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Abstract

In this paper we present a set of efficient image based rendering
methods capable of rendering multiple frames per second on a PC.
The first method warps Sprites with Depth representing smooth sur-
faces without the gaps found in other techniques. A second method
for more general scenes performs warping from an intermediate
representation called a Layered Depth Image (LDI). An LDI is a
view of the scene from a single input camera view, but with mul-
tiple pixels along each line of sight. The size of the representa-
tion grows only linearly with the observed depth complexity in the
scene. Moreover, because the LDI data are represented in a single
image coordinate system, McMillan’s warp ordering algorithm can
be successfully adapted. As a result, pixels are drawn in the output
image in back-to-front order. No z-buffer is required, so alpha-
compositing can be done efficiently without depth sorting. This
makes splatting an efficient solution to the resampling problem.

1 Introduction

Image based rendering (IBR) techniques have been proposed as an
efficient way of generating novel views of real and synthetic ob-
jects. With traditional rendering techniques, the time required to
render an image increases with the geometric complexity of the
scene. The rendering time also grows as the requested shading com-
putations (such as those requiring global illumination solutions) be-
come more ambitious.

The most familiar IBR method is texture mapping. An image is
remapped onto a surface residing in a three-dimensional scene. Tra-
ditional texture mapping exhibits two serious limitations. First, the
pixelization of the texture map and that of the final image may be
vastly different. The aliasing of the classic infinite checkerboard
floor is a clear illustration of the problems this mismatch can cre-
ate. Secondly, texture mapping speed is still limited by the surface
the texture is applied to. Thus it would be very difficult to create
a texture mapped tree containing thousands of leaves that exhibits
appropriate parallax as the viewpoint changes.

Two extensions of the texture mapping model have recently been
presented in the computer graphics literature that address these two
difficulties. The first is a generalization ofsprites. Once a complex
scene is rendered from a particular point of view, the image that
would be created from a nearby point of view will likely be similar.
In this case, the original 2D image, orsprite, can be slightly altered
by a 2D affine or projective transformation to approximate the view
from the new camera position [31, 27, 15].

The sprite approximation’s fidelity to the correct new view is highly
dependent on the geometry being represented. In particular, the

errors increase with the amount of depth variation in the real part
of the scene captured by the sprite. The amount of virtual camera
motion away from the point of view of sprite creation also increases
the error. Errors decrease with the distance of the geometry from
the virtual camera.

The second recent extension is to add depth information to an im-
age to produce adepth imageand to then use the optical flow that
would be induced by a camera shift to warp the scene into an ap-
proximation of the new view [2, 22].

Each of these methods has its limitations. Simple sprite warping
cannot produce theparallax induced when parts of the scenes have
sizable differences in distance from the camera. Flowing a depth
image pixel by pixel, on the other hand, can provide proper parallax
but will result in gaps in the image either due to visibility changes
when some portion of the scene become unoccluded, or when a
surface is magnified in the new view.

Some solutions have been proposed to the latter problem. Laveau
and Faugeras suggest performing a backwards mapping from the
output sample location to the input image [14]. This is an expen-
sive operation that requires some amount of searching in the input
image. Another possible solution is to think of the input image as a
mesh of micro-polygons, and to scan-convert these polygons in the
output image. This is an expensive operation, as it requires a poly-
gon scan-convert setup for each input pixel [18], an operation we
would prefer to avoid especially in the absence of specialized ren-
dering hardware. Alternatively one could use multiple input images
from different viewpoints. However, if one usesn input images, one
effectively multiplies the size of the scene description byn, and the
rendering cost increases accordingly.

This paper introduces two new extensions to overcome both of these
limitations. The first extension is primarily applicable to smoothly
varying surfaces, while the second is useful primarily for very com-
plex geometries. Each method provides efficient image based ren-
dering capable of producing multiple frames per second on a PC.

In the case of sprites representing smoothly varying surfaces, we
introduce an algorithm for renderingSprites with Depth. The algo-
rithm first forward maps (i.e., warps) the depth values themselves
and then uses this information to add parallax corrections to a stan-
dard sprite renderer.

For more complex geometries, we introduce theLayered Depth Im-
age, or LDI, that contains potentially multiple depth pixels at each
discrete location in the image. Instead of a 2D array of depth pixels
(a pixel with associated depth information), we store a 2D array of
layered depth pixels. A layered depth pixel stores a set of depth pix-
els along one line of sight sorted in front to back order. The front
element in the layered depth pixel samples the first surface seen
along that line of sight; the next pixel in the layered depth pixel
samples the next surface seen along that line of sight, etc. When
rendering from an LDI, the requested view can move away from
the original LDI view and expose surfaces that were not visible in
the first layer. The previously occluded regions may still be ren-
dered from data stored in some later layer of a layered depth pixel.

There are many advantages to this representation. The size of the
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depending on distance from the camera

representation grows linearly only with the depth complexity of the
image. Moreover, because the LDI data are represented in a single
image coordinate system, McMillan’s ordering algorithm [21] can
be successfully applied. As a result, pixels are drawn in the output
image in back to front order allowing proper alpha blending without
depth sorting. No z-buffer is required, so alpha-compositing can be
done efficiently without explicit depth sorting. This makes splatting
an efficient solution to the reconstruction problem.

Sprites with Depth and Layered Depth Images provide us with two
new image based primitives that can be used in combination with
traditional ones. Figure 1 depicts five types of primitives we may
wish to use. The camera at the center of the frustum indicates where
the image based primitives were generated from. The viewing vol-
ume indicates the range one wishes to allow the camera to move
while still re-using these image based primitives.

The choice of which type of image-based or geometric primitive
to use for each scene element is a function of its distance, its in-
ternal depth variation relative to the camera, as well as its internal
geometric complexity. For scene elements at a great distance from
the camera one might simply generate an environment map. The
environment map is invariant to translation and simply translates
as a whole on the screen based on the rotation of the camera. At
a somewhat closer range, and for geometrically planar elements,
traditional planar sprites (orimage caches) may be used [31, 27].
The assumption here is that although the part of the scene depicted
in the sprite may display some parallax relative to the background
environment map and other sprites, it will not need to depict any
parallax within the sprite itself. Yet closer to the camera, for ele-
ments with smoothly varying depth, Sprites with Depth are capable
of displaying internal parallax but cannot deal with disocclusions
due to image flow that may arise in more complex geometric scene
elements. Layered Depth Images deal with both parallax and dis-
occlusions and are thus useful for objects near the camera that also
contain complex geometries that will exhibit considerable parallax.
Finally, traditional polygon rendering may need to be used for im-

mediate foreground objects.

In the sections that follow, we will concentrate on describing the
data structures and algorithms for representing and rapidly render-
ing Sprites with Depth and Layered Depth Images.

2 Previous Work

Over the past few years, there have been many papers on image
based rendering. In [17], Levoy and Whitted discuss rendering
point data. Chen and Williams presented the idea of rendering
from images [2]. Laveau and Faugeras discuss IBR using a back-
wards map [14]. McMillan and Bishop discuss IBR using cylin-
drical views [22]. Seitz and Dyer describe a system that allows a
user to correctly model view transforms in a user controlled image
morphing system [29]. In a slightly different direction, Levoy and
Hanrahan [16] and Gortleret al. [7] describe IBR methods using a
large number of input images to sample the high dimensional radi-
ance function.

Max uses a representation similar to an LDI [19], but for a purpose
quite different than ours; his purpose is high quality anti-aliasing,
while our goal is efficiency. Max reports his rendering time as 5
minutes per frame while our goal is multiple frames per second.
Max warps fromn input LDIs with different camera information;
the multiple depth layers serve to represent the high depth com-
plexity of trees. We warp from a single LDI, so that the warping
can be done most efficiently. For output, Max warps to an LDI.
This is done so that, in conjunction with an A-buffer, high quality,
but somewhat expensive, anti-aliasing of the output picture can be
performed.

Mark et al.[18] and Darsaet al.[4] create triangulated depth maps
from input images with per-pixel depth. Darsa concentrates on
limiting the number of triangles by looking for depth coherence
across regions of pixels. This triangle mesh is then rendered tra-
ditionally taking advantage of graphics hardware pipelines. Mark
et al.describe the use of multiple input images as well. In this aspect
of their work, specific triangles are given lowered priority if there
is a large discontinuity in depth across neighboring pixels. In this
case, if another image fills in the same area with a triangle of higher
priority, it is used instead. This helps deal with disocclusions.

Shadeet al.[31] and Shaufleret al.[27] render complex portions
of a scene such as a tree onto alpha matted billboard-like sprites
and then reuse them as textures in subsequent frames. Lengyel and
Snyder [15] extend this work by warping sprites by a best fit affine
transformation based on a set of sample points in the underlying
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3D model. These affine transforms are allowed to vary in time as
the position and/or color of the sample points change. Hardware
considerations for such system are discussed in [32].

Horry et al. [10] describe a very simple sprite-like system in which
a user interactively indicates planes in an image that represent areas
in a given image. Thus, from a single input image and some user
supplied information, they can warp an image and provide approx-
imate three dimensional cues about the scene.

The system presented here relies heavily on McMillan’s ordering
algorithm [21, 20, 22]. Using input and output camera information,
a warping order is computed such that pixels that map to the same
location in the output image are guaranteed to arrive in back to front
order.

In McMillan’s work, the depth order is computed by first finding
the projection of the output camera’s location in the input camera’s
image plane, that is, the intersection of the line joining the two cam-
era locations with the input camera’s image plane. The line joining
the two camera locations is called the epipolar line, and the inter-
section with the image plane is called an epipolar point [6] (see
Figure 1). The input image is then split horizontally and vertically
at the epipolar point, generally creating 4 image quadrants. (If the
epipolar point lies off the image plane, we may have only 2 or 1
regions.) The pixels in each of the quadrants are processed in a dif-
ferent order. Depending on whether the output camera is in front
of or behind the input camera, the pixels in each quadrant are pro-
cessed either inward towards the epipolar point or outwards away
from it. In other words, one of the quadrants is processed left to
right, top to bottom, another is processed left to right, bottom to
top, etc. McMillan discusses in detail the various special cases that
arise and proves that this ordering is guaranteed to produce depth
ordered output [20].

When warping from an LDI, there is effectively only one input cam-
era view. Therefore one can use the ordering algorithm to order the
layered depth pixels visited. Within each layered depth pixel, the
layers are processed in back to front order. The formal proof of [20]
applies, and the ordering algorithm is guaranteed to work.

3 Rendering Sprites

Sprites are texture maps or images with alphas (transparent pixels)
rendered onto planar surfaces. They can be used either for locally
caching the results of slower rendering and then generating new
views by warping [31, 27, 32, 15], or they can be used directly as
drawing primitives (as in video games).

The texture map associated with a sprite can be computed by simply
choosing a 3D viewing matrix and projecting some portion of the
scene onto the image plane. In practice, a view associated with the
current or expected viewpoint is a good choice. A 3D plane equa-
tion can also be computed for the sprite, e.g., by fitting a 3D plane to
the z-buffer values associated with the sprite pixels. Below, we de-
rive the equations for the 2D perspective mapping between a sprite
and its novel view. This is useful both for implementing a back-
ward mapping algorithm, and lays the foundation for our Sprites
with Depth rendering algorithm.

A sprite consists of an alpha-matted imageI1(x1, y1), a 4�4 camera
matrix C1 which maps from 3D world coordinates (X,Y,Z, 1) into
the sprite’s coordinates (x1,y1, z1, 1),2
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(z1 is the z-buffer value), and a plane equation. This plane equation

can either be specified in world coordinates,AX+BY+CZ+D = 0,
or it can be specified in the sprite’s coordinate system,ax1 + by1 +
cz1 + d = 0. In the former case, we can form a new camera matrix
Ĉ1 by replacing the third row ofC1 with the row [A B C D], while
in the latter, we can computêC1 = PC1, where
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2
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(note that [A B C D] = [a b c d]C1).

In either case, we can write the modified projection equation as
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whered1 = 0 for pixels on the plane. For pixels off the plane,d1 is
the scaled perpendicular distance to the plane (the scale factor is 1
if A2 + B2 + C2 = 1) divided by the pixel to camera distancew1.

Given such a sprite, how do we compute the 2D transformation
associated with a novel vieŵC2? The mapping between pix-
els (x1, y1,d1, 1) in the sprite and pixels (w2x2,w2y2, w2d2, w2) in
the output camera’s image is given by the transfer matrixT1,2 =
Ĉ2 � Ĉ�1

1 .

For a flat sprite (d1 = 0), the transfer equation can be written as

2
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1

3
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whereH1,2 is the 2D planar perspective transformation (homogra-
phy) obtained by dropping the third row and column ofT1,2. The
coordinates (x2, y2) obtained after dividing outw2 index a pixel ad-
dress in the output camera’s image. Efficient backward mapping
techniques exist for performing the 2D perspective warp [8, 35], or
texture mapping hardware can be used.

3.1 Sprites with Depth

The descriptive power (realism) of sprites can be greatly enhanced
by adding an out-of-plane displacement componentd1 at each pixel
in the sprite.1 Unfortunately, such a representation can no longer be
rendered directly using a backward mapping algorithm.

Using the same notation as before, we see that the transfer equation
is now 2

4w2x2

w2y2

w2

3
5 = H1,2

2
4x1

y1

1

3
5 + d1e1,2, (4)

wheree1,2 is calledepipole [6, 26, 12], and is obtained from the
third column ofT1,2.

Equation (4) can be used toforward mappixels from a sprite to a
new view. Unfortunately, this entails the usual problems associated
with forward mapping, e.g., the necessity to fill gaps or to use larger

1The d1 values can be stored as a separate image, say as 8-bit signed
depths. The full precision of a traditional z-buffer is not required, since
these depths are used only to compute local parallax, and not to perform
z-buffer merging of primitives. Furthermore, thed1 image could be stored
at a lower resolution than the color image, if desired.
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splatting kernels, and the difficulty in achieving proper resampling.
Notice, however, that Equation (4) could be used to perform a back-
ward mapping step by interchanging the 1 and 2 indices, if only we
knew the displacementsd2 in the output camera’s coordinate frame.

A solution to this problem is to firstforward mapthe displacements
d1, and to then use Equation (4) to perform a backward mapping
step with the new (view-based) displacements. While this may at
first appear to be no faster or more accurate than simply forward
warping the color values, it does have some significant advantages.

First, small errors in displacement map warping will not be as ev-
ident as errors in the sprite image warping, at least if the displace-
ment map is smoothly varying (in practice, the shape of a simple
surface often varies more smoothly than its photometry). If bilinear
or higher order filtering is used in the final color (backward) resam-
pling, this two-stage warping will have much lower errors than for-
ward mapping the colors directly with an inaccurate forward map.
We can therefore use a quick single-pixel splat algorithm followed
by a quick hole filling, or alternatively, use a simple 2� 2 splat.

The second main advantage is that we can design the forward warp-
ing step to have a simpler form by factoring out the planar perspec-
tive warp. Notice that we can rewrite Equation (4) as
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wheree�1,2 = H�1
1,2 e1,2. This suggests that Sprite with Depth ren-

dering can be implemented by first shifting pixels by their local
parallax, filling any resulting gaps, and then applying a global ho-
mography (planar perspective warp). This has the advantage that
it can handle large changes in view (e.g., large zooms) with only a
small amount of gap filling (since gaps arise only in the first step,
and are due to variations in displacement).

Our novel two-step rendering algorithm thus proceeds in two
stages:

1. forward map the displacement mapd1(x1, y1), using only the
parallax component given in Equation (6) to obtaind3(x3,y3);

2a. backward map the resulting warped displacementsd3(x3,y3)
using Equation (5) to obtaind2(x2,y2) (the displacements in
the new camera view);

2b. backward map the original sprite colors, using both the ho-
mographyH2,1 and the new parallaxd2 as in Equation (4)
(with the 1 and 2 indices interchanged), to obtain the image
corresponding to cameraC2.

The last two operations can be combined into a single raster scan
over the output image, avoiding the need to perspective warpd3

into d2. More precisely, for each output pixel (x2,y2), we compute
(x3, y3) such that

2
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to compute where to look up the displacementd3(x3,y3), and form
the final address of the source sprite pixel using

2
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w1y1
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We can obtain a quicker, but less accurate, algorithm by omitting
the first step, i.e., the pure parallax warp fromd1 to d3. If we as-
sume the depth at a pixel before and after the warp will not change
significantly, we can used1 instead ofd3 in Equation (8). This still
gives a useful illusion of 3-D parallax, but is only valid for a much
smaller range of viewing motions (see Figure 3).

Another variant on this algorithm, which uses somewhat more stor-
age but fewer computations, is to compute a 2-D displacement field
in the first pass,u3(x3,y3) = x1 � x3, v3(x3, y3) = y1 � y3, where
(x3,y3) is computed using the pure parallax transform in Equation
(6). In the second pass, the final pixel address in the sprite is com-
puted using

�
x1

y1

�
=

�
x3

y3

�
+

�
u3(x3,y3)
v3(x3,y3)

�
, (9)

where this time (x3,y3) is computed using the transform given in
Equation (7).

We can make the pure parallax transformation (6) faster by avoid-
ing the per-pixel division required after adding homogeneous coor-
dinates. One way to do this is to approximate the parallax trans-
formation by first moving the epipole to infinity (setting its third
component to 0). This is equivalent to having anaffine parallax
component (all points move in the same direction, instead of to-
wards a common vanishing point). In practice, we find that this still
provides a very compelling illusion of 3D shape.

Figure 3 shows some of the steps in our two-pass warping algo-
rithm. Figures 3a and 3f show the original sprite (color) image and
the depth map. Figure 3b shows the sprite warped with no parallax.
Figures 3g, 3h, and 3i shows the depth map forward warped with
only pure parallax, only the perspective projection, and both. Fig-
ure 3c shows the backward warp using the incorrect depth mapd1

(note how dark “background” colors are mapped onto the “bump”),
whereas Figure 3d shows the backward warp using the correct depth
mapd3. The white pixels near the right hand edge are a result of
using only a single step of gap filling. Using three steps results in
the better quality image shown in Figure 3e. Gaps also do not ap-
pear for a less quickly slantingd maps, such as the pyramid shown
in Figure 3j.

The rendering times for the 256�256 image shown in Figure 3 on a
300 MHz Pentium II are as follows. Using bilinear pixel sampling,
the frame rates are 30 Hz for no z-parallax, 21 Hz for “crude” one-
pass warping (no forward warping ofd1 values), and 16 Hz for
two-pass warping. Using nearest-neighbor resampling, the frame
rates go up to 47 Hz, 24 Hz, and 20 Hz, respectively.

3.2 Recovering sprites from image sequences

While sprites and sprites with depth can be generated using com-
puter graphics techniques, they can also be extracted from image
sequences using computer vision techniques. To do this, we use a
layered motion estimation algorithm [33, 1], which simultaneously
segments the sequence into coherently moving regions, and com-
putes a parametric motion estimate (planar perspective transforma-
tion) for each layer. To convert the recovered layers into sprites, we
need to determine the plane equation associated with each region.
We do this by tracking features from frame to frame and applying
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3 Plane with bump rendering example: (a) input color (sprite) imageI1(x1,y1); (b) sprite warped by homography only
(no parallax); (c) sprite warped by homography and crude parallax (d1); (d) sprite warped by homography and true parallax
(d2); (e) with gap fill width set to 3; (f) input depth mapd1(x1, y1); (g) pure parallax warped depth mapd3(x3,y3); (h) forward
warped depth mapd2(x2, y2); (i) forward warped depth map without parallax correction; (j) sprite with “pyramid” depth map.

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 4 Results of sprite extraction from image sequence: (a) third of five images; (b) initial segmentation into six layers;
(c) recovered depth map; (d) the five layer sprites; (e) residual depth image for fifth layer; (f) re-synthesized third image (note
extended field of view); (g) novel view without residual depth; (h) novel view with residual depth (note the “rounding” of the
people).
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Figure 5 Layered Depth Image

a standard structure from motion algorithm to recover the camera
parameters (viewing matrices) for each frame [6]. Tracking several
points on each sprite enables us to reconstruct their 3D positions,
and hence to estimate their 3D plane equations [1]. Once the sprite
pixel assignment have been recovered, we run a traditional stereo
algorithm to recover the out-of-plane displacements.

The results of applying the layered motion estimation algorithm to
the first five images from a 40-image stereo dataset2 are shown in
Figure 4. Figure 4(a) shows the middle input image, Figure 4(b)
shows the initial pixel assignment to layers, Figure 4(c) shows the
recovered depth map, and Figure 4(e) shows the residual depth map
for layer 5. Figure 4(d) shows the recovered sprites. Figure 4(f)
shows the middle image re-synthesized from these sprites, while
Figures 4(g–h) show the same sprite collection seen from a novel
viewpoint (well outside the range of the original views), both with
and without residual depth-based correction (parallax). The gaps
visible in Figures 4(c) and 4(f) lieoutsidethe area corresponding
to the middle image, where the appropriate parts of the background
sprites could not be seen.

4 Layered Depth Images

While the use of sprites and Sprites with Depth provides a fast
means to warp planar or smoothly varying surfaces, more general
scenes require the ability to handle more general disocclusions and
large amounts of parallax as the viewpoint moves. These needs
have led to the development of Layered Depth Images (LDI).

Like a sprite with depth, pixels contain depth values along with their
colors (i.e., adepth pixel). In addition, a Layered Depth Image (Fig-
ure 5) contains potentially multiple depth pixels per pixel location.
The farther depth pixels, which are occluded from the LDI center,
will act to fill in the disocclusions that occur as the viewpoint moves
away from the center.

The structure of an LDI is summarized by the following conceptual
representation:

DepthPixel =
ColorRGBA: 32 bit integer
Z: 20 bit integer
SplatIndex: 11 bit integer

LayeredDepthPixel =
NumLayers: integer
Layers[0..numlayers-1]:array of DepthPixel

2Courtesy of Dayton Taylor.

LayeredDepthImage =
Camera: camera
Pixels[0..xres-1,0..yres-1]:array of LayeredDepthPixel

The layered depth image contains camera information plus an array
of sizexresby yreslayered depth pixels. In addition to image data,
each layered depth pixel has an integer indicating how many valid
depth pixels are contained in that pixel. The data contained in the
depth pixel includes the color, the depth of the object seen at that
pixel, plus an index into a table that will be used to calculate a splat
size for reconstruction. This index is composed from a combina-
tion of the normal of the object seen and the distance from the LDI
camera.

In practice, we implement Layered Depth Images in two ways.
When creating layered depth images, it is important to be able to
efficiently insert and delete layered depth pixels, so theLayersar-
ray in theLayeredDepthPixelstructure is implemented as a linked
list. When rendering, it is important to maintain spatial locality of
depth pixels in order to most effectively take advantage of the cache
in the CPU [13]. In Section 5.1 we discuss the compact render-time
version of layered depth images.

There are a variety of ways to generate an LDI. Given a synthetic
scene, we could use multiple images from nearby points of view for
which depth information is available at each pixel. This informa-
tion can be gathered from a standard ray tracer that returns depth
per pixel or from a scan conversion and z-buffer algorithm where
the z-buffer is also returned. Alternatively, we could use a ray tracer
to sample an environment in a less regular way and then store com-
puted ray intersections in the LDI structure. Given multiple real
images, we can turn to computer vision techniques that can infer
pixel correspondence and thus deduce depth values per pixel. We
will demonstrate results from each of these three methods.

4.1 LDIs from Multiple Depth Images

We can construct an LDI by warpingn depth images into a common
camera view. For example the depth imagesC2 andC3 in Figure 5
can be warped to the camera frame defined by the LDI (C1 in fig-
ure 5).3 If, during the warp from the input camera to the LDI cam-
era, two or more pixels map to the same layered depth pixel, their
Z values are compared. If the Z values differ by more than a preset
epsilon, a new layer is added to that layered depth pixel for each
distinct Z value (i.e.,NumLayersis incremented and a new depth
pixel is added), otherwise (e.g., depth pixelsc andd in figure 5),
the values are averaged resulting in a single depth pixel. This pre-
processing is similar to the rendering described by Max [19]. This
construction of the layered depth image is effectively decoupled
from the final rendering of images from desired viewpoints. Thus,
the LDI construction does not need to run at multiple frames per
second to allow interactive camera motion.

4.2 LDIs from a Modified Ray Tracer

By construction, a Layered Depth Image reconstructs images of a
scene well from the center of projection of the LDI (we simply dis-
play the nearest depth pixels). The quality of the reconstruction
from another viewpoint will depend on how closely the distribu-
tion of depth pixels in the LDI, when warped to the new viewpoint,
corresponds to the pixel density in the new image. Two common
events that occur are: (1) disocclusions as the viewpoint changes,

3Any arbitrary single coordinate system can be specified here. However,
we have found it best to use one of the original camera coordinate systems.
This results in fewer pixels needing to be resampled twice; once in the LDI
construction, and once in the rendering process.
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Figure 6 An LDI consists of the 90 degree frustum exiting
one side of a cube. The cube represents the region of interest
in which the viewer will be able to move.

and (2) surfaces that grow in terms of screen space. For example,
when a surface is edge on to the LDI, it covers no area. Later, it
may face the new viewpoint and thus cover some screen space.

When using a ray tracer, we have the freedom to sample the scene
with any distribution of rays we desire. We could simply allow
the rays emanating from the center of the LDI to pierce surfaces,
recording each hit along the way (up to some maximum). This
would solve the disocclusion problem but would not effectively
sample surfaces edge on to the LDI.

What set of rays should we trace to sample the scene, to best ap-
proximate the distribution of rays from all possible viewpoints we
are interested in? For simplicity, we have chosen to use a cubical
region of empty space surrounding the LDI center to represent the
region that the viewer is able to move in. Each face of the viewing
cube defines a 90 degree frustum which we will use to define a sin-
gle LDI (Figure 6). The six faces of the viewing cube thus cover
all of space. For the following discussion we will refer to a single
LDI.

Each ray in free space has four coordinates, two for position and
two for direction. Since all rays of interest intersect the cube faces,
we will choose the outward intersection to parameterize the position
of the ray. Direction is parameterized by two angles.

Given noa priori knowledge of the geometry in the scene, we as-
sume that every ray intersection the cube is equally important. To
achieve a uniform density of rays we sample the positional coor-
dinates uniformly. A uniform distribution over the hemisphere of
directions requires that the probability of choosing a direction is
proportional to theprojectedarea in that direction. Thus, the di-
rection is weighted by the cosine of the angle off the normal to the
cube face.

Choosing a cosine weighted direction over a hemisphere can be
accomplished by uniformly sampling the unit disk formed by the
base of the hemisphere to get two coordinates of the ray direction,
sayx andy if the z-axis is normal to the disk. The third coordinate
is chosen to give a unit length (z =

p
1� x2 � y2). We make the

selection within the disk by first selecting a point in the unit square,
then applying a measure preserving mapping [24] that maps the unit
square to the unit disk.

Given this desired distribution of rays, there are a variety of ways
to perform the sampling:

Uniform . A straightforward stochastic method would take as input
the number of rays to cast. Then, for each ray it would choose an

Figure 7 Intersections from sampling rays A and B are
added to the same layered depth pixel.

origin on the cube face and a direction from the cosine distribution
and cast the ray into the scene. There are two problems with this
simple scheme. First, suchwhite noisedistributions tend to form
unwanted clumps. Second, since there is no coherence between
rays, complex scenes require considerable memory thrashing since
rays will access the database in a random way [25]. The model
of the chestnut tree seen in the color images was too complex to
sample with a pure stochastic method on a machine with 320MB of
memory.

Stratified Stochastic. To improve the coherence and distribution
of rays, we employ a stratified scheme. In this method, we divide
the 4D space of rays uniformly into a grid ofN�N�N�N strata.
For each stratum, we castM rays. Enough coherence exists within
a stratum that swapping of the data set is alleviated. Typical values
for N andM are 32 and 16, generating approximately 16 million
rays per cube face.

Once a ray is chosen, we cast it into the scene. If it hits an object,
and that object lies in the LDI’s frustum, we reproject the inter-
section into the LDI, as depicted in Figure 7, to determine which
layered depth pixel should receive the sample. If the new sample is
within an epsilon tolerance in depth of an existing depth pixel, the
color of the new sample is averaged with the existing depth pixel.
Otherwise, the color, normal, and distance to the sample create a
new depth pixel that is inserted into the Layered Depth Pixel.

4.3 LDIs from Real Images

The dinosaur model in Figure 13 is constructed from 21 pho-
tographs of the object undergoing a 360 degree rotation on a
computer-controlled calibrated turntable. An adaptation of Seitz
and Dyer’s voxel coloring algorithm [30] is used to obtain the LDI
representation directly from the input images. The regular voxeliza-
tion of Seitz and Dyer is replaced by a view-centered voxelization
similar to the LDI structure. The procedure entails moving outward
on rays from the LDI camera center and projecting candidate voxels
back into the input images. If all input images agree on a color, this
voxel is filled as a depth pixel in the LDI structure. This approach
enables straightforward construction of LDI’s from images that do
not contain depth per pixel.

5 Rendering Layered Depth Images

Our fast warping-based renderer takes as input an LDI along with
its associated camera information. Given a new desired camera po-
sition, the warper uses an incremental warping algorithm to effi-
ciently create an output image. Pixels from the LDI are splatted
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into the output image using theover compositing operation. The
size and footprint of the splat is based on an estimated size of the
reprojected pixel.

5.1 Space Efficient Representation

When rendering, it is important to maintain the spatial locality of
depth pixels to exploit the second level cache in the CPU [13]. To
this end, we reorganize the depth pixels into a linear array ordered
from bottom to top and left to right in screen space, and back to
front along a ray. We also separate out the number of layers in each
layered depth pixel from the depth pixels themselves. The layered
depth pixel structure does not exist explicitly in this implementa-
tion. Instead, a double array of offsets is used to locate each depth
pixel. The number of depth pixels in each scanline is accumulated
into a vector of offsets to the beginning of each scanline. Within
each scanline, for each pixel location, a total count of the depth
pixels from the beginning of the scanline to that location is main-
tained. Thus to find any layered depth pixel, one simply offsets to
the beginning of the scanline and then further to the first depth pixel
at that location. This supports scanning in right-to-left order as well
as the clipping operation discussed later.

5.2 Incremental Warping Computation

The incremental warping computation is similar to the one used
for certain texture mapping operations [9, 28]. The geometry of
this computation has been analyzed by McMillan [23], and efficient
computation for the special case of orthographic input images is
given in [3].

Let C1 be the 4� 4 matrix for the LDI camera. It is composed of
an affine transformation matrix, a projection matrix, and a viewport
matrix, C1 = V1 � P1 � A1. This camera matrix transforms a point
from the global coordinate system into the camera’s projected im-
age coordinate system. The projected image coordinates (x1, y1),
obtained after multiplying the point’s global coordinates byC1 and
dividing outw1, index a screen pixel address. Thez1 coordinate can
be used for depth comparisons in a z buffer.

Let C2 be the output camera’s matrix. Define the transfer matrix
asT1,2 = C2 � C�1

1 . Given the projected image coordinates of some
point seen in the LDI camera (e.g., the coordinates ofa in Figure 5),
this matrix computes the image coordinates as seen in the output
camera (e.g., the image coordinates ofa2 in cameraC2 in Figure 5).

T1,2 �

2
64

x1

y1

z1

1

3
75 =

2
64

x2 � w2

y2 � w2

z2 � w2

w2

3
75 = result

The coordinates (x2, y2) obtained after dividing byw2, index a pixel
address in the output camera’s image.

Using the linearity of matrix operations, this matrix multiply can
be factored to reuse much of the computation from each iteration
through the layers of a layered depth pixel;result can be computed
as

T1,2 �

2
64

x1

y1

z1

1

3
75 = T1,2 �

2
64

x1

y1

0
1

3
75 + z1 � T1,2 �

2
64

0
0
1
0

3
75 = start + z1 � depth

To compute the warped position of the next layered depth pixel
along a scanline, the newstart is simply incremented.

C1

C2

d1

d2

φ1

φ2

Z2

θ1

θ2

Normal

Surface

Figure 8 Values for size computation of a projected pixel.
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1

3
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2
64

1
0
0
0

3
75 = start + xincr

The warping algorithm proceeds using McMillan’s ordering algo-
rithm [21]. The LDI is broken up into four regions above and below
and to the left and right of the epipolar point. For each quadrant,
the LDI is traversed in (possibly reverse) scan line order. At the
beginning of each scan line,start is computed. The sign ofxincr
is determined by the direction of processing in this quadrant. Each
layered depth pixel in the scan line is then warped to the output
image by callingWarp. This procedure visits each of the layers in
back to front order and computesresult to determine its location
in the output image. As in perspective texture mapping, a divide is
required per pixel. Finally, the depth pixel’s color is splatted at this
location in the output image.

The following pseudo code summarizes the warping algorithm ap-
plied to each layered depth pixel.

procedureWarp(ldpix, start, depth, xincr )
for k 0 to dpix.NumLayers-1

z1 ldpix.Layers[k].Z
result start + z1� depth
==cull if the depth pixel goes behind the output camera
==or if the depth pixel goes out of the output cam’s frustum
if result .w> 0 and IsInViewport(result) then

result result = result.w
== see next section
sqrtSize z2� lookupTable[ldpix.Layers[k].SplatIndex]
splat(ldpix.Layers[k].ColorRGBA, x2, y2, sqrtSize)

end if
== increment for next layered pixel on this scan line
start start + xincr

end for
end procedure
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5.3 Splat Size Computation

To splat the LDI into the output image, we estimate the projected
area of the warped pixel. This is a rough approximation to the foot-
print evaluation [34] optimized for speed. The proper size can be
computed (differentially) as

size=
(d1)2 cos(�2) res2 tan(fov1=2)
(d2)2 cos(�1) res1 tan(fov2=2)

whered1 is the distance from the sampled surface point to the LDI
camera,fov1 is the field of view of the LDI camera,res1 = (w1h1)�1

wherew1 andh1 are the width and height of the LDI, and�1 is the
angle between the surface normal and the line of sight to the LDI
camera (see Figure 8). The same terms with subscript 2 refer to the
output camera.

It will be more efficient to compute an approximation of the square
root of size,

p
size =

1
d2
� d1

p
cos(�2)res2tan(fov1=2)p

cos(�1)res1tan(fov2=2)

� 1
Z2
� d1

p
cos(�2)res2tan(fov1=2)p

cos(�1)res1tan(fov2=2)

� z2 �
d1

p
cos(�2)res2tan(fov1=2)p

cos(�1)res1tan(fov2=2)

We approximate the�s as the angles� between the surface nor-
mal vector and thez axes of the camera’s coordinate systems. We
also approximated2 by Z2, the z coordinate of the sampled point
in the output camera’s unprojected eye coordinate system. During
rendering, we set the projection matrix such thatz2 = 1=Z2.

The current implementation supports 4 different splat sizes, so a
very crude approximation of the size computation is implemented
using a lookup table. For each pixel in the LDI, we stored1 using
5 bits. We use 6 bits to encode the normal, 3 fornx, and 3 forny.
This gives us an eleven-bit lookup table index. Before rendering
each new image, we use the new output camera information to pre-
compute values for the 2048 possible lookup table indexes. At each
pixel we obtain

p
sizeby multiplying the computedz2 by the value

found in the lookup table.

p
size� z2 � lookup [nx ,ny ,d1 ]

To maintain the accuracy of the approximation ford1, we discretize
d1 nonlinearly using a simple exponential function that allocates
more bits to the nearbyd1 values, and fewer bits to the distantd1

values.

The four splat sizes we currently use have 1 by 1, 3 by 3, 5 by 5,
and 7 by 7 pixel footprints. Each pixel in a footprint has an alpha
value to approximate a Gaussian splat kernel. However, the alpha
values are rounded to 1, 1/2, or 1/4, so the alpha blending can be
done with integer shifts and adds.

5.4 Depth Pixel Representation

The size of a cache line on current Intel processors (Pentium Pro
and Pentium II) is 32 bytes. To fit four depth pixels into a single
cache line we convert the floating point Z value to a 20 bit integer.
This is then packed into a single word along with the 11 bit splat
table index. These 32 bits along with the R, G, B, and alpha values
fill out the 8 bytes. This seemingly small optimization yielded a 25
percent improvement in rendering speed.

LDI

Near Segment

Far Segment

Desired
View

ClippedDrawn

Figure 9 LDI with two segments

5.5 Clipping

The LDI of the chestnut tree scene in Figure 11 is a large data set
containing over 1.1 million depth pixels. If we naively render this
LDI by reprojecting every depth pixel, we would only be able to
render at one or two frames per second. When the viewer is close
to the tree, there is no need to flow those pixels that will fall out-
side of the new view. Unseen pixels can be culled by intersecting
the view frustum with the frustum of the LDI. This is implemented
by intersecting the view frustum with the near and far plane of the
LDI frustum, and taking the bounding box of the intersection. This
region defines the rays of depth pixels that could be seen in the
new view. This computation is conservative, and gives suboptimal
results when the viewer is looking at the LDI from the side (see
Figure 9). The view frustum intersects almost the entire cross sec-
tion of the LDI frustum, but only those depth pixels in the desired
view need be warped. Our simple clipping test indicates that most
of the LDI needs to be warped. To alleviate this, we split the LDI
into two segments, a near and a far segment (see Figure 9). These
are simply two frustra stacked one on top of the other. The near
frustum is kept smaller than the back segment. We clip each seg-
ment individually, and render the back segment first and the front
segment second. Clipping can speed rendering times by a factor of
2 to 4.

6 Results

Sprites with Depth and Layered Depth Images have been imple-
mented in C++. The color figures show two examples of rendering
sprites and three examples of rendering LDIs. Figures 3a through 3j
show the results of rendering a sprite with depth. The hemisphere
in the middle of the sprite pops out of the plane of the sprite, and
the illusion of depth is quite good. Figure 4 shows the process of
extracting sprites from multiple images using the vision techniques
discussed in Section 3. There is a great deal of parallax between the
layers of sprites, resulting in a convincing and inexpensive image-
based-rendering method.

Figure 10 shows two views of a barnyard scene modeled in Sof-
timage. A set of 20 images was pre-rendered from cameras that
encircle the chicken using the Mental Ray renderer. The renderer
returns colors, depths, and normals at each pixel. The images were
rendered at 320 by 320 pixel resolution, taking approximately one
minute each to generate. In the interactive system, the 3 images out
of the 17 that have the closest direction to the current camera are
chosen. The preprocessor (running in a low-priority thread) uses
these images to create an LDI in about 1 second. While the LDIs
are allocated with a maximum of 10 layers per pixel, the average
depth complexity for these LDIs is only 1.24. Thus the use of three
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Figure 10 Barnyard scene

Figure 11 Near segment of chestnut tree

Figure 12 Chestnut tree in front of environment map
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Figure 13 Dinosaur model reconstructed from 21 photographs

input images only increases the rendering cost by 24 percent. The
fast renderer (running concurrently in a high-priority thread) gener-
ates images at 300 by 300 resolution. On a Pentium II PC running
at 300MHz, we achieved frame rate of 8 to 10 frames per second.

Figures 11 and 12 show two cross-eye stereo pairs of a chestnut
tree. In Figure 11 only the near segment is displayed. Figure 12
shows both segments in front of an environment map. The LDIs
were created using a modified version of the Rayshade [11] ray-
tracer. The tree model is very large; Rayshade allocates over 340
MB of memory to render a single image of the tree. The stochastic
method discussed in Section 4.2 took 7 hours to trace 16 million
rays through this scene using an SGI Indigo2 with a 250 MHz pro-
cessor and 320MB of memory. The resulting LDI has over 1.1 mil-
lion depth pixels, 70,000 of which were placed in the near segment
with the rest in the far segment. When rendering this interactively
we attain frame rates between 4 and 10 frames per second on a
Pentium II PC running at 300MHz.

7 Discussion

In this paper, we have described two novel techniques for image
based rendering. The first technique renders Sprites with Depth
without visible gaps, and with a smoother rendering than traditional
forward mapping (splatting) techniques. It is based on the observa-

tion that a forward mapped displacement map does not have to be as
accurate as a forward mapped color image. If the displacement map
is smooth, the inaccuracies in the warped displacement map result
in only sub-pixel errors in the final color pixel sample positions.

Our second novel approach to image based rendering is a Layered
Depth Image representation. The LDI representation provides the
means to display the parallax induced by camera motion as well as
reveal disoccluded regions. The average depth complexity in our
LDI’s is much lower that one would achieve using multiple input
images (e.g., only 1.24 in the Chicken LDI). The LDI representation
takes advantage of McMillan’s ordering algorithm allowing pixels
to be splatted back to Front with anovercompositing operation.

Traditional graphics elements and planar sprites can be combined
with Sprites with Depth and LDIs in the same scene if a back-to-
front ordering is maintained. In this case they are simply compos-
ited onto one another. Without such an ordering a z-buffer approach
will still work at the extra cost of maintaining depth information per
frame.

Choosing a single camera view to organize the data has the advan-
tage of having sampled the geometry with a preference for views
very near the center of the LDI. This also has its disadvantages.
First, pixels undergo two resampling steps in their journey from in-
put image to output. This can potentially degrade image quality.
Secondly, if some surface is seen at a glancing angle in the LDIs
view the depth complexity for that LDI increases, while the spatial
sampling resolution over that surface degrades. The sampling and
aliasing issues involved in our layered depth image approach are
still not fully understood; a formal analysis of these issues would
be helpful.

With the introduction of our two new representations and render-
ing techniques, there now exists a wide range of different image
based rendering methods available. At one end of the spectrum
are traditional texture-mapped models. When the scene does not
have too much geometric detail, and when texture-mapping hard-
ware is available, this may be the method of choice. If the scene
can easily be partitioned into non-overlapping sprites (with depth),
then triangle-based texture-mapped rendering can be used without
requiring a z buffer [18, 4].

All of these representations, however, do not explicitly account for
certain variation of scene appearance with viewpoint, e.g., specu-
larities, transparency, etc. View-dependent texture maps [5], and
4D representations such as lightfields or Lumigraphs [16, 7], have
been designed to model such effects. These techniques can lead to
greater realism than static texture maps, sprites, or Layered Depth
Images, but usually require more effort (and time) to render.

In future work, we hope to explore representations and rendering al-
gorithms which combine several image based rendering techniques.
Automatic techniques for taking a 3D scene (either synthesized or
real) and re-representing it in the most appropriate fashion for im-
age based rendering would be very useful. These would allow us to
apply image based rendering to truly complex, visually rich scenes,
and thereby extend their range of applicability.
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