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edges reflected on curved surfaces. To handle soft shadows we could use an extension
of the shadow volume a gorithm to area light sources [3].

We could use our method to compute ray-traced wal kthroughs, expl oiting frame coher-
ence for reusing samples between successive frames. Determining which samples could
be reused would depend on the movement of the viewer and the materias of the scene.
We believe that our method could be very effective for this task if the scene contained
many Lambertian surfaces.

6 Acknowledgements

Thiswork was supported in part by an Alfred P. Sloan Research Fellowship (BR-3495),
an NSF Presidential Faculty Fellow award (CCR-9553199) and Postdoctoral Research
Associates Award (CDA-9404959), an ONR Young Investigator award (NO0014-95-1-
0728) and Augementation award (N00014-90-J-P00002), and anindustrid gift from Mi-
Crosoft.

References

1. Normand Briereand Pierre Poulin. Hierarchica view-dependent structuresfor in-
teractive scene manipulation. In Proceedings of SGGRAPH 96 (New Orleans,
LA, August 4-9, 1996), pages 83-90, August 1996.

2. Norman Chin and Steven Feiner. Near real-time shadow generation using bsp
trees. In Proceedings of SGGRAPH ' 89 (Boston, Massachusetts, July 31-August
4,1989), volume 23, pages 99-106, July 1989.

3. Norman Chinand Steven Feiner. Fast object-precision shadow generation for area
light sources using bsp trees. In Proceedings of 1992 Symposiumon Interactive 3D
Graphics (Cambridge, Massachusetts, March 29-April 1, 1992), March 1992.

4. Leonidas Guibas and Jorge Stolfi. Primitivesfor the manipulation of general sub-
divisionsand the computation of Voronoi diagrams. ACM Transactionson Graph-
ics, 4(2):74-123, April 1985.

5. Pat Hanrahan. Using caching and breadth-first search to speed up ray tracing. In
Proceedings of Graphics Interface’ 86 (Vancouver, British Columbia, May 26-30,
1986), pages 5661, May 1986.

6. Paul S.Heckbert. Discontinuity meshing for radiosity. InProceedings of the Third
Eurographics Workshop on Rendering (Bristol, UK, May 18-20, 1992), pages
203-216, May 1992.

7. Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. Discontinuity mesh-
ing for accurate radiosity. |EEE Computer Graphics and Applications, 12(6):25—
39, November 1992.

8. Dani Lischinski, Filippo Tampieri, and Donad P. Greenberg. Combining hier-
archical radiosity and discontinuity meshing. In Proceedings of SSGGRAPH 93
(Anaheim, California, August 1-6, 1993), pages 199-208, August 1993.

9. Dani Lischinski. Incremental Delaunay triangulation. In Graphics Gems 1V, Paul
S. Heckbert, editor, Academic Press, 1994.

10. James Painter and Kenneth Sloan. Antialiased ray tracing by adaptive progressive
refinement. In Proceedings of SGGRAPH ' 89 (Boston, Massachusetts, July 31—
August 4, 1989), volume 23, pages 281-288. ACM, July 1989.



L1(preview - reference)

45

L1 norm conpari son

T T T T
Rvi ew <—
di scontinuity meshing -+-

— ]
T R . R .
| | | |
16 60 120 180 240

Time in sec.

Fig. 4. Previewerror in L; norm.

5 Conclusion

We have described a new method for progressively previewing ray-traced images. Our
initial implementation compares favorably with other previewers, yielding visually ac-
curate approximationsto the final image early on. Aninteresting observation isthat the
computation of the preview isalmost resol utionindependent. The only part that depends
on the resolution is the processing of the procedural texture maps. Because discontinu-
ities in the image are explicitly represented as constrained edges in the triangul ation,
magnifying the image does not result in much blurring, similarly to the magnification
algorithm described by Sdlisbury et al. [12].

The most important limitation of our approach isthat it is currently capable of handling
polygonal scenes only. To extend our previewer to handlecurved objects, we could either
tessellate those obj ects and use the same BSP-tree-based shadow volume algorithm, or
use a different algorithm, such as the one used by Winkenbach and Salesin [17] since it
does not rely on BSP-trees.

Another possible extension would be to include more types of discontinuity edges in
out a gorithm. For instance, we could compute soft shadow edges, refracted edges, and
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3 Computation of constrained edges

Our previewer requiresthe computati on of thevisiblegeometric edges, thevisibleshadow
edges, and the visible reflections of these edgesin order to insert their image-plane pro-
jectionsintothe constrained triangul ation. Our current implementationislimitedto poly-
hedral scenes illuminated with point light sources, and it repeatedly uses the BSP-tree-
based shadow volume algorithm (SVA) proposed by Chin and Feiner [2] to compute all
of these edges.

To determine which geometric edges are visible in the image, we use the SVA to con-
struct a shadow volume defined by the eye and al of the scene polygonsthat are con-
tained in the view frustum. Any scene edge, or part thereof, that is not contained in this
shadow volumeis avisible edge.

Next, we process the light sources in the scene. For each light source, we construct a
shadow volume and useit to find al of the shadow edgesin object space. Each shadow
edgeistested against the eye's shadow volume to determine whether or not itisvisible.

Finally, we process the mirrorsin the scene. For each visible mirror, we computethere-
flected | ocation of the eye with respect to the mirror’splane. The resulting virtual view-
point isused to construct yet another shadow volume. Thistime the “shadowing” poly-
gons must be contained in the view frustum defined by the eye and the mirror polygon.
Each geometric or shadow edge visiblefrom thevirtua viewpoint isfirst projected onto
the mirror, and then tested against the eye's shadow volume to determine whether or not
itisvisibleintheimage. Notethat we only account for onelevel of reflection. Recursive
reflections could be handled in a similar way, but would result in an exponentia growth
in the computation.

4 Reaults

This section demonstrates the performance of our previewer on a sample office scene.
The experiment was conducted on an Indigo2 M aximum Impact with a200 MHz R4400
processor and 128 megabytes of RAM.

Figure 3 shows three columns of images of the test scene that were displayed by three
different previewersat four different pointsin time. The imagesin the left column were
generated using RADIANCE's native previewer Rview, which progressively increases
the resolution of theimage. The imagesin the middle column were generated by atech-
nigque similar to the one suggested by Painter and Sloan [10]: adaptively computed im-
age samples are inserted into a plain Delaunay triangulation, which is displayed using
hardware Gouraud shading. The images in the right column were computed using our
previewer. All three previewers are using RADIANCE' sray-tracing engine with high ac-
curacy requirements for the indirect component.

For thisscene, it takes our previewer one second to compute the discontinuity edges and
to construct aconstrained Del aunay triangul ation contai ningthem. After sixteen seconds
of computation our previewer aready displays a perfectly usable approximation to the
final image, whilethe other two previewers generate clearly inferior results (blocky and
blurry, respectively) for thefirst two minutes of computation. As time goes by, the dif-
ference between the three previews gradually diminishes; however, our preview remains
superior in quality. These results areillustrated quantitatively in Figure 4, which shows
aplot of the L-norm differences between images generated by Rview and by our pre-
viewer and the completely ray-traced image.



1. Compute (in object space) the set F, which is the union of all visible geometric
edges, al visible shadow edges, and all visible mirror reflections of geometric and
shadow edges. (This step is described in more detail in the next section.)

2. Construct a constrained Delaunay triangul ationusing asparse regular grid of points.
Insert into the triangul ation the projections of the edgesin £ as constrained edges
(image (b)).

3. Render in hardware (without illumination) al surfacesthat are texture mapped with
images, and save the result in the Detail Map (image (C)).

4. Sample the areas of the image containing procedurally textured surfaces. To deter-
mine which pixels must be sampled we render those surfaces with unique colors
(image (d)). At each such pixel, compute the color of the procedural texture and
store the result in the Detail Map (image (€)).

5. Produce the initia preview image by tracing rays through the vertices of the con-
strained triangul ationand displaying the result with Gouraud shading (using the De-
tailMap for texture mapping, where necessary). See image (f).

6. Progressively refine the triangulation until the user stops the previewing, or until
the image has been completely sampled. Image (h) shows apreview generated after
further refinement of the triangulation. Note the BF-squares that have appeared in
the Detail Map (image (g)).

Our experience with the above algorithm has shown that sampling all the procedurally
textured surfaces ahead of time takes too long if those surfaces cover alarge proportion
of theimage plane. Therefore, we deci ded to perform thissampling only when and where
needed, whilerefining thetriangul ation. We sampl ethe procedural textureon aparticul ar
surface only when the sample density over its projection exceeds a certain threshold.
Thisimprovement spreads the cost of sampling the procedural textures over the course
of the preview. Moreover, in thisway we avoid sampling procedurally textured objects
that are not sufficiently illuminated.

I mplementation

We chose the RADIANCE lighting simulation and rendering system [15] as atestbed for
out previewing a gorithm. Our a gorithm uses RADIANCE' sray-tracing engineto eval u-
ate theimage function at the sample pointsthat are used to construct the triangul ation of
the image plane. Thus, we have in effect implemented an alternative previewer for RA-
DIANCE. RADIANCE's native previewer, Rview, was used for performing comparisons
with our method, as described in section 4.

Unlikeordinary ray tracers, RADIANCE employs a sophisticated algorithm for comput-
ing theindirect component of illumination resulting from diffuseinter-reflections. This
computation is expensive, so itsresults are cached at various locations in the scene for
reusal by subsequent nearby samples [16]. RADIANCE provides various parameters to
control the accuracy of itsrendering, in general, and of the indirect component, in par-
ticular. Naturaly, if the desired accuracy ishigh, even thefirst preview takesalong time
to compute. In order to provide thefirst preview quickly, our implementation starts by
casting rays with low accuracy requirements. Gradually, the accuracy isincreased and
theimage samples are recomputed until the target accuracy isreached. Further samples
are computed directly at the desired accuracy, since they can take advantage of RADI-
ANCE's cache, which has been warmed up in the meantime.
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this problem, we assign a weight to each edge in the triangulation and place the edges
in a heap data structure. The triangulation is repeatedly refined by inserting a vertex in
themiddleof the*heaviest” edgein the heap. Our current implementation usesasimple
weight function geared towards providing good coverage of the entire image area, as
well asrefining regionsthat exhibit substantial variationsin color. Givenanedge (v, v2)
inthe triangul ation, the weight 17/ (vy, v2) isgiven by:

W(Ulav2) = ||Ul - U2||2 + ||U1 - UQHooIor

where

— |lv1 — wa||2 issimply the Euclidean length of the edge (vertex coordinates are nor-
malized toliein [0, 1]%),

— [Jv1 = vallcolor = 0.3(v1 — w52 4 0.59(a¥" — pIFM2 L 0. 11(whlve — yhluey2,
with the colors expressed as floating point valuesin [0, 1].

Asnoted earlier in the paper, relying on adaptive refinement to reconstruct small details
of the image can require a very large number of samples in regions of the image that
exhibit high frequencies. When the number of samples becomes too large, the triangu-
lation becomes expensive to manage. |n such regions piecewise-linear interpolation of
the image function is smply ineffective. Instead, we utilize hardware texture mapping
as explained below.

Most high-frequency regionsin theimage correspond to texture-mapped surfacesinthe
scene. Such regions should not require a high density of image samples if the incident
illumination on those surfaces is relatively smooth and thus can be well approximated
by linear interpolation. Our approach isthen to render the texture-mapped surfacesina
pre-processing step, without applying illumination, and store the result. When animage
sample fallson atextured region in theimage, we store theilluminationincident at that
sampl e point without multiplyingit by the corresponding texture-map reflectance va ue.
To display atriangle covering a textured region, the illumination values stored at the
vertices are linearly interpolated and the result is blended with the texture map value at
each pixel. The interpolation and the blending are performed entirely by the Gouraud-
shading and texture-mapping hardware.

To detect other (non texture-mapped) regionsin theimage that exhibit high frequencies,
we superimpose aregular grid over the image plane. When the density of samplesin a
given square goes beyond a certain threshold we sample every pixel in the square and
stop refining this area (we refer to such sampled squares as brute-force squares or BF-
squares for short). Triangles that cover BF-squares are displayed using the BF-square
as atexture map.

Toimplement thetwo schemesjust described we maintain aseparate imagethat contains
both the texture mapped areas rendered without illumination and the BF-squares. This
image s referred to as the DetailMap.

Our agorithmisrestated in detail below, using Figure 2 to illustrateits various compo-
nents:
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Another promising interpol ation-based approach is described by Teller et al. [14]. This
approach lazily constructs radiance interpolantsin ray space where the ray trees have
the same topol ogy.

Discontinuity Meshing: Discontinuity meshing is the idea of explicitly representing
function discontinuitiesin a mesh used to construct an approximation to the function.
Heckbert [6] and Lischinski et al. [7, 8, 11] have used discontinuity meshing to drasti-
cally improvethe accuracy of radiosity ssimulations. Sdlisbury et al. [12] used adiscon-
tinuity mesh containing sharp edges in an image in order to maintain the sharpness of
these edges when the image is magnified.

2 Algorithm

The goal of our previewer isto generate an approximate image from a partial sparse set
of image samplesthat isas close as possibleto thefinal, compl etely sampled, ray-traced
image. Furthermore, in order to provide a progressive preview, the previewer must up-
date the approximation quickly as moreimage samples are computed. Asoriginaly sug-
gested by Painter and Sloan [10], one possibleapproach isto triangulatetheimage plane
using a Delaunay triangulation of the computed image samples. Since each vertex in
the triangulation is associated with the color of an image sample, the triangulation de-
fines a piecewise-linear approximation to the image function. This approximation can
be rapidly displayed using hardware Gouraud shading. The approximationis be easily
updated by incrementally inserting new image samples into the triangulation [4, 9].

However, plain Delaunay triangulation does not conform to discontinuity edges in the
image; as aresult, many triangles are crossed by image discontinuities. Since linear in-
terpolation is incapable of accurately approximating a discontinuous function, the cor-
responding sharp features appear blurred in the image. Adaptive refinement is ableto
reduce these artifacts at the cost of concentrating many samples in the vicinity of im-
age discontinuities, but cannot eliminatethem completely. Our approach, instead, avoids
many of these artifacts while using a much smaller number of image samples. We di-
rectly compute various edges in the scene that correspond to discontinuity edges in the
image plane, and represent these discontinuitiesexplicitly as constraint edgesin the tri-
angulation. Clearly, the time spent computing discontinuity edges should be justified by
their visual impact. Visible geometric edges, visible shadow edges, and visible reflec-
tions of geometric and shadow edges were chosen in our implementation: these edges
can be computed withrel ative ease and correspond to the maj or discontinuitiesin abroad
class of images.

Figure 1 illustrates our approach. Image (a) showsa simpleray-traced scene featuring a
chair and itsreflectioninamirror. Image (b) showsapreview reconstructed using aplain
triangulation of a sparse regular sample grid (shown in (c)). All of the sharp featuresin
the target image appear blurred in this approximation. Image (d), on the other hand, is
reconstructed using the constrai ned triangulation shown in (€). Image (f) showsthedis-
continuity edges that were used in the constrained triangulation. Although both images
were reconstructed using roughly the same number of samples, image (d) is clearly su-
perior to (b).

Our agorithm starts by producing an initia preview, based on a sparse regular grid of
samples and the pre-computed discontinuity edges. At thispoint, we must decide where
additional samples shouldbeplaced in order torefine theapproximation further. To solve



This paper is organized as follows. In the remainder of this section we give a brief sur-
vey of relevant previouswork. In section 2 weprovideadetailed description of our algo-
rithm. Insection 3, we describethe computation of variousdiscontinuity edgesintheim-
age. In section 4, we present experiments illustrating the effectiveness of our approach.

1.1 Related Work

The particular problem of generating progressive previews has not received as much at-
tentionintheray-tracing literature as other aspects of ray tracing. However, severa tech-
niquesthat have been devel oped to accel erate ray tracing and to allow certain interactive
mani pul ations of ray-traced scenes are applicableto generation of progressive previews.

Breadth-first ray tracing: Hanrahan [5] suggestsray-tracing scenes in breadth-first or-
der (instead of theusual depth-first order) to better exploit the coherence between raysat
the same level. This computation order allows displaying the scene without any reflec-
tionsor refractionsat first, and adding these effects progressively asincreasingly deeper
levels of the ray-trees are computed.

Parameterized ray tracing: Séquin and Smyrl [13] introduce a technique for quickly
recomputing ray-traced imagesin responseto changesinlight sourceintensitiesor mate-
rial properties. When asceneisray traced for thefirst time, each pixel isassociated with
an expression parameterized by all the light intensities and the surface properties. Fol-
lowing amodification to one of these parameters, the image can be recomputed quickly
by re-evaluating the expression for every pixel. Note that this technique requires that
the geometry of the scene and the locations of thelight sources remain constant. Briere
and Poulin [1] remove thisrestriction by detecting the exact portions of the image that
must be recomputed after achange in the scene. Their method storesaray treewith each
pixel in addition to the parameterized expression that yieldsthe pixel’scolor. However,
the data-structures are view-dependent, and must be recomputed when the camera loca-
tion changes.

Adaptiveprogressiverefinement: Somefreeray-tracing-based rendering systems, such
as RADIANCE [15] and POV-Ray, offer smple previewing capabilities. These systems
display apreview of the ray-traced image composed of blocks of constant color. These
blocks are initidly large, and they are progressively refined in an adaptive fashion as
more rays are traced into the scene. Although thisapproach very rapidly yieldsarough
approximationto theimage, alarge number of raysmust betraced beforethefiner details
of the picture become discernible.

I nter polation: Painter and Sloan [10] propose a more sophisticated variant of adaptive
progressive refinement. Their goal isto efficiently produce high quality anti-aliased im-
ages, whilemaking theimages availableinausableform early on. Their method stochas-
tically and adaptively samples theimage plane, reconstructstheimagefunction by inter-
polating the samples, and filters and resamples the interpol ated function for display. To
interpolate the samples, Painter and Sloan suggest using Delaunay triangulation of the
image plane. Our method can be viewed as an extension to their work, where disconti-
nuity edgesin theimage are explicitly represented as constrained edges in the Delaunay
triangulation of the image plane. This representation allows visually accurate approxi-
mations to the image function to be constructed significantly faster than would be pos-
sible with adaptive refinement a one.
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Abstract: This paper presentsa new method for progressively previewing aray-
traced image while it is being computed. Our method constructs and incremen-
tally updatesa constrained Delaunay triangulation of the image plane. The points
in the triangulation correspond to all of the image samples that have been com-
puted by the ray tracer, and the constraint edges correspond to various important
discontinuity edgesin the image. The triangulation is displayed using hardware
Gouraud shading, yielding a piecewise-linear approximation to the final image.
Texture mapped surfaces, as well as other regionsin the image that are not well
approximated by linear interpolation, are handled with the aid of hardware texture

mapping.
1 Introduction

Designing a high-fidelity photorealisticimage of a 3D scene typically requires many it-
erations. In each iteration the designer might adjust the viewing parameters, change the
positionsand the intensities of the light sources, change the positions and the material
properties of objects, and experiment with various renderer-dependent parameters. The
scene isthen re-rendered to evaluate the visual effect of these modifications. Thisiter-
ative trial-and-error process is quite time-consuming, particularly when a high-quality
softwarerenderer, such asaray-tracer, isused. The goal of thework described in thispa-
per isto speed up the design process by allowing the designer to progressively preview
the resulting image as it is being rendered.

A simple previewer that quickly displays the scene using the available graphics hard-
ware suffices for verification of viewing parameters and object positionsin the scene.
However, many complex illuminationphenomenaarestill beyond today’ sgraphicshard-
ware capabilities (e.g., anisotropic reflection, caustics, etc.). Thus, accurate previewers
for verification of various shading parameters cannot rely on hardware rendering al one.

In thispaper, we present a new previewing techniquefor ray-traced images. Our method
utilizes hardware rendering along with software ray tracing to generate a progressive
preview of the final image based on the progressively increasing number of ray-traced
samples ontheimage plane. A Delaunay triangul ation of the samplesisused to construct
apiecewise-linear interpolant to theimage, which isdisplayed using hardware Gouraud
shading. The key ideain our approach isto improve the accuracy of the interpolant by
constraining the triangulation to contain certain discontinuity edges present in the im-
age. Texture mapped surfaces, as well as other regions in the image that exhibit high
frequencies are not well approximated by linear interpolation, and are handled instead
by utilizing hardware texture mapping.



