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ABSTRACT 

In this paper, we demonstrate a system for synthesizing 
high-resolution, realistic 3D human body shapes 
according to user-specified anthropometric parameters.  
We begin with a corpus of whole-body 3D laser range 
scans of 250 different people.  For each scan, we warp a 
common template mesh to fit each scanned shape, 
thereby creating a one-to-one vertex correspondence 
between each of the example body shapes.  Once we 
have a common surface representation for each 
example, we then use principal component analysis to 
reduce the data storage requirements.  The final step is 
to relate the variation of body shape with concrete 
parameters, such as body circumferences, point-to-point 
measurements, etc.  These parameters can then be 
used as "sliders" to synthesize new individuals with the 
required attributes, or to edit the attributes of scanned 
individuals. 

INTRODUCTION 

Digital human characters have many applications in 
areas such as computer graphics, computer vision, 
ergonomic and clothing design, and communication 
(e.g., avatars for virtual conferencing or online fitting 
rooms).  However, creating the 3D shape models for 
these applications is a difficult and time-consuming task, 
particularly if realism is desired.  This modeling task is 

further multiplied for each different character that is 
needed for a particular application. 

In this paper, we will demonstrate our method for 
creating human character models automatically, subject 
to desired body shape parameters. 

Our approach is data-driven, that is, we will use a 
database of data collected from real people.  
Anthropometric studies measure distances and 
circumferences between landmark points on the body.  
These data have been used in the past to create 
computer models of shape, such as the work of DeCarlo 
et al. [DeCarlo98].  However, such sparse sets of 
measurements cannot provide the full level of realism 
that one has come to expect in modern computer 
graphics.  Fortunately, recent anthropometric studies 
have collected dense surface data using 3D laser range 
scanners, such as the one shown in Figure 1(a).  
Although the surfaces captured by such scanners may 
be noisy or incomplete in some regions (see Figures 
1(b) and (c)), 3D scanners provide an excellent source 
of data for creating computer models. 

For example, Blanz and Vetter demonstrated how to use 
a collection of head scans to create an editable head 
model that can even be used to estimate 3D shape from 
photographs [Blanz99].  In the past, we have shown how 
to use 3D scans to learn how body shape varies with 
pose [Allen02].  In this paper, we will focus on using 

Figure 1: (a) Cyberware whole-body range scanner.  (b) 3D scan of a subject.  Notice the adhesive white markers.  (c) 
Scan without surface color.  The dark (blue) regions are holes in the scanned surface.  (d) Artist-generated template 
surface, without holes.  (e) The template surface after being deformed to match the scan in (c).  Notice that the holes 
have been filled in. 



whole-body scans to learn how body shape varies 
between individuals in all parts of the body, using the 
techniques introduced in our SIGGRAPH 2003 paper 
[Allen03].  A similar technique for working with whole-
body scans has also been presented by Seo et al. 
[Seo03, Seo03a].  

DATA 

The input set of range scans used by our algorithm was 
collected as part of the Civilian American and European 
Surface Anthropometry Resource (CAESAR).  The 
CAESAR Project collected traditional anthropometric 
measurements, demographic information, and 3D range 
scans of several thousand individuals in the United 
States and Europe.  During the scanning, the subjects 
wore gray bicycle shorts, a nylon cap to cover the hair, 
and for the female subjects, a gray sports bra.  In 
addition, 74 adhesive markers were placed on each 
subject at anthropometric landmarks.  These markers 
are visible in the texture data associated with the scan, 
as shown in Figure 1(b). 

The scans were taken using a Cyberware whole-body 
scanner, which acquires approximately 250,000 surface 
points with an accuracy of 2-5 mm.  In occluded areas 
(such as under the arm and between the legs), and 
areas with grazing-angle views (such as the top of the 
head and shoulders) the scanner is unable to acquire 
the surface, resulting in holes in the reconstructed mesh.  
A detail of these holes is shown in Figure 1(c). 

ALGORITHM 

The key to analyzing the variation in body shape is to 
compare corresponding points on each surface.  For 
example, the 74 landmark points on each scan give us 
information about where in 3D space certain bony 
landmarks were located.  Using traditional 
anthropometric techniques, we can use the landmark 
positions to calculate certain linear measures about 
each individual, such as the length of major bones in the 
body.  However, to analyze the full shape of an 
individual, we need to create a correspondence between 
many more points over the body – 60,000 in all.  This 
labeling task goes beyond what is possible with human 
labor, and so we have developed an automatic algorithm 
to establish a correspondence between each scan. 

Our approach begins with a template surface (see 
Figure 1(d)), which is a triangle mesh surface 
representation of a human that contains the 60,000 
points that we would like to match.  For each scanned 
individual, we will deform this template shape so that it is 
as close as possible to the scanned surface.  In addition 
to matching the template, we also wish to minimize the 
distortion of the template surface, so that the template’s 
nose will map to the scanned individual’s nose, the eyes 
to the eyes, and so on. 

This matching process uses the 74 landmark positions 
as an initialization, and proceeds in a coarse-to-fine 
manner.  The mathematical details of this process are 
described in our 2003 paper [Allen03].  An example of 
the resulting matched mesh is shown in Figure 1(e). 

Once the matching process is complete, we can fully 
describe the shape of any individual in our data set as a 
list of the x, y, and z coordinates of each vertex in the 
deformed template surface.  We will refer to these shape 
vectors as si, where i is the index of the example.  Each 
shape vector contains 180,000 elements, and there are 
125 shape vectors for the male scans, and 125 for the 
female scans.  This quantity of data is quite 
cumbersome to work with, and because many 
individuals’ body shapes are quite similar to each other, 
there is considerable redundancy.  Consequently, before 
continuing, we will reduce the data using the technique 
of principal component analysis (PCA). 

We compute the principal component analysis on the si 
vectors (separately for the male and female data sets), 
using the technique described by Turk and Pentland 
[Turk91].  The result is a mean shape vector m, and 124 
component vectors vj, where j is the component index.  
Also, for each example with index i, we have a weight 
vector, wi.  To reconstruct example i, we simply take a 
linear combination of the components: 
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The key feature of PCA is that the components are 
organized such that v1 is the direction of greatest 
variation in shape-space, and   v124 is the direction of 
least significant variation.  To reduce the amount of data 
we need to store, we can throw away the vi vectors 
above a certain value of i, and still reconstruct 
reasonable body shapes.  For example, instead of 
keeping all 124 components in our male dataset, we can 
reduce the number of components to 40 or fewer. 

However, the goal of this work is to synthesize new body 
shapes, not just reconstruct the example shapes.  In 
order to accomplish this task, we need to find a 
relationship between intuitive attributes (such as height 
and other measurements of the body) and body shape.  
One simple way to find this relationship is to use linear 
regression to relate the component weights wi of the 
observed individuals and their attributes.  For example, if 
the height of the male subject with index i is hi, then we 
could do a regression between hi and (wi)1 to find out 
how the first principal component weight relates to 
height.  The resulting best-line fit is shown in Figure 2.  If 
we repeat this procedure for the other principal 
components, then we can create an individual with any 
particular height using the learned linear relationships. 

In Figure 3(a), we demonstrate using this regression 
technique for six different anthropometric measures: 
stature (height), bitragion breadth (head breadth), 



shoulder breadth, arm length, bi-cristale breadth (hip 
breadth), and leg length.  We calculate these 
measurements using the point-to-point distance between 
the landmark points in the CAESAR database.  Figure 
3(a) shows the average male body shape, and then six 
separate edits relative to this average.  Notice however, 
that these edits are not independent; for example, 
increasing the bitragion breadth in column 2 results in a 
taller, larger individual.  Consequently, this technique is 
useful for only specifying a single parameter, or for 
exploring how overall body shape relates to a single 
parameter as a general trend. 

We would like to be able to specify several parameters 
in order to “dial up” a particular body type.  For this task, 
we must perform our regression across several 
attributes.  We can achieve a least-squares best fit using 
a matrix pseudoinverse calulation.  Suppose we have p 
different attributes, and the subject i’s attribute values 
are ai = [x1 x2 … xp 1]T.  If we combine the vectors ai into 
a matrix A, and the vectors wi into a matrix W, then we 
can compute the relationship between all of the 
attributes and the body shape using the following 
equation: 

M = WA+ 

In the above equation, + denotes the pseudoinverse 
operation.  Now given a new set of attributes, a, we can 
compute the principal component weights as w = Ma. 

In part (b) of Figure 3, we demonstrate editing all six 
measurements in tandem.   Notice, for example, how the 
average subject’s height is preserved in all cases except 
for column 1, where the height is edited.  Similarly, the 
bitragion breadth is constant in all columns except for 
column 2, and so on.  In this way, we can truly specify all 
six parameters to create a body type of the desired 
proportions. 

Note that it is not necessary to begin with the average 
body shape.  Indeed, due to the linearity of our 

calculations, we can start with any body shape, real or 
imagined, and edit various aspects of their physique. 

CONCLUSION 

To conclude, we have shown how we can synthesize 
and edit body shapes using intuitive anthropometric 
controls by training our system with raw range scan 
data.  Our technique enables a user to create a wide 
variety of body shapes without any modeling expertise.  
The resulting meshes are complete and may be 
sampled at different resolutions for many different digital 
human applications. 

Furthermore, our system may be used as a data 
exploration device, for visualizing and exploring 
relationships between various bodily measurements.  
Indeed, we have also experimented with using other 
kinds of attributes, including demographic information 
such as weight, shoe size, or income, to explore 
population trends with respect to these variables.  Note 
that in these cases, our linear model can only be 
considered a rough approximation to the true 
relationships in the data. 

A video demonstration of our algorithm, and additional 
applications and results may be downloaded from the 
following web page: 

http://grail.cs.washington.edu/projects/digital-
human/pub/allen03space.html 
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Figure 3: Editing attributes of an individual's body shape.  On the top row, single attributes have been edited to 
explore how body shape varies relative to different parameters.  On the bottom row, all six attributes are edited in 
tandem, so that as one attribute changes, the other five remain fixed. 


