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Abstract

We present an extremely simple yet robust multi-view stereo
algorithm and analyze its properties. The algorithm first
computes individual depth maps using a window-based vot-
ing approach that returns only good matches. The depth
maps are then merged into a single mesh using a straight-
forward volumetric approach. We show results for several
datasets, showing accuracy comparable to the best of the
current state of the art techniques and rivaling more com-
plex algorithms.

1. Introduction
In the last decade, multi-view stereo algorithms have

evolved significantly in both their sophistication and quality
of results. While the early algorithms were simple exten-
sions of window-based binocular stereo matchers, the best
currently available methods employ powerful nonlinear en-
ergy minimization methods (e.g., graph cuts [8, 16, 18, 15],
level set evolution [3, 13], mesh evolution [7]) often incor-
porating careful treatment of visibility conditions and sil-
houette constraints.

In this paper, we take a big step backward and argue that
some simple modifications of the original window-based al-
gorithms can produce results with accuracy on par with the
best current methods. Our algorithm consists of two steps:
In the first step we reconstruct a depth map for each in-
put view, using a robust version of window-matching with
a small number of neighboring views. The second step is
to merge the resulting depth maps using a standard volume
merging method [2].

The key new idea underlying this work is to attempt
to reconstruct only the portion of the scene that can be
matched with high confidence in each input view. Conse-
quently, each individual depth map may contain numerous
holes, e.g., near silhouettes, oblique surfaces, occlusions,
highlights, low-textured regions and so forth. Because most
of these effects (with the exception of low-textured regions)
occur in different image regions in different views, the
merging step fills in most of these missing areas, and im-
proves accuracy in regions that are reconstructed multiple

Figure 1. Reconstruction (right) from the templeFull dataset and
an input image (left) for comparison. Despite the simplicity of
the proposed algorithm, it is able to estimate the object’s shape to
sub-millimeter accuracy.

times. While this is a simple idea, it is a departure from
most modern binocular and multi-view stereo algorithms,
which seek models that are as complete as possible, often
using regularization to help fill in uncertain regions. While
we do not optimize or enforce completeness, our algorithm
nonetheless reconstructs dense shape models with few holes
and gaps, given a sufficient number of input views.

The benefits of our algorithm are as follows:

• The algorithm outputs dense and very accurate shape
estimates, on par with the current best performing
methods (as reported in a new evaluation of multi-view
stereo methods [14]).

• Confidence is provided for each reconstructed point.

• The performance is easy to understand, analyze, and
predict, due to the algorithm’s simplicity.

• It is unusually easy to implement.

Some disadvantages of our approach are

• Holes can occur in areas with insufficient texture.

• Each surface point must be seen in at least three views
to be reconstructed.



The technical tools used in this algorithm are not par-
ticularly new — indeed, they are directly inspired by prior
work, in particular [9, 7]. However, they have not been used
previously in this combination, and we argue that it is this
particular synthesis of existing ideas which is the key to its
success. A second contribution of this paper is an analysis
of why the algorithm performs as well as it does, and under
which conditions it fails.

The remainder of this paper is structured as follows: We
first give an overview of related work before we describe
our algorithm in detail (Section 2). We then describe the
datasets used for our reconstructions (Section 3) and show
results for a large number of parameter settings (Section 4)
before we conclude.

1.1. Related Work
While there is a large body of prior work on multi-view

stereo algorithms, the three papers that are most closely re-
lated are Narayanan et al.’s Virtualized Reality technique
[9], Pollefeys et al’s’ visual modeling system [11, 12], and
the multi-stereo approach of Hernández and Schmitt [6, 7].

Narayanan et al. [9] proposed the idea of creating dense
shape models by volumetric merging of depth maps. The
key difference between their work and ours is the method
used to reconstruct depth maps. Narayanan et al. used a
traditional multi-baseline stereo matcher [10] that seeks to
estimate a complete depth map. As the authors point out,
this method produces noisy results with many outliers that
lead to problems with merging and errors in the resulting
shapes. In contrast, we devise a specialized matcher that
computes depth only at high confidence points, simplifying
the merging step and leading to much higher quality recon-
structions.

Pollefeys et al. [11, 12] use a three step technique. They
first perform a pair-wise disparity estimation for directly ad-
jacent views using a modification of Cox et al.’s dynamic
programming scheme [1] which yields dense but incom-
plete depth maps by enforcing various constraints on the
solution. An optimal joint estimate for each view is then
computed by adding corresponding disparity estimates from
gradually farther away views on a per-pixel basis as long
as they are not classified as outliers relative to the current
depth estimate for the pixel under consideration. The fused
depth maps are then combined using a volumetric merging
approach. Compared to Pollefeys et al., our system recon-
structs depth maps in a single pass with a much simpler
approach yielding potentially less complete depth maps. In
addition, we only use the quality of a match between a fixed
number of neighboring views as the acceptance criterion in-
stead of performing an outlier classification based on recon-
structed depth values.

The first step of our approach (estimating depth maps) is
inspired by the work of Hernández and Schmitt [7], who

also use robust window-based matching to compute reli-
able depth estimates. While the high level ideas are sim-
ilar, many of the details are quite different from what we
do. First, we are using a simpler and more conservative cor-
relation criterion. Hernández [6] computes the local max-
ima of the correlation curves between the reference view
and the nearby images. These are used to vote for a depth
range within which the global maximum is determined from
all views that pass a threshold-based selection criterion. In
contrast, we require that at least two views pass a threshold-
based selection criterion at each candidate depth value. The
other important way in which our method differs from [7] is
the method of combining depth maps into a full 3D model.
They use a combination of volume filtering, mesh evolution
based on a snakes formulation, and additional silhouette
terms to recover a complete model. The resulting approach,
while it generates beautiful results, has very different prop-
erties and assumptions than our approach. Since it is based
on local refinement via snakes, [7] requires a close initial
estimate of the shape being estimated, and the topology of
the object must be the same as that of its visual hull. They
also require that silhouettes are extracted. In contrast our
approach does not require an initial surface estimate, and
does not place any restriction on the topology of the object.
While we do not require silhouettes, our algorithm can take
advantage of them, when available. An advantage of [7]
is that it produces complete surface models and can fill in
holes using regularization and silhouette terms. While our
approach can leave holes in low-contrast regions, the lack of
a smoothness term has the advantage of avoiding smoothing
over sharp features. A final difference is that our approach
is very simple to implement and reproduce, in comparison
to [7].

2. Algorithm Description
Our algorithm consists of two steps: 1) reconstructing a

depth map for each input view, and 2) merging the results
into a mesh model. In the first step, depth maps are com-
puted using a very simple but robust version of window-
matching with a small number of neighboring views. We
also estimate a confidence value for each pixel and only
high confidence points are included in the merging step.

In the second step, we merge the resulting set of
confidence-weighted depth maps using the volumetric
method by Curless and Levoy [2]. The result of the second
step is a triangular mesh with per-vertex confidence values.

The following sections describe both steps of the algo-
rithm in more detail.

2.1. Step 1: Depth Map Generation
We assume as input a set of views V = {V0, . . . , Vn−1}

of an object along with camera parameters and an ap-



proximate bounding box or volume containing the ob-
ject. For each view R ∈ V (hereforth called a refer-
ence view) we first select a set of k neighboring views
C = {C0, . . . , Ck−1} ⊂ V−R against which we correlate
R using robust window-matching.

For each pixel p in R, we march along its backprojected
ray inside the bounding volume of the object. For each
depth value d we reproject the resulting 3D location into all
views in C. We compute the normalized cross-correlation
NCC(R,Cj , d) between an m × m window centered on
p and the corresponding windows centered on the projec-
tions in each of the views Cj with subpixel accuracy. (Ap-
pendix A defines the normalized cross-correlation NCC

formally.)
If two views show the same surface area of a textured

Lambertian object, we expect to see a high NCC score for
some value of d. If, in contrast, there is an occlusion,
specular highlight, or other compounding factor, the NCC
value will typically be low for all depths. We wish to rely
on a depth value only if the window in the reference view
correlates well with the corresponding window in multiple
views. We therefore define that a depth value d is valid if
NCC(R,Cj , d) is larger than some threshold thresh for at
least two views in C. The set of all views with NCC larger
than thresh for a given depth d is denoted as Cv(d).

For a valid depth d we compute a correlation value
corr(d) as the mean of the NCC values of all views in
Cv(d):

corr(d) =

∑

Cj∈Cv(d) NCC(R,Cj , d)

‖Cv(d)‖
.

‖Cv(d)‖ evaluates to the number of elements in Cv(d). For
each pixel p in R, the depth is chosen to be the value of d

that maximizes corr(d), or none if no valid d is found.
Note that this approach is extremely simple, and very

similar to standard SSSD-style multi-baseline window
matching methods [10], with the following modifications:
1) the robust version of NCC effectively minimizes the im-
pact of occlusions and specularities, and 2) we compute
depth only at high confidence points in the image.

We also compute a confidence value conf(d) for each re-
covered depth value as follows:

conf(d) =

∑

Cj∈Cv(d)(NCC(R,Cj , d) − thresh)

‖C‖(1 − thresh)
.

This confidence function increases with the number of valid
views and is used to inform the merging step, described in
the next subsection.

There are a number of free parameters in the above de-
scription, i.e., the number k and selection of neighboring
views, the sampling rate in depth, the window size m, and
the threshold thresh. We discuss our choice of these param-
eters in Section 4.

dataset # views geometry
templeFull 317 hemisphere
templeRing 47 ring
templeSparseRing 16 ring
dinoFull 363 hemisphere
dinoRing 48 ring
dinoSparseRing 16 ring
nskulla-half 24 8-ring + 16-ring
nskulla-small 24 8-ring + 16-ring

Table 1. Specifications of the datasets. All temple and dino
datasets have a resolution of 640×480 pixels. The images of
the original nskulla datasets [4] are cropped to different sizes
within the dataset. We scaled them down to a resolution of ap-
proximately 1000×900 pixels (nskulla-half) and 400×360 pixels
(nskulla-small).

2.2. Step 2: Merging Depth Maps
Step 1 produces a set of incomplete depth maps with

confidence values. In Step 2, we merge them into a sin-
gle surface mesh representation using the freely available
implementation of the volumetric method of Curless and
Levoy [2, 17]. This approach was originally developed for
merging laser range scans. In a nutshell, it converts each
depth map into a weighted signed distance volume, takes
a sum of these volumes, and extracts a surface at the zero
level set. More details can be found in [2].

This merging approach has a number of nice properties
that make it particularly appropriate for our algorithm, in
particular robustness in the presence of outliers and rep-
resentation of directional uncertainty. The merging algo-
rithm starts by reconstructing a triangle mesh for each view
and downweighting points near depth discontinuities and
points seen at grazing angles. These meshes are then scan-
converted with per-vertex weights into a volume for merg-
ing. Outliers consisting of one or two samples are filtered
out automatically, because they cannot form triangles in the
first phase of the algorithm. Larger handfuls of outliers will
be reconstructed as small disconnected surfaces; these sur-
faces will have low weight, since all the points are near
depth discontinuities and are probably not substantiated by
other views. They can be eliminated in a post-processing
step by removing low confidence geometry or by extract-
ing the largest connected component. In addition, the ap-
proach has been shown to be least squares optimal under
certain conditions, particularly assuming uncertainty dis-
tributed along sensor lines of sight [2] which by construc-
tions applies to the depth maps from Step 1.

3. Description of Datasets
We now describe the datasets used in this paper – the

temple, dino, and nskulla datasets (see Table 1 for their
specifications). The temple object is a 159.6 mm tall plaster



reproduction of an ancient temple. It is quite diffuse and
contains lots of geometric structure and texture. The tem-
ple was illuminated by multiple light sources and captured
with a camera mounted on a calibrated spherical gantry. Im-
ages with cast shadows where the camera or the gantry were
in front of a light source were removed from the dataset.
templeFull is the full dataset with 317 images. templeRing
contains only 47 views on a ring around the object, tem-
pleSparseRing is a more sparse version of the templeRing
dataset with 16 views on a ring around the object. All im-
ages have a resolution of 640×480 pixels.

The dino object is a 87.1 mm tall, white, strongly diffuse
plaster dinosaur model. It was captured in the same way as
the temple and consists of three sets of images: dinoFull
(sampled along the hemisphere), dinoRing (sampled in a
ring around the object), and dinoSparseRing (sparsely sam-
pled in a ring around the object). A more detailed descrip-
tion of the dino and temple datasets can be found in [14].

The nskulla object is a plaster cast of a human skull. It
was lit by several light sources with diffusers to approxi-
mate diffuse lighting. The skull was rotated on a turntable
while cameras and lights remained fixed so that the light-
ing conditions are different for each image. Moving high-
lights are clearly visible on the object’s moderately spec-
ular surface. The nskulla dataset contains 16 images cap-
tured on a ring around the object plus an additional 8 images
captured on a sparser ring at higher elevation angles. The
datasets differ only in resolution and were downsampled
from their original resolution to approximately 1000×900
pixels (nskulla-half) and 400×360 pixels (nskulla-small).
A more detailed description of the nskulla dataset can be
found in [4].

4. Results
The description of the algorithm in Section 2 contains

several parameters. In this section, we briefly describe how
each parameter was chosen in our reconstructions and show
results for other parameter choices. We also discuss the in-
fluence of other factors such as the reflectance properties of
the object. Finally, we report some results of an evaluation
of the reconstructed models against ground truth.

4.1. Implementation Notes
We generally set the number of neighboring views k =

4. A larger k reduces occlusions but does not significantly
improve the results. Due to the arrangement of the camera
positions around a ring or distributed on some portion of a
hemisphere, we selected neighboring views based on angu-
lar distance between the optical axes. For a given reference
view, the k closest views were chosen as neighboring views
unless the angular distance between a view and the refer-
ence view or any other neighboring view was less than 4

degrees. We used a fixed sampling rate ∆d in depth to find
an initial depth estimate d′. The final depth d was computed
by re-running the algorithm with step size ∆d

10 in the interval
(d′−∆d, d′+∆d). We selected ∆d = 2.5 mm for the tem-
ple and dino dataset and ∆d = 0.2 for the nskulla datasets.
The default value for the NCC threshold is thresh = 0.6
except for the nskulla dataset, as discussed in Section 4.5.

4.2. Window Size
Figure 2 shows a comparison of rendered depth maps

reconstructed for the same reference view R with two dif-
ferent window sizes. The center row shows the correlation
value corr(d) and the bottom row displays the confidence
value conf(d).

Overall, the behavior is as normally expected: A larger
window size leads to smoother depth maps and the removal
of lower confidence values from the reconstruction (e.g.,
noise in the background, fine structures in the columns).
Note that most of the background noise in the 5×5 dataset
is not contained in the depth map generated by [17] due
to the inherent outlier filtering (see Section 2.2). It is also
assigned a much lower confidence value and can therefore
be easily removed. The examples show also that the algo-
rithm detects occlusions reliably for all window sizes with-
out compromising the correlation values — only the con-
fidence value is scaled according to the number of valid
views. This is visible in the confidence image as a dark
vertical stripe on the left side of the temple where some of
the input views are occluded. In our experiments, we found
a 5×5 window gave good results, and we used this size for
all of our reconstructions.

4.3. Density of Views
Our algorithm requires that each surface point (and the

window surrounding it) is seen in at least three views (a ref-
erence view and at least two neighboring views) and further-
more yields a high correlation value. The reconstructions
of the templeSparseRing dataset are therefore incomplete
even in low-occlusion areas (see Figures 3 and 7). Some
high-occlusion regions such as the temple roof are missing
almost completely. The results for the templeRing and the
templeFull dataset show however that adding more views
drastically improves the results yielding almost complete
surface coverage. The templeFull reconstruction contains
holes almost exclusively in areas that need to be observed
from below. Such views are not included in the dataset.

4.4. Surfaces without Texture
The dino plaster cast has a white, Lambertian surface

without obvious texture. Due to the lack of structure, stereo
reconstruction using window-matching is extremely diffi-
cult. Nevertheless, the algorithm reconstructs geometry for



Figure 2. Top to bottom: Reconstructed depth map (rendered as
triangle mesh generated by [17]), correlation values, and confi-
dence values for a view from the templeRing dataset. Left: Re-
construction with window size 5×5. Right: Reconstruction with
window size 9×9. The “glow” around the silhouettes of the temple
is discussed in Section 4.6.

a large portion of the surface. The input images were cap-
tured under fixed but not completely diffuse illumination so
that the surface shading is stationary. Regions in the vicinity
of shadow boundaries and geometric features are therefore
reconstructed. In addition, the algorithm reconstructs ge-
ometry in the neighborhood of dust specks on the plaster
surface.

Figure 3. Detail of the temple reconstructed from increasing num-
bers of input views. Left to right: templeSparseRing (16 views),
templeRing (47 views), templeFull (317 views). The full version
of the datasets is shown in Figure 7.

Figure 4. Example view from the nskulla-half dataset and the re-
constructed mesh. Note the specular reflection on the skull surface
and the reconstructed geometry in the eye socket.

4.5. Specular vs. Lambertian Surfaces
A textured, Lambertian surface is an optimal case for

NCC-based window matching. The surface of the skull cast
in the nskulla datasets is however quite specular and the
lighting conditions are changing per-view. Figure 4 shows
that our algorithm can nevertheless reconstruct a triangular
mesh of the unoccluded regions of the skull. The individual
depth maps were however quite incomplete so that the mesh
contains many small holes.

The reconstruction of the nskulla-small dataset with
standard parameters (thresh = 0.6, 5×5 window) yields
comparably incomplete depth maps (see Figure 5). Lower-
ing thresh to 0.4 improves coverage but includes also a large
number of incorrect samples with high confidence value.
All other datasets shown in the paper were therefore recon-
structed with thresh = 0.6.

4.6. Silhouettes
Figure 6(b) shows a sample depth map from the temp-

leRing dataset with spurious geometry around the silhou-
ettes. Spurious geometry can be created in regions with
low-contrast background where the windows are still dom-
inated by the silhouette edge although they are centered on
the background. The silhouette is clearly visible after the
normalization step of the NCC (see Figure 6(d)). The nor-
malized reference window matches the two windows from
neighboring views shown on the left of Fig. 6(e) and 6(f)



Figure 5. Comparison of different thresholds thresh for a view
from the nskulla-small dataset. Top left: thresh = 0.6 leads to
large holes in the reconstruction, as shown in this rendering of the
depth map. Top right: Lowering the threshold to thresh = 0.4 fills
some of these holes but introduces strong noise. Bottom: Confi-
dence values for both thresholds. Lowering the threshold from 0.6
(left) to 0.4 (right) increases the confidence in the noisy regions.

creating spurious geometry. The matching windows are
dominated by the edge feature so that the NCC value is high
despite the presence of background noise. The spurious ge-
ometry is therefore assigned a high confidence value and
will most likely appear in the final geometry model. This
problem arises particularly in the temple dataset due to the
placement of the light sources relative to the object. Be-
cause silhouettes are easily determined in this dataset, we
can reduce artifacts by omitting windows centered on the
background.

4.7. Evaluation against Ground Truth
The reconstructed models from the temple and dino

datasets were submitted to a multi-view stereo evaluation
effort [14] which assessed accuracy and completeness of the
reconstructed models. Accuracy is measured as the distance
in mm such that 90 % of the points on a mesh are within this
distance of the ground truth. The completeness value mea-
sures how well the reconstruction covers the ground truth.
A more detailed explanation of these measures and the eval-
uation methodology appears in [14]. The evaluation results
are summarized in Table 2. Figure 7 shows a comparison
of an input view, our reconstructions for the three dataset
sizes, and an image of the ground truth dataset used in the
evaluation.

A full evaluation and ranking of the performance on all
datasets is available in [14]. In summary, the accuracy of

(a) cropped reference view with ap-
proximate location of reference win-
dow

(b) rendering of the corresponding
depth map

(c) reference window (d) normalized reference window

(e) corresponding windows in neighboring views

(f) normalized corresponding windows in neighboring views

Figure 6. Spurious geometry can occur at silhouettes with low im-
age contrast. Fig. 6(a) and 6(b) show a reference view and the cor-
responding depth map. The seemingly structureless 9×9 window
of the reference view (Fig. 6(c), marked in Fig. 6(a)) actually con-
tains structure which is revealed by the normalization used in the
NCC (Fig. 6(d)). The reference window matches the two windows
from neighboring views shown on the left of Fig. 6(e) and 6(f) and
spurious geometry is created along the edges of the columns.

the proposed algorithm was within a small margin of the
best performing algorithm for the temple datasets. Accu-
racy and completeness clearly improved with the number
of input images. For the more difficult dino datasets, our
algorithm’s accuracy actually decreased with the number of
input images and achieved the best accuracy out of all meth-
ods for the smallest dataset (dinoSparseRing). This trend
is caused by two factors. First, our algorithm reconstructs
depth values for the diffuse, textureless dino only in areas
where other features (e.g., geometric structures or shadow



Figure 8. Comparison of the nskulla-half dataset reconstructed
with our method (left) and with one of the currently top-
performing multi-view stereo methods [5].

boundaries) allow for a high confidence match. Second, in
contrast to the other participants, we do not estimate shape
everywhere which avoids introducing inaccurate geometry.
Our reconstruction of the dinoSparseRing dataset is thus
most accurate but least complete.

Our current stereo implementation lacks any optimiza-
tions for speed and is consequently the slowest of all partic-
ipants in [14]. This is, however, not a principle limitation
as optimizations such as image rectification or hierarchical
evaluation [6] can be easily applied.

5. Discussion
The previous section demonstrates that a conservative

window-based multi-stereo algorithm can achieve results
on par with the best current methods. Being conservative
comes however at the price that the reconstructed models
are incomplete if too few input views are available. The re-
constructions from smaller datasets are consequently scor-
ing worse in terms of completeness than the reconstructions
from full datasets.

There is however also another way to look at the issue:
Figure 8 compares the nskulla-half dataset reconstructed
with our method on the left with one of the currently top-
performing multi-view stereo methods [5]. Both recon-
structions are (arguably) very good — but they also have
very different properties. Our approach leaves holes of var-
ious sizes in areas of uncertainty but is able to reconstruct
more complex geometry for this model (e.g., at the teeth
on the left side of the jaw and in the eye sockets). In con-

trast, most modern multi-view stereo reconstruction meth-
ods reconstruct plausible, smooth, and well-behaved geom-
etry even in areas where little or no information is available
about the real object. Ultimately, it is a question of the ap-
plication for which the model is generated and/or of a user’s
preference whether one or the other reconstruction philoso-
phy is better.
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A. Normalized Cross-Correlation
We use a version of NCC for n-dimensional RGB color

vectors v0, v1 with normalization per color channel. The
vectors vi correspond in our application to color values in
an n = m × m window around a pixel position in a view
V . To compute the NCC between two vectors v0 and v1 we
first compute the average color value vi for each vector with
i ∈ {0, 1}. We can then compute the NCC in a standard way
as

NCC(v0, v1) =
∑n−1

j=0 (v0(j) − v0) · (v1(j) − v1)
√

∑n−1
j=0 (v0(j) − v0)2 ·

∑n−1
j=0 (v1(j) − v1)2

.

A multiplication between two color vectors is evaluated as
dot product. The NCC returns a single value in the interval
[−1, 1] where 1 means highest correlation.


