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ics Workshop on Rendering (Bristol, UK, May 18–20, 1992), pages 99–112, May
1992.
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dependent reproduction of pen-and-ink illustrations. In Proceedings of SIG-
GRAPH ’96 (New Orleans, LA, August 4–9, 1996), pages 461–468, August 1996.
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pages 307–314, July 1989.

14. Seth Teller, Kavita Bala, and Julie Dorsey. Conservative radiance interpolants for
ray tracing. In Proceedings of the Seventh Eurographics Workshop on Rendering
(Porto, Portugal, June 1996), June 1996.

15. Greg Ward. The RADIANCE lighting simulation and rendering system. In Pro-
ceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), pages 459–472,
July 1994.

16. Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solu-
tion for diffuse interreflection. In Proceedings of SIGGRAPH ’88 (Atlanta, Geor-
gia, August 1–5, 1988), volume 22, pages 85–92, August 1988.
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pages 469–476, August 1996.



edges reflected on curved surfaces. To handle soft shadows we could use an extension
of the shadow volume algorithm to area light sources [3].

We could use our method to compute ray-traced walkthroughs, exploiting frame coher-
ence for reusing samples between successive frames. Determining which samples could
be reused would depend on the movement of the viewer and the materials of the scene.
We believe that our method could be very effective for this task if the scene contained
many Lambertian surfaces.
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5 Conclusion

We have described a new method for progressively previewing ray-traced images. Our
initial implementation compares favorably with other previewers, yielding visually ac-
curate approximations to the final image early on. An interesting observation is that the
computation of the preview is almost resolution independent. The only part that depends
on the resolution is the processing of the procedural texture maps. Because discontinu-
ities in the image are explicitly represented as constrained edges in the triangulation,
magnifying the image does not result in much blurring, similarly to the magnification
algorithm described by Salisbury et al. [12].

The most important limitation of our approach is that it is currently capable of handling
polygonal scenes only. To extend our previewer to handle curved objects, we could either
tessellate those objects and use the same BSP-tree-based shadow volume algorithm, or
use a different algorithm, such as the one used by Winkenbach and Salesin [17] since it
does not rely on BSP-trees.

Another possible extension would be to include more types of discontinuity edges in
out algorithm. For instance, we could compute soft shadow edges, refracted edges, and
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3 Computation of constrained edges
Our previewer requires the computation of the visiblegeometric edges, the visible shadow
edges, and the visible reflections of these edges in order to insert their image-plane pro-
jections into the constrained triangulation.Our current implementation is limited to poly-
hedral scenes illuminated with point light sources, and it repeatedly uses the BSP-tree-
based shadow volume algorithm (SVA) proposed by Chin and Feiner [2] to compute all
of these edges.

To determine which geometric edges are visible in the image, we use the SVA to con-
struct a shadow volume defined by the eye and all of the scene polygons that are con-
tained in the view frustum. Any scene edge, or part thereof, that is not contained in this
shadow volume is a visible edge.

Next, we process the light sources in the scene. For each light source, we construct a
shadow volume and use it to find all of the shadow edges in object space. Each shadow
edge is tested against the eye’s shadow volume to determine whether or not it is visible.

Finally, we process the mirrors in the scene. For each visible mirror, we compute the re-
flected location of the eye with respect to the mirror’s plane. The resulting virtual view-
point is used to construct yet another shadow volume. This time the “shadowing” poly-
gons must be contained in the view frustum defined by the eye and the mirror polygon.
Each geometric or shadow edge visible from the virtual viewpoint is first projected onto
the mirror, and then tested against the eye’s shadow volume to determine whether or not
it is visible in the image. Note that we only account for one level of reflection. Recursive
reflections could be handled in a similar way, but would result in an exponential growth
in the computation.

4 Results
This section demonstrates the performance of our previewer on a sample office scene.
The experiment was conducted on an Indigo2 Maximum Impact with a 200 MHz R4400
processor and 128 megabytes of RAM.

Figure 3 shows three columns of images of the test scene that were displayed by three
different previewers at four different points in time. The images in the left column were
generated using RADIANCE’s native previewer Rview, which progressively increases
the resolution of the image. The images in the middle column were generated by a tech-
nique similar to the one suggested by Painter and Sloan [10]: adaptively computed im-
age samples are inserted into a plain Delaunay triangulation, which is displayed using
hardware Gouraud shading. The images in the right column were computed using our
previewer. All three previewers are using RADIANCE’s ray-tracing engine with high ac-
curacy requirements for the indirect component.

For this scene, it takes our previewer one second to compute the discontinuityedges and
to construct a constrained Delaunay triangulationcontaining them. After sixteen seconds
of computation our previewer already displays a perfectly usable approximation to the
final image, while the other two previewers generate clearly inferior results (blocky and
blurry, respectively) for the first two minutes of computation. As time goes by, the dif-
ference between the three previews gradually diminishes; however, our preview remains
superior in quality. These results are illustrated quantitatively in Figure 4, which shows
a plot of the

���
-norm differences between images generated by Rview and by our pre-

viewer and the completely ray-traced image.



1. Compute (in object space) the set
�

, which is the union of all visible geometric
edges, all visible shadow edges, and all visible mirror reflections of geometric and
shadow edges. (This step is described in more detail in the next section.)

2. Construct a constrained Delaunay triangulationusing a sparse regular grid of points.
Insert into the triangulation the projections of the edges in

�
as constrained edges

(image (b)).
3. Render in hardware (without illumination) all surfaces that are texture mapped with

images, and save the result in the DetailMap (image (c)).
4. Sample the areas of the image containing procedurally textured surfaces. To deter-

mine which pixels must be sampled we render those surfaces with unique colors
(image (d)). At each such pixel, compute the color of the procedural texture and
store the result in the DetailMap (image (e)).

5. Produce the initial preview image by tracing rays through the vertices of the con-
strained triangulationand displaying the result with Gouraud shading (using the De-
tailMap for texture mapping, where necessary). See image (f).

6. Progressively refine the triangulation until the user stops the previewing, or until
the image has been completely sampled. Image (h) shows a preview generated after
further refinement of the triangulation. Note the BF-squares that have appeared in
the DetailMap (image (g)).

Our experience with the above algorithm has shown that sampling all the procedurally
textured surfaces ahead of time takes too long if those surfaces cover a large proportion
of the image plane. Therefore, we decided to perform this sampling only when and where
needed, while refining the triangulation.We sample the procedural texture on a particular
surface only when the sample density over its projection exceeds a certain threshold.
This improvement spreads the cost of sampling the procedural textures over the course
of the preview. Moreover, in this way we avoid sampling procedurally textured objects
that are not sufficiently illuminated.

Implementation

We chose the RADIANCE lighting simulation and rendering system [15] as a testbed for
out previewing algorithm. Our algorithm uses RADIANCE’s ray-tracing engine to evalu-
ate the image function at the sample points that are used to construct the triangulation of
the image plane. Thus, we have in effect implemented an alternative previewer for RA-
DIANCE. RADIANCE’s native previewer, Rview, was used for performing comparisons
with our method, as described in section 4.

Unlike ordinary ray tracers, RADIANCE employs a sophisticated algorithm for comput-
ing the indirect component of illumination resulting from diffuse inter-reflections. This
computation is expensive, so its results are cached at various locations in the scene for
reusal by subsequent nearby samples [16]. RADIANCE provides various parameters to
control the accuracy of its rendering, in general, and of the indirect component, in par-
ticular. Naturally, if the desired accuracy is high, even the first preview takes a long time
to compute. In order to provide the first preview quickly, our implementation starts by
casting rays with low accuracy requirements. Gradually, the accuracy is increased and
the image samples are recomputed until the target accuracy is reached. Further samples
are computed directly at the desired accuracy, since they can take advantage of RADI-
ANCE’s cache, which has been warmed up in the meantime.
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Fig. 2. Phases of the previewing algorithm.



this problem, we assign a weight to each edge in the triangulation and place the edges
in a heap data structure. The triangulation is repeatedly refined by inserting a vertex in
the middle of the “heaviest” edge in the heap. Our current implementation uses a simple
weight function geared towards providing good coverage of the entire image area, as
well as refining regions that exhibit substantial variations in color. Given an edge

��� ��� �����
in the triangulation, the weight � ��� � � � � �

is given by:

� �	� �
� ���
����

� ��� ����
 ��� 
�� ��� ����

color

where

–


� � � � � 
 �

is simply the Euclidean length of the edge (vertex coordinates are nor-
malized to lie in ��� �����

�
),

–


� ��� ����


color
� ����� ��� red� � � red� � � � ������ �	� green� � � green� � � � �!� ��� ��� blue� � � blue� � �

,
with the colors expressed as floating point values in ��� ����� .

As noted earlier in the paper, relying on adaptive refinement to reconstruct small details
of the image can require a very large number of samples in regions of the image that
exhibit high frequencies. When the number of samples becomes too large, the triangu-
lation becomes expensive to manage. In such regions piecewise-linear interpolation of
the image function is simply ineffective. Instead, we utilize hardware texture mapping
as explained below.

Most high-frequency regions in the image correspond to texture-mapped surfaces in the
scene. Such regions should not require a high density of image samples if the incident
illumination on those surfaces is relatively smooth and thus can be well approximated
by linear interpolation. Our approach is then to render the texture-mapped surfaces in a
pre-processing step, without applying illumination, and store the result. When an image
sample falls on a textured region in the image, we store the illumination incident at that
sample point without multiplying it by the corresponding texture-map reflectance value.
To display a triangle covering a textured region, the illumination values stored at the
vertices are linearly interpolated and the result is blended with the texture map value at
each pixel. The interpolation and the blending are performed entirely by the Gouraud-
shading and texture-mapping hardware.

To detect other (non texture-mapped) regions in the image that exhibit high frequencies,
we superimpose a regular grid over the image plane. When the density of samples in a
given square goes beyond a certain threshold we sample every pixel in the square and
stop refining this area (we refer to such sampled squares as brute-force squares or BF-
squares for short). Triangles that cover BF-squares are displayed using the BF-square
as a texture map.

To implement the two schemes just described we maintain a separate image that contains
both the texture mapped areas rendered without illumination and the BF-squares. This
image is referred to as the DetailMap.

Our algorithm is restated in detail below, using Figure 2 to illustrate its various compo-
nents:
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Fig. 1. Comparison between regular meshing and discontinuity meshing.



Another promising interpolation-based approach is described by Teller et al. [14]. This
approach lazily constructs radiance interpolants in ray space where the ray trees have
the same topology.

Discontinuity Meshing: Discontinuity meshing is the idea of explicitly representing
function discontinuities in a mesh used to construct an approximation to the function.
Heckbert [6] and Lischinski et al. [7, 8, 11] have used discontinuity meshing to drasti-
cally improve the accuracy of radiosity simulations. Salisbury et al. [12] used a discon-
tinuity mesh containing sharp edges in an image in order to maintain the sharpness of
these edges when the image is magnified.

2 Algorithm

The goal of our previewer is to generate an approximate image from a partial sparse set
of image samples that is as close as possible to the final, completely sampled, ray-traced
image. Furthermore, in order to provide a progressive preview, the previewer must up-
date the approximation quickly as more image samples are computed. As originally sug-
gested by Painter and Sloan [10], one possible approach is to triangulate the image plane
using a Delaunay triangulation of the computed image samples. Since each vertex in
the triangulation is associated with the color of an image sample, the triangulation de-
fines a piecewise-linear approximation to the image function. This approximation can
be rapidly displayed using hardware Gouraud shading. The approximation is be easily
updated by incrementally inserting new image samples into the triangulation [4, 9].

However, plain Delaunay triangulation does not conform to discontinuity edges in the
image; as a result, many triangles are crossed by image discontinuities. Since linear in-
terpolation is incapable of accurately approximating a discontinuous function, the cor-
responding sharp features appear blurred in the image. Adaptive refinement is able to
reduce these artifacts at the cost of concentrating many samples in the vicinity of im-
age discontinuities, but cannot eliminate them completely. Our approach, instead, avoids
many of these artifacts while using a much smaller number of image samples. We di-
rectly compute various edges in the scene that correspond to discontinuity edges in the
image plane, and represent these discontinuities explicitly as constraint edges in the tri-
angulation. Clearly, the time spent computing discontinuity edges should be justified by
their visual impact. Visible geometric edges, visible shadow edges, and visible reflec-
tions of geometric and shadow edges were chosen in our implementation: these edges
can be computed with relative ease and correspond to the major discontinuitiesin a broad
class of images.

Figure 1 illustrates our approach. Image (a) shows a simple ray-traced scene featuring a
chair and its reflection in a mirror. Image (b) shows a preview reconstructed using a plain
triangulation of a sparse regular sample grid (shown in (c)). All of the sharp features in
the target image appear blurred in this approximation. Image (d), on the other hand, is
reconstructed using the constrained triangulation shown in (e). Image (f) shows the dis-
continuity edges that were used in the constrained triangulation. Although both images
were reconstructed using roughly the same number of samples, image (d) is clearly su-
perior to (b).

Our algorithm starts by producing an initial preview, based on a sparse regular grid of
samples and the pre-computed discontinuityedges. At this point, we must decide where
additional samples shouldbe placed in order to refine the approximation further. To solve



This paper is organized as follows. In the remainder of this section we give a brief sur-
vey of relevant previous work. In section 2 we provide a detailed description of our algo-
rithm. In section 3, we describe the computation of various discontinuityedges in the im-
age. In section 4, we present experiments illustrating the effectiveness of our approach.

1.1 Related Work

The particular problem of generating progressive previews has not received as much at-
tention in the ray-tracing literature as other aspects of ray tracing. However, several tech-
niques that have been developed to accelerate ray tracing and to allow certain interactive
manipulations of ray-traced scenes are applicable to generation of progressive previews.

Breadth-first ray tracing: Hanrahan [5] suggests ray-tracing scenes in breadth-first or-
der (instead of the usual depth-first order) to better exploit the coherence between rays at
the same level. This computation order allows displaying the scene without any reflec-
tions or refractions at first, and adding these effects progressively as increasingly deeper
levels of the ray-trees are computed.

Parameterized ray tracing: Séquin and Smyrl [13] introduce a technique for quickly
recomputing ray-traced images in response to changes in light source intensities or mate-
rial properties. When a scene is ray traced for the first time, each pixel is associated with
an expression parameterized by all the light intensities and the surface properties. Fol-
lowing a modification to one of these parameters, the image can be recomputed quickly
by re-evaluating the expression for every pixel. Note that this technique requires that
the geometry of the scene and the locations of the light sources remain constant. Brière
and Poulin [1] remove this restriction by detecting the exact portions of the image that
must be recomputed after a change in the scene. Their method stores a ray tree with each
pixel in addition to the parameterized expression that yields the pixel’s color. However,
the data-structures are view-dependent, and must be recomputed when the camera loca-
tion changes.

Adaptive progressive refinement: Some free ray-tracing-based rendering systems, such
as RADIANCE [15] and POV-Ray, offer simple previewing capabilities. These systems
display a preview of the ray-traced image composed of blocks of constant color. These
blocks are initially large, and they are progressively refined in an adaptive fashion as
more rays are traced into the scene. Although this approach very rapidly yields a rough
approximation to the image, a large number of rays must be traced before the finer details
of the picture become discernible.

Interpolation: Painter and Sloan [10] propose a more sophisticated variant of adaptive
progressive refinement. Their goal is to efficiently produce high quality anti-aliased im-
ages, while making the images available in a usable form early on. Their method stochas-
tically and adaptively samples the image plane, reconstructs the image function by inter-
polating the samples, and filters and resamples the interpolated function for display. To
interpolate the samples, Painter and Sloan suggest using Delaunay triangulation of the
image plane. Our method can be viewed as an extension to their work, where disconti-
nuity edges in the image are explicitly represented as constrained edges in the Delaunay
triangulation of the image plane. This representation allows visually accurate approxi-
mations to the image function to be constructed significantly faster than would be pos-
sible with adaptive refinement alone.
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Abstract: This paper presents a new method for progressively previewing a ray-
traced image while it is being computed. Our method constructs and incremen-
tally updates a constrained Delaunay triangulation of the image plane. The points
in the triangulation correspond to all of the image samples that have been com-
puted by the ray tracer, and the constraint edges correspond to various important
discontinuity edges in the image. The triangulation is displayed using hardware
Gouraud shading, yielding a piecewise-linear approximation to the final image.
Texture mapped surfaces, as well as other regions in the image that are not well
approximated by linear interpolation, are handled with the aid of hardware texture
mapping.

1 Introduction

Designing a high-fidelity photorealistic image of a 3D scene typically requires many it-
erations. In each iteration the designer might adjust the viewing parameters, change the
positions and the intensities of the light sources, change the positions and the material
properties of objects, and experiment with various renderer-dependent parameters. The
scene is then re-rendered to evaluate the visual effect of these modifications. This iter-
ative trial-and-error process is quite time-consuming, particularly when a high-quality
software renderer, such as a ray-tracer, is used. The goal of the work described in this pa-
per is to speed up the design process by allowing the designer to progressively preview
the resulting image as it is being rendered.

A simple previewer that quickly displays the scene using the available graphics hard-
ware suffices for verification of viewing parameters and object positions in the scene.
However, many complex illuminationphenomena are still beyond today’s graphics hard-
ware capabilities (e.g., anisotropic reflection, caustics, etc.). Thus, accurate previewers
for verification of various shading parameters cannot rely on hardware rendering alone.

In this paper, we present a new previewing technique for ray-traced images. Our method
utilizes hardware rendering along with software ray tracing to generate a progressive
preview of the final image based on the progressively increasing number of ray-traced
samples on the image plane. A Delaunay triangulationof the samples is used to construct
a piecewise-linear interpolant to the image, which is displayed using hardware Gouraud
shading. The key idea in our approach is to improve the accuracy of the interpolant by
constraining the triangulation to contain certain discontinuity edges present in the im-
age. Texture mapped surfaces, as well as other regions in the image that exhibit high
frequencies are not well approximated by linear interpolation, and are handled instead
by utilizing hardware texture mapping.


