measured the classification performance using
four different commonly used statistics: (1) nearest-neighbor
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classification accuracy, (2) first-tier classification accuracy, (3)
second-tier classification accuracy, and (4) F-measure. The first
three statistics indicate the percentage of the top K nearest
neighbor of a given object to be classified. The nearest neighbor
statistics provide an indication of how well a nearest neighbor
classifier performs where K ¼ 1. The first-tier and second-tier
statistics indicate the percentage of top K matches that belong to
the same class as a given object where K ¼ C � 1 and K ¼ 2ðC � 1Þ,
respectively, where C is the class size of the classified object. The
F-measure is a composite measure of precision (P) and recall (R)
where F ¼ 2 � P � R=ðPþRÞ. Table 8 shows the comparison results.
For this dataset, the LFD method, which was developed to
differentiate between very different shape classes, rather than
subtle distinctions in the shape of a common object, was the best
performer.
7.5. Timing studies

We have performed timing experiments to investigate the
runtime performance of our methodology. In this experiment, we
compare the runtime speed of our method to the existing light
field descriptor (LFD) method on all four datasets. These
experiments were performed on a PC running Windows XP. The
runtime performance of the light field descriptor can be divided
into two main phases: feature extraction and feature comparison
and classification. The runtime performance of our methodology
can be divided into five main phases: (1) low-level feature
extraction, (2) mid-level feature aggregation, (3) salient point
prediction, (4) signature generation, and (5) classification. Table 9
shows the runtime for each of the phases of the light field
descriptor on all four datasets, while Table 10 lists the runtime for
Table 8
Comparison of classification accuracy for SHREC 2008 dataset.

Method NN 1st tier 2nd tier F-measure

AbsGaussCurv 0.569 0.285 0.375 0.246

BeslJain 0.516 0.278 0.379 0.244

LFD 0.759 0.437 0.549 0.365

SPH 0.715 0.365 0.483 0.321

D2 0.502 0.278 0.382 0.238

AAD 0.549 0.266 0.388 0.252

Table 9
Timing of each phase of the light field descriptor on the four datasets.

Phase 22q11.2DS Plagiocephaly Heads SHREC

(189) (254) (105) (425)

Feat. extraction 23.6 m 47.1 m 21.4 m 63.3 m

Feat. compare and classify 14 m 17 m 13 m 140 m

m refers to minutes while h refers to hours. The number of objects in each dataset

is listed in brackets.

Table 10
Timing of each phase of our methodology on the four datasets.

Phase 22q11.2DS Plagiocephaly Heads SHREC

(189) (254) (105) (425)

Low-level feat. extraction 1.5 m 3 m 1 m 4 m

Mid-level feat. aggregation 7 m 7 m 3 m 32 m

Salient point prediction 51 m 19 m 106 m 53 m

Signature generation 2 m 2 m 2 m 11 m

Signature classification 2 m 1 m 1 m 2 m

m refers to minutes. The number of objects in each dataset is listed in brackets.
each of the phases of our methodology on the same four datasets.
The bottleneck of our method is in the salient point prediction
phase where the classifier labels each point on the mesh as either
salient or non-salient. Depending on the salient point learned
model and the number of points on the objects in the dataset, this
phase may take a longer time, however, accuracy of results, not
speed is most important in the medical applications.
8. Conclusion

We propose a new base framework and methodology for 3D
object representation and discuss its application in 3D object
classification. The methodology starts by extracting and aggregat-
ing low-level features in the base framework. Motivated by
existing collaborations on classification of craniofacial disorders, a
learning approach to identify interesting or salient points was
used. The classifier learns the characteristics of interesting points
based on the extracted feature values in a neighborhood of each
point. The salient point patterns of the 3D objects are then
mapped onto a 2D plane via a longitude–latitude transformation.
Classification of various 3D objects is then performed by using the
map signatures to train a classifier.

We have tested our methodology on two different medical
craniofacial applications: classification of 22q11.2 deletion syn-
drome and deformational plagiocephaly. Experimental results
show that our methodology achieves higher classification accu-
racy compared to both medical experts and existing state-of-the-
art descriptors. This methodology will be used in medical research
studies whose purpose is to reveal genotype-phenotype disease
associations. From a clinical standpoint, offering a standard
automated filter may aid physicians in concentrating on the more
difficult cases and provide insights into the shapes that are
considered most telling for a specific dysmorphological syndrome.
A further strength of our methodology is its flexibility to
generalize from specific medical applications to general 3D object
classification as shown in experimental results on two additional
3D object datasets.

In future work, we want to extend the same framework and
methodology to produce local shape signatures instead of global
map signatures. We hope that the local signatures will provide
more discriminative power and allow us to explore other
problems such as partial matching.
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