
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)
K. Anjyo, P. Faloutsos (Editors)

Physically Based Rigging for Deformable Characters

Steve Capell, Matthew Burkhart, Brian Curless, Tom Duchamp, and Zoran Popović

University of Washington

Abstract

In this paper we introduce a framework for instrumenting (“rigging”) characters that are modeled as dynamic

elastic bodies, so that their shapes can be controlled by an animator. Because the shape of such a character is

determined by physical dynamics, the rigging system cannot simply dictate the shape as in traditional animation.

For this reason, we introduce forces as the building blocks of rigging. Rigging forces guide the shape of the

character, but are combined with other forces during simulation. Forces have other desirable features: they can be

combined easily and simulated at any resolution, and since they are not tightly coupled with the surface geometry,

they can be more easily transferred from one model to another. Our framework includes a new pose-dependent

linearization scheme for elastic dynamics, which ensures a correspondence between forces and deformations, and

at the same time produces plausible results at interactive speeds. We also introduce a novel method of handling

collisions around creases.

1. Introduction

Believable computer animation requires that virtual charac-

ters such as humans and animals be produced with a high
degree of realism. Faces should express emotions through
mouth and eyebrow movements, limbs should bend at joints,
muscles should bulge when in use, and soft tissue such as fat
should bounce and vibrate when the character walks.

To create such realism, the traditional animation pipeline
requires that each character be rigged, a process that is anal-
ogous to setting up a puppet to be controlled by strings.
After having been rigged, a character’s shape can be con-
trolled through a set of abstract parameters with meaning-
ful names, like “lift left eyebrow” or “bend right knee.” For
each keyframe, instead of having to position each vertex of
the surface mesh, the animator need only set the values of
the control parameters. To include fleshy bounces and vibra-
tions, the animator must either create them by hand or tack
a physical simulation onto the geometrically crafted defor-
mations. In interactive settings, such as video games, these
additonal motions are not always possible to anticipate, ne-
cessitating some form of physical simulation.

Elastic simulation has proved to be a powerful method
both for automatically creating plausible skeleton-dependent
deformations and for introducing secondary motions. These
simulations can be performed quickly with techniques like
the finite element method for linearized elastic dynamics, al-

lowing for real-time simulation suitable for interactive video
games and rapid prototyping for film production.

A significant shortcoming of these approaches is that the
simulations do not provide a way for the animator to control
the shape, other than by posing the skeleton. In this paper we
address this limitation by introducing force-based rigging. In
our system, deformations are created indirectly through the
use of forces.

Section 3 describes our physical and numeric framework.
Our system is built on a new method of pose-dependent lin-
earization of elasticity, which ensures a correspondence be-
tween deformations and forces, while producing plausible
results (both static and dynamic equilibria) at the speed of
linear dynamics (Section 3.3). To increase realism, we in-
troduce a new technique for handling collisions near creases
(Section 3.4). Section 4 describes our rigging framework,
which includes interactive optimization-based rig configu-
ration (Section 4.2), computing rig forces from sculpted or
measured surface deformations (Section 4.3), and transfer-
ing rigging between characters (Section 4.4).

2. Background

Many methods have been devised for the geometric defor-
mation of surfaces, including free-form deformation [SP86,
MJ96], shape interpolation [LCF00, SIC01, ACP02], and

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

wire deformation [SF98]. Such methods form the building
blocks for rigging in modern animation programs such as
Maya. These methods are not based on physical simula-
tion, so the animator must hand craft physically realistic mo-
tions. The work of Kry et al. uses simulated input deforma-
tions to produce very realistic (but not dynamic) deforma-
tions [KJP02].

Dynamic deformation based on continuum elastic-
ity was introduced to computer graphics by Terzopou-
los et al. [TPBF87]. Terzopoulos and Witkin showed that
the equations of motion can be linearized about a moving
frame of reference, as long as the deformations are mod-
est [TW88]. The linearized equations are more stable and
can be solved quickly. We will discuss more recent quasi-
linear schemes in Section 3.3.

Physical contraints have been used to make elastic models
more controllable for animation [PB88, WW90, BW92], but
constraints have not been shown to be useful for providing
detailed shape control.

Detailed geometric deformation was combined with dy-
namic deformation in an anatomical modeling framework
by Wilhelms and Van Gelder [WG97] (a similar approach by
Scheepers et al. did not include a dynamic layer [SPCM97]).
The muscle shapes are a function of the configuration of the
skeleton, and a dynamic fatty layer is modeled to connect the
statically deforming muscles to dynamic skin. Our frame-
work differs in its ability to allow general shape control in
unison with dynamic deformation of the entire character. An
interactive system for building anatomical models was pre-
sented by Aubel and Thalmann [AT01].

Our framework is based on linear dynamics and can pro-
duce interactive animations, as in previous work on speeding
up dynamic deformable models [DDCB01,JP02,MDM∗02].
In particular, we build on the framework presented by
Capell et al., where skeletal control for dynamic deformable
models was introduced [CGC∗02].

Singh et al. used forces to effect deformations [SOP95].
Our system is distinguished by the computation of such
forces from desired deformations, and the overall rigging
framework based on forces.

3. Deformable character formulation

Our modeling and simulation of deformable characters
builds on the framework of Capell et al. [CGC∗02], aug-
mented with rigging forces, a new pose-dependent lineariza-
tion scheme, and collision handling near creases.

The basic data defining a deformable character are: (i)
an elastic domain Ω ⊂ R

3 (the interior of a triangular mesh
Γ), with specified mass density, Poisson ratio, and Young’s
modulus, (ii) a control lattice K ⊂ R

3 containing Ω, (iii) a
skeleton S⊂Ω consisting of prescribed edges of K, and (iv)

a parameterized family f(x,Θ) of force fields (rigs) that can
be used to deform the character into a desired shape.

The state of the character at time t is represented by the
function

p : Ω×R→ R
3 : (x, t) 7→ p(x, t) = x+d(x, t) , (1)

Our animation framework gives a method for interactively
determining the displacement vector d(x, t) from a time-
dependent family Θ(t) of control parameters that deter-
mine the pose of the skeleton and the force fields f(x,Θ(t))
by solving a system of linear differential equations (Equa-
tion (7) below).

Animation is controlled by a time-dependent vector of
pose parameters α(t) ∈ R

Nα , and another of abstract pa-

rameters β (t) ∈ R
Nβ . The pose parameters and abstract pa-

rameters are combined into a single vector of control para-

meters

Θ = (α1, . . . ,αNα
,β1, . . . ,βNβ

) = (θ1, . . . ,θNθ
) ∈ R

Nθ .

The components of β serve as general-purpose shape con-
trollers. For example, one such parameter value could be
named raised left eyebrow and be expected to change the
shape of the character appropriately. The animator may then
implement the raising of the left eyebrow via a curve β (t)
in parameter space. An animation of the entire character is
created by varying the control parameters Θ(t) over time.

The parameters Θ affect the shape of the character
through objects that we call rigs (a variation on standard an-
imation terminology). Each rig maps the control parameters
to a force field acting on the body. The collection of all rigs
on a character is thus modeled by a continuous family f(x,Θ)
of force fields on Ω. Notice that we allow all of the elements
of Θ to affect the shape, not just the elements of β . This
allows the pose to affect the deformation, which is useful
paradigm in animation. In particular, anatomical features of
the shape such as muscle bulges are often pose dependent.

3.1. Finite element approximation

To apply the finite element method, we need a suitable ba-
sis B = {φi(x)} of functions on the domain Ω. Each basis
function φi ∈ B is centered at a vertex xi of K and is the
restriction to Ω of a piecewise trilinear function on K, with
φi(xi) = 1 and with support contained in the union of cells
of K containing xi. We write the displacement in the form

d(x, t) = ∑
i

qi(t)φi(x) , qi(t) ∈ R
3. (2)

By construction, d(xi, t) = qi(t) for each vertex xi ∈ K.

By definition, the skeleton of the character is a set S of
edges of K contained in Ω. By construction, p(x, t) is linear
on each edge of S, and the coefficients qi(t) at vertices of S

are constrained so that the length of each edge of S is pre-
served by the mapping p. By requiring the set S to be a tree

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

that mirrors the joint hierarchy, we ensure that the skeletal
parameters (α1,α2, . . . ,αmα ) uniquely determine the value
of the control coefficients qi at the vertices of S. To simplify
notation, we assemble the coefficients into two column vec-
tors: a vector qS whose i-component is qi, for i a vertex of
S, and a vector q whose i-th component is qi, for i vertex
of K \ S. As we already observed, qS is determined by the
control parameters Θ.

3.2. Dynamics

The motion of the character is determined by specifying
the control parameters Θ(t) and solving the Euler-Lagrange

equations

d

dt

(

∂T

∂ q̇i

)

+
∂U

∂qi
= Qi (3)

for the unconstrained coefficients qi, where T = T (q̇, q̇S)
is the kinetic energy, the potential energy U = U(q,qS) is
the sum of the elastic energy (a fourth degree polynomial
in q and qS) and a twist energy that penalizes displacement
near the skeleton and has the effect of simulating a thickened
skeleton (see [CGC∗02]), and Q = Q(Θ(t)) is the vector of
generalized forces determined by Θ(t). Each component

Qi(Θ) =
∫

Ω
f(x,Θ)φi(x)dV (4)

of Q represents the force acting on one control vertex at a
point in K\S. Later in the paper we will describe the creation
and placement of specific force fields.

Substituting the expansions for T , U and Q in terms of the
basis functions into Equation (3) yields the system of non-
linear, ordinary differential equations

∑
j

Mi jq̈ j = Qe
i +Qi(Θ)−∑

k

Nikq̈S,k(t) , (5)

where Mi, j and Ni,k are constant 3×3 matrices. The function
Qe

i =−∂U/∂qi measures the internal elastic force acting on
the body, and Qi(Θ) is the generalized rigging force centered
at xi. The indices i and j range over vertices in K \ S and k

ranges over the vertices of S.

3.3. Skeletally warped linearization

The nonlinear system in Equation (5) is computationally
expensive to solve, and potentially unstable, so various
methods have been devised to linearize, quasi-linearize, or
simplify the equations [TW88, CGC∗02, MDM∗02, ITF04,
MG04]. These methods can efficiently produce plausible de-
formations, but each of them has shortcomings in the context
of the present application. In particular, we require the fol-
lowing additional features that are not present in previous
approaches:

• Our framework uses forces to effect a given deformation
in a given pose. It is important that forces and deformations
be in correspondence for a given pose.

• When computing the rig forces for a given surface defor-
mation at a given pose, we rely on the static equilibrium so-
lution to the equations of motion. Computing static equilib-
rium must be efficient.

A pose-dependent linear system satisfies these goals.

We combine the benefits of the methods of Capell et al.
[CGC∗02] and Müller et al. [MDM∗02], while eliminating
some of their disadvantages. Like Capell et al., we use the
configuration of the skeleton to predict the shape of the de-
formed object. But our method produces much more plausi-
ble deformations near joints. Like Müller et al., the lineariza-
tion is performed independently at each vertex. But solving
for static equilibrium using their method is a nonlinear prob-
lem. Our method is fast, stable, and free of gross distortions.

Similar to [MDM∗02], we linearize the elastic force by
estimating the local transformation at each control vertex,
resulting in the following approximation:

Qe
i =

∂V

∂qi
≈∑

j

RiSi j

(

RT
i (x j +q j− ci)−x j

)

, (6)

where the terms Si j are constant 3×3 stiffness matrices, and
Ri and ci are the estimated rotation matrix and translation
vector, respectively, at node i. Note that our formulation in-
cludes an estimate of the translation in order to accomodate
the translation-dependent twist energy used in [CGC∗02].

Rather than measuring Ri from the current state of the
body, as in [MDM∗02], we estimate Ri and ci from the
pose of the skeleton using a skinning methodology (e.g.,
[ACP02, MG03]). The pose parameters α(t) determine a
Euclidean motion of the form Rb(x+cb), sending each edge
or “bone” b ⊂ S to the proper position in R

3. We associate
each vertex xi of K with two bones of S, denoted bi1 and bi2

and we let Ri = ωi1Ri1⊕ωi2Ri2 and ci = ωi1ci1 + ωi2ci2.
The user-defined weights ωik dictate how much each bone
affects each point. The symbol ⊕ in the formula for Ri rep-
resents interpolation of rotations. In our current implemen-
tation we allow only two nonzero weights so that spher-
ical linear interpolation can be used. More general meth-
ods are available for blending more than two rotations (e.g.,
[Ale02]), at higher computational cost.

It is also necessary to transform the force fields to be
aligned with the skeleton. For instance, a force field creating
a bump might change to a dimple when the body is rotated
180◦, if the forces are applied in the global frame. We there-
fore transform the forces according to the transformation of
the body. For simplicity and stability, we use the transfor-
mation predicted by the skinning procedure. Hence, given a
particular skeletal configuration Θ at time t, the generalized
force at vertex i is of the form RiQi. We note that our ap-
proach to interpolation by warping the force fields according
to the skeleton is analogous to the interpolation of displace-
ments used by Lewis et al. [LCF00].

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

θ = 90◦ θ = 135◦

Blended Local Linearization

Skeletally Warped Linearization

Figure 1: Comparison between our skeletally warped

linearization method and the blended local linearization

scheme from [CGC∗02]. The object shown on the left, instru-

mented with a simple skeleton, is put into two poses. On the

top row are the results using blended local linearization. No-

tice how the region near the bend unrealistically contracts,

similar to traditional skinning methods used in animation.

On the bottom row are the results using our new method,

which look much more plausible.

With these changes the system (5) assumes its final form

∑
j

Mi, jq̈ j = ∑
j

Ri(Θ)Si j

(

RT
i (Θ)(x j +q j− ci(Θ))−x j

)

(7)

+Ri(Θ)Qi(Θ)−∑
k

Ni,kq̈S,k(Θ) .

Notice that (7) is a pose-dependent linear system. A com-
parison between our new method of linearization and the
one presented in [CGC∗02] (blended local linearization) is
shown in Figure 1.

It is noteworthy that Müller et al., in [MG04], present an
improvement over [MDM∗02]. To eliminate ghost forces,
they estimate the rotation for each cell rather than at each
vertex. Since our system is highly constrainted by the skele-
ton, ghost forces have not been a problem. However, it
would not be difficult to combine our approach with that
of [MG04], predicting the rotation of each cell from the
nearby skeleton. The result would offer the advantages of
pose-dependent linearity without ghost forces.

3.4. Self-collision detection and response

To realistically model human dynamics it is essential to take
self-collisions of the surface of the character into account.
When the human arm bends, for example, skin creases and

(a) (b)

Figure 2: Without (a) and with (b) collision detection.

folds, forcing muscles and fat to bulge outward around the
elbow. We model such behavior within our framework by in-
troducing constraints that prohibit surface interpenetration.

Interactive rates are achieved through a preprocessing
step that determines the locations of likely collisions for a
given animation. A deterministic propagating-front collision
scheme, partially inspired by [PPG04], is used to incremen-
tally add constraints to the system as the collision surface ex-
pands. Raghupathi et al. have employed a similar technique
in that they check the neighborhoods of regions in contact to
find all colliding pairs in the area [RGF∗04]. We expand on
these ideas by introducing a preprocessing step that reduces
the number of collision tests needed at runtime.

The image shown in Figure 2(b) was generated using the
collision response method described in this section, absent of
any rigging forces. Our solution satisfies our requirement of
efficiency. As Figure 2 illustrates, the dynamical equations
then produce the desired bulging effects as an artifact of the
equations of elasticity.

3.4.1. Preprocessing

To efficiently detect self-collisions of the surface Γ as a sim-
ulation progresses, we determine approximate collisions us-
ing a preprocessing step. Consider a target pose, such as
a bent elbow, in which self-collisions of the surface Γ oc-
cur. By choosing a family of control parameters Θ(t) that
slowly deforms the skeleton from its rest state to the desired
pose and solving the dynamic equations, we obtain a family
of near equilibrium states deforming the character into the
target pose. As this “slow motion” deformation evolves, we
track the position of each vertex of the triangle mesh Γ.

By definition, a collision occurs when a vertex of Γ first
penetrates a triangle of Γ. When a collision occurs, we ac-
tivate a constraint that prevents further penetration (see be-
low) and continue the dynamic simulation. The seed set D is
the sequence of vertex-vertex pairs obtained by pairing each
penetrating vertex with one of the vertices of the triangle
that it penetrates. We make the a priori assumption that this
sequence of pairs will approximate the set of self-collisions
that occur during any subsequent animation of the charac-
ter. If this assumption holds, the result is identical to that of
general collision detection.

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

3.4.2. Run-time behavior

During a dynamic simulation, collisions not included in the
seed set (generated in the preprocessing step) may occur. To
maintain interactive rates, is it essential that we maintain the
list of current collisions and a list of locations at which future
collisions are likely to occur.

The collision list is the ordered list

C = {(i1,b1),(i2,b2), . . . ,(inc
,bnc

)} (8)

of all pairs of the form (i,b) where i is a vertex of Γ and
b are the barycentric coordinates of the point at which the
vertex penetrates a triangle. The elements of C are ordered
according to the time when each vertex enters the region Ω.

If a collision (i,b) occurs in the time interval [t0−∆t, t0],
we impose the inequality constraint on (i,b) crafted to pre-
vent the vertex from moving deeper into the interior of Ω

χi,b(t) := (ṙi(t)− ṙb(t)) ·n(t)≥ 0 for all t ≥ t0, (9)

where ri(t) and rb(t) denote spatial locations of i and b at
time t, and n(t) is the normal to the triangle T at time t.

We classify elements of C into active and inactive el-
ements. More precisely, let na ≤ nc be the smallest non-
negative integer such that if we impose the equality con-
straint

χik ,bk
(t) = 0 for all k < na

then χik,bk
> 0 for all na ≤ k ≤ nc.

We assume that future collisions will either occur near one
of the collision seeds or in a neighborhood of the current
collision set. Specifically, the neighborhood of a pair (i, p)∈
C is the set N(i,b) of all pairs (i′, j′) of vertices of Γ such that
i′ is in a neighborhood of i and j′ is in a neighborhood of p.

At each time step we perform the following operations:

(1) For each pair (i, j) ∈ P, check for penetration of i into
each triangle in a neighborhood of j as well as for pen-
etration of j into each triangle in a neighborhood of i.
When a penetration is detected, add the corresponding
pair (i,b) or ( j,b) to C.

(2) Remove any pair (i,b) from C for which the point ri(t) is
exterior to Ω. The inequality

(ri(t)− rb(t)) ·n(t) > 0

provides an easy test.
(3) Update P to be the union P = D∪

⋃

(i,b)∈C

N(i,b).

(4) Find the number na that determines the set of active ele-
ments of C.

Note that because we detect collisions after they have oc-
curred, small interpenetrations will occur. However, our con-
straints prevent any further incursion once collisions are de-
tected. The result is visually appealing, leaving no visible
gaps between regions in contact.

To maintain the constraints χi,b = 0 we use the modified
conjugate gradient method presented by Baraff and Witkin
[BW98] and extended to FEM by Capell et al. [CGC∗02].

The set of all colliding points and active constraints χi,b =
0 in this formulation will generally be significantly higher
than the number of degrees of freedom provided by the con-
trol lattice. We build an orthogonal basis in constraint space
from the list of constraints using a QR-decomposition. This
basis spanning the active constraint space is used to project
out components of the solution that violate the constraints
within the conjugate gradient (CG) solver. The use of such
orthogonalization of constraints to project the null space of
the constraint basis has been shown to still lead to guaran-
teed convergence of the CG [AB03].

4. Rigging – shape control using forces

Shape control is important because it enables the animator to
create more realistic deformations and express the emotion
and intent of a character. For example, skeletal controls will
not effectively help the animator to make a character appear
to breathe, produce a muscle bulge, or smile. To address this
shortcoming, we introduce an additional control mechanism.

Since our framework is based on physical simulation, two
natural mechanisms exist for influencing the shape: hard
constraints and forces. Forces (or force fields) are better
suited to our framework for a variety of reasons: (1) In con-
trast with hard constraints, which are rigid and therefore not
a realistic model for animal tissues other than bones, forces
influence the shape without destroying its dynamic nature.
(2) Forces can coexist without troublesome compatibility
issues—if two force fields overlap, their combined effect is
obtained by vector addition. (3) Finally, force fields need not
line up exactly with the character’s surface geometry. Our
framework already handles the embedding of the character;
if the force field extends beyond the interior of the character
it can easily be restricted to the interior.

To use forces to effect deformations, we exploit an im-
portant feature of pose-dependent linearization. For a fixed
skeletal pose, deformations and generalized forces are in
correspondence. Consider the body in static equilibrium
(q̇ = 0 and q̈ = 0). Equation (7) reduces to the form

A(α)q = b(α)+Q , (10)

where A(α) is a matrix (containing 3×3 blocks), and b(α)
is a vector (with elements that are 3-vectors). Since A(α)
is invertible, there is a bijection between generalized forces
Q and displacements q. This relationship allows us to think
about shape in terms of forces. While our simulations are dy-
namic, the rigging is configured while running a static equi-
librium solver (i.e., solving Equation (10)), where forces and
displacements are in correspondence.

The rigging process, by which the mapping f is con-
structed is based on two independent paradigms, based on

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

(a) (b) (c)

Figure 3: A cow head interactively rigged using force field

templates to create simple facial expressions. The templates

are visualized in the top row. The bottom row shows the re-

sulting deformations. (a) Two bump templates create a smile.

(b) Four bump templates effect a frown. (c) Two torus tem-

plates produce dilation and contraction of the nostrils.

two kinds of components: force field templates and surface

deformation rigs. Force field templates, are reusable compo-
nents representing parameterized force fields in a canonical
coordinate frame. We will discuss them in Section 4.2. Sur-
face deformation rigs (hereafter referred to as surface rigs)
are rigs constructed from surface deformations. This gives
the user more control by leveraging existing technologies
such as surface scanners and geometric modeling software.
Surface deformations are presented in Section 4.3.

4.1. The rigging process

To rig a character, individual rigs must be configured and
combined to form the rigging force f(x,Θ). Each rig is de-
scribed as a force fa(x,ηa), where ηa is a vector of rig pa-

rameters that determine the force produced by the a-th rig.
The rigging process consists of deciding on a set of rigs and
creating a mapping from Θ to ηa for each rig. For simplic-
ity, we impose the restriction that the a-th rig depends on a
single control parameter γa ∈Θ. The rig force is then formed
by combining the force contributions from the rigs:

f(x,Θ) =
Nrigs

∑
a=1

fa(x,τa(γa)) , (11)

where the function τa : γa 7→ ηa maps the control parameter
associated with rig a to its rig parameters. It is also conve-
nient to express the rig force purely in terms of generalized
forces:

Qi(Θ) = Ri(α)
Nrigs

∑
a=1

Qa
i (γa) , (12)

where Qa
i is the generalized force (on the free variables) con-

tributed by the a-th rig.

We represent the function τa as the linear interpolation of
a set of sample points {(γa,k,ηa,k) : k = 1,2, . . . ,Nτ

a , γa,k <
γa,k+1} that are created by the user during an interactive ses-
sion:

τa(γa)=























ηa,0, for γa ≤ γa,0

ηa,k +
(

ηa,k+1−ηa,k

)

(

γa−γa,k

γa,k+1−γa,k

)

,

for γa,k < γa ≤ γa,k+1, 1≤ k < Nτ
a

ηa,Nτ
a
, for γa,Nτ

a
< γa .

The process by which the user interactively rigs a character
can be described algorithmically as follows:

a← 1
while the character is not fully rigged do

instantiate rig a

choose a control parameter γa ∈Θ for the rig
k← 1
while the user desires more samples do

configure the character by setting Θ

set the control parameter γa← γa,k

configure the rig by setting ηa← ηa,k

record the sample (γa,k,ηa,k)
k← k +1

end

a← a+1

end

4.2. Rigging with force field templates

Our first approach to rigging is to rely on a library of pre-
defined force field templates. Each template defines a para-
meterized force field in a canonical coordinate frame. For
examples of specific force field templates and their parame-
ters see [Cap04]. Figure 3, shows the result of rigging the
head of a cow with force field templates.

Although force field templates are designed to be sim-
ple and intuitive, it is not always easy for the the user to
understand which parameters to change to achieve the de-
sired effect. We therefore support an interface wherein the
user directly manipulates the surface of the character with
the mouse and the system automatically optimizes the para-
meters of the rig so that the forces cause the surface of the
character to conform to the user’s input.

Using a drag-and-drop interface, the user indicates target
positions for one or more points on the surface. Our goal is
to choose η so that these constraints are met. This is accom-
plished by minimizing the cost function

C(η) = Cpoints(q(η))+Cparams(η) ,

where the term Cpoints(q(η)) enforces the constraints, and

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

Figure 4: In this example, a skeletal pose is computed that

deforms one surface to fit the other. The spheres indicate

user-selected feature points that guide the optimization.

the term Cparams(η) penalizes deviation of η from its pre-
ferred value η0. Note that q = q(η) via Equation (10). Put
simply, in static equilibrium, a configuration of the rig para-
meters η produces a particular displacement q.

We optimize the cost C using the L-BFGS-B algo-
rithm [BLNZ94], a quasi-Newtonian solver with limited
memory usage. Standard optimization methods for smooth
cost functions, like L-BFGS-B, require knowledge of the
gradient dC

dη . The reference [Cap04] gives a method for ef-

ficiently computing dC
dη by taking advantage of the fact that

our system is linear at a fixed pose. Each evaluation of dC
dη

requires one integration over the character for each element
of η , and a single solution of the linear Equation (10).

4.3. Deriving rigs from surface deformations

In addition to predefined force field templates our frame-
work supports surface deformation rigs, which are con-
structed directly from surface deformations. A surface de-
formation rig uses an arbitrary generalized force to effect
the desired shape change. We express the force of a surface
deformation rig directly in the generalized form of Equa-
tion (12), dropping the index a since we will only be dis-
cussing a single rig:

Q(γ) = γη . (13)

For surface deformation rigs, the rig parameters η determine
the direction of the generalized force and the rig control γ de-
termines its magnitude. The rig is configured by computing
the optimal parameters η so that a target surface is matched.

Given a target surface Γ represented as a triangle mesh,
we want to compute a generalized force such that Γ ≈ Γ,
where Γ is the surface of the simulated body at static equi-
librium. This computation replaces the user interaction in the
rigging process. Because Γ also depends on the skeletal con-
figuration parameters α , which are unknown for the target
surface, we must also compute an optimal skeletal pose. Our
approach to optimizing the skeletal pose is based on the work
of Allen et al. [ACP02].

Our procedure for pose optimization is based on matching
a set of user-selected feature points {pi} on Γ and {pi} on Γ

using the following cost function:

Cfeatures(α) =
1

Nfeatures

Nfeatures

∑
k=1

|pk−pk|
2 ,

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: A surface deformation rig for a bent arm. (a) A

scanned arm in its rest configuration. The arm has been

instrumented with a skeleton and control lattice for elastic

simulation. (b) The target surface, which was also acquired

by scanning. We want to compute the forces that approxi-

mately produce the target surface when applied to the sim-

ulated arm shown in (a). (c) The static equilibrium shape of

the arm in (a) posed to match (b) as well as possible. (d) A

comparison between (b) and (c). (e) The bent arm after ap-

plying an optimized surface deformation rig that uses forces

to produce the target shape. (f) A comparison between (b)

and (e).

where Nfeatures is the number of feature points. Although it
requires user interaction, the selection of feature points by
the user has the advantage that points can be chosen that are
representative of the configuration of the underlying skele-
ton, such as places where the bone is close to the surface.
The L-BFGS-B algorithm is used to solve for the optimal
pose parameters α . Figure 4 shows the results of optimizing
the pose to fit a target surface.

After finding the optimal skeletal pose associated with Γ,
and choosing the value of γ , we compute the optimal gen-
eralized force (via η) that aligns the deformed surface Γ

with the target surface Γ. Our goal is then to find a vector
η that minimizes the following cost function that penalizes
mismatch between Γ and Γ:

C(η) = Csurf (η)+ωCsmooth(η), (14)

where Csurf penalizes the distance between the deformed
surface and the goal surface, Csmooth enforces smoothness,
and is a ω is a user-specified smoothing parameter. For the
precise definition of the cost terms see [Cap04].

Figure 5 shows the results of creating a surface deforma-
tion rig to match a bent arm. Because the deformation is as-
sociated with the arm in a bent pose, we chose the angle of
the elbow joint as the control parameter γ associated with the

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

Figure 6: The rig from Figure 5 used at different poses. The

top row shows the simulation without rigging. The bottom

row shows the same poses simulated with rig forces in effect.

Notice that the biceps and the area around the crease of the

elbow are much more realistic looking when the rig is used.

rig. As γ varies from 0 to 1 the force that effects the defor-
mation is gradually introduced. In this manner, intermediate
poses of the elbow produce intermediate deformations. Fig-
ure 6 shows the effect of the rig when the pose of the arm
differs from the pose of the target data.

4.4. Retargetting surface deformation rigs

Deformed surfaces can be difficult to construct, and some-
times a deformation is available for one model but not for
another similar model. For these reasons we would like to
transfer rigs between characters. In this section we discuss
the transfer of surface deformation rigs from one character
to another. We accomplish this by creating a mapping be-
tween the two characters and then using the map to transfer
forces.

Suppose that we have a character whose domain is Ω

with surface Γ = ∂Ω and skeleton S, and that the charac-
ter has been parameterized by a cell complex K in the man-
ner described in Section 3.2. Our goal is to create a map-
ping from Ω to a new character Ω with surface Γ = ∂Ω and
skeleton S. We approximate such a mapping by repositioning
the vertices of the control lattice to form a homeomorphism
h : K→ R

3 using the trilinear basis. Our goal is to choose h

so that h(Ω)≈Ω.

We reposition the vertices of K using an optimization pro-
cedure that minimizes a cost function of the form

C(h) = ωskelCskel(h)+ωsurf Csurf (h)+Cdistort(h) . (15)

The first term encourages the skeletons to match by penal-
izing the difference S− h(S). The second term (defined in
Section 4.3) matches the surfaces by penalizing the differ-
ence Γ−h(Γ). The last term penalizes distortion in the map-
ping. The user defined weights ωskel and ωsurf determine

(a) (b)

Figure 7: (a) The unrigged Ganesh arm (in a bent pose).

(b) The arm with rigging transferred from the arm scan in

Figure 5. On Ganesh the rig causes similar effects as on

the original arm model: the elbow extends, becoming less

rounded, and the biceps bulges).

how much each term contributes to the total cost. We refer
the reader to [Cap04] for details.

Once the mapping h from Ω to Ω has been established, we
can use it to transfer a generalized force Q (or η , recall Equa-
tion (13)) from Ω to Ω. Transferring the generalized forces
directly between different physical systems produced unin-
tuitive results, so instead we convert the generalized forces to
displacements, transfer the displacements, and then convert
back to generalized forces. In doing so we take advantage of
the fact that our pose-dependent linear system draws a cor-
respondence between generalized forces and displacements.

Consider a generalized force Q acting on the character
whose domain is Ω. We can convert it to a displacement
d by first applying Equation (10) to compute the general-
ized coordinates q and then applying the basis expansion in
Equation (2). The laws of vector transformation dictate that
the transformed displacement d satisfies the equation d(x) =

J(x)d(x), where J(x) = ∂h
∂x

(x). We approximate this trans-
formation by transforming the coefficients: qi = J(xi)qi.

Although h is not differentiable at xi, we can estimate Ji

at the vertex xi of the lattice by computing the affine map
that minimizes the energy function

E(Ji) =
N

∑
j=1

(Jiei j− ei j)
2 , (16)

where ei j = r j − ri and ei j = r j − ri are edge vectors sur-
rounding vertex i in K and K, respectively. We minimize E

by the Procrustes algorithm [BM92]. Once we have com-
puted q as above, Equation (10) can be applied again to pro-
duce the generalized force Q for the target character.

5. Results

Some of the results of our rigging system have already been
shown in Figures 2, 3, 5, and 6. We tested the system on two

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 8: A surface deformation rig effecting a chest flex.

(a) A deformation representing Ganesh with a flexed chest,

created using geometric modeling software. The second row

shows the use of a force field rig to effect the same shape

change. (d) The model at rest. (e) A coarse simulation (the

surface of the volumetric lattice is shown in (b) above). (f)

A finer simulation (the lattice is shown in (c) above). The

bottom row shows the chest flex rig transferred to the human

model: (g) at rest, (h) coarse, and (i) fine.

additional input surfaces: “Ganesh” (a rotund humanoid fig-
ure with an elephant’s head) designed using geometric mod-
eling software, and a scan of a human. The Ganesh charac-
ter was instrumented with three rigs which were then trans-
ferred to the human character. One of the rigs was derived
from a third model, the arm scan demonstrated in Figures 5
and 6. Another rig, representing the flexing of the chest, was
derived from a surface deformation designed by an artist. A
third rig, effecting a breathing motion of the torso, was cre-
ated using a force field template.

Figures 7 and 8 demonstrate the transfer of rigging be-
tween characters. In Figure 7, the rig derived from the bent
arm scan (Figure 5) has been transferred to the Ganesh char-
acter. It is noteworthy that the thin human arm on which
the rig is based and the Ganesh arm behave quite differ-
ently when using the unrigged model. The Ganesh arm is
short, fat, and cartoon-like, so the deficiencies of the simpli-
fied physical model are not as apparent as for the thin human
arm as in Figure 5 (c) and (d). Despite their significant differ-
ences, the rig produces a similar effect on Ganesh as on the
scanned arm. The biceps bulges in an appropriate place and
the elbow extends, counteracting an unrealistic contraction.

(a)

(b)

(c)

Figure 9: Animations using a chest flex rig. (a) Animation

with no force-based rigging. (b) Animation using a chest flex

rig. (c) Animation using the chest flex and a belt constraint.

The transfer of a chest flex rig from ganesh to the human
model is shown in Figure 8. The chest flex rig was created
using a target deformation created using geometric model-
ing software. The transfered rig produces a plausible defor-
mation despite the fact that the characters are very different.

Figure 9 demonstrates frames of an animation of the
rigged Ganesh character. In row (c), a belt constraint has
been applied, demonstrating that our system supports con-
straints along with rigging. Although we have not done ex-
tensive timing studies, the cost of simulation is about equally
split between overhead (e.g., bookkeeping, rendering) and
solving the sparse linear system at each time step.

6. Conclusion

Our system gives animators control over the shapes of elas-
tic deformable characters by introducing force fields as the
building blocks of rigging. The resulting simulations com-
bine the guidance of the animator with other influences such
as gravity, physical constraints, and user interaction.

A disadvantage of using forces to effect deformations is
that in order to create finely detailed deformations, the dy-
namic simulation must be computed at a high resolution. To
reduce computation in such cases, adding displacements to
the dynamic shape might be preferable to using forces. It
would be interesting to further explore this tradeoff.

Another possible extension to this work would be the in-
terpolation of physical properties as a part of the rigging. In
addition to forces, it would fit nicely into our framework to
adjust the stiffness of part of the character as a function of
rig parameters. It would also be interesting to try to extract
such physical properties from captured data.

c© The Eurographics Association 2005.



S. Capell et al. / Physically Based Rigging for Deformable Characters

Acknowledgments Thanks to Brett Allen, Keith Grochow,
Daichi Sasaki, Supriyo, Ernest Wu, and Yeuhi Abe. This re-
search was supported by NSF grants EIA-0121326, CCR-
0092970, IIS-0113007, and CCR-0098005, and by UW An-
imation Research Labs, an Alfred P. Sloan Fellowship, Elec-
tronic Arts, Sony, Microsoft Research, Alias, and Washing-
ton Research Foundation.

References

[AB03] ASCHER U. M., BOXERMAN E.: On the modified con-
jugate gradient method in cloth simulation. Visual Computer 19,
7-8 (2003), 526–531.

[ACP02] ALLEN B., CURLESS B., POPOVIĆ Z.: Articulated
body deformation from range scan data. ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2002) 21, 3 (2002), 612–
619.

[Ale02] ALEXA M.: Linear combination of transformations.
ACM Transactions on Graphics (Proceedings of SIGGRAPH

2002) 21, 3 (2002), 380–387.

[AT01] AUBEL A., THALMANN D.: Interactive modeling of the
human musculature. In Proceedings of Computer Animation

2001 (2001).

[BLNZ94] BYRD R. H., LU P., NOCEDAL J., ZHU C.: A limited
memory algorithm for bound constrained optimization. SIAM

Journal on Scientific Computing 16, 6 (1994), 1190–1208.

[BM92] BESL P. J., MCKAY N. D.: A method for registration of
3-D shapes. IEEE Transactions on Pattern Analysis and machine

Intelligence 14, 2 (Feb. 1992), 239–258.

[BW92] BARAFF D., WITKIN A.: Dynamic simulation of non-
penetrating flexible bodies. Computer Graphics (Proceedings of

SIGGRAPH 92) 26, 2 (July 1992), 303–308.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proceedings of SIGGRAPH 98 (July 1998), pp. 43–54.

[Cap04] CAPELL S.: Interactive Character Animation Using Dy-

namic Elastic Simulation. PhD thesis, University of Washington,
Department of Computer Science and Engineering, 2004.

[CGC∗02] CAPELL S., GREEN S., CURLESS B., DUCHAMP

T., POPOVIĆ Z.: Interactive skeleton-driven dynamic deforma-
tions. ACM Transaction on Graphics (Proceedings of ACM SIG-

GRAPH 2002) 21, 3 (2002).

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR

A. H.: Dynamic real-time deformations using space & time
adaptive sampling. Proceedings of SIGGRAPH 2001 (2001).

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite ele-
ments for robust simulation of large deformation. In Proceedings

of the 2004 ACM SIGGRAPH/Eurographics symposium on com-

puter animation (2004), pp. 131–140.

[JP02] JAMES D. L., PAI D. K.: Dyrt : Dynamic response tex-
tures for real time deformation simulation with graphics hard-
ware. Proceedings of SIGGRAPH 2002 (2002), 582–585.

[KJP02] KRY P. G., JAMES D. L., PAI D. K.: Eigenskin: Real
time large deformation character skinning in hardware. In Pro-

ceedings of the 2002 ACM SIGGRAPH Symposium on Computer

Animation (2002), pp. 153–159.

[LCF00] LEWIS J. P., CORDNER M., FONG N.: Pose space
deformation: A unified approach to shape interpolation and
skeleton-driven deformation. In Proceedings of SIGGRAPH

2000 (2000), pp. 165–172.

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAGNOW

R., CUTLER B.: Stable real-time deformations. In Proceedings

of the 2002 ACM SIGGRAPH Symposium on Computer Anima-

tion (2002), pp. 49–54,189.

[MG03] MOHR A., GLEICHER M.: Building efficient, accurate
character skins from examples. ACM Transactions on Graphics

(Proceedings of SIGGRAPH 2003) (2003), 562–568.

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials.
In Proceedings of Graphics Interface 2004 (2004), pp. 239–246.

[MJ96] MACCRACKEN R., JOY K. I.: Free-form deformations
with lattices of arbitrary topology. Computer Graphics (Proceed-

ings of SIGGRAPH 96) (1996), 181–188.

[PB88] PLATT J. C., BARR A. H.: Constraint methods for flexi-
ble models. Computer Graphics (Proceedings of SIGGRAPH 88)

22, 4 (August 1988), 279–288.

[PPG04] PAULY M., PAI D. K., GUIBAS L. J.: Quasi-rigid ob-
jects in contact. In SCA ’04: Proceedings of the 2004 ACM

SIGGRAPH/Eurographics symposium on Computer animation

(2004), ACM Press, pp. 109–119.

[RGF∗04] RAGHUPATHI L., GRISONI L., FAURE F., MAR-
CHALL D., CANI M.-P., CHAILLOU C.: An intestine surgery
simulator: Real-time collision processing and visualization.
IEEE Transactions on Visualization and Computer Graphics 10,
6 (2004), 708–718.

[SF98] SINGH K., FIUME E.: Wires: A geometric deforma-
tion technique. In Proceedings of ACM SIGGRAPH 98 (1998),
pp. 405–414.

[SIC01] SLOAN P.-P. J., III C. F. R., COHEN M. F.: Shape by
example. In Proceedings of 2001 Symposium on Interactive 3D

Graphics (2001), pp. 135–143.

[SOP95] SINGH K., OHYA J., PARENT R.: Human figure syn-
thesis and animation for virtual space teleconferencing. In Pro-

ceedings of the Virtual Reality Annual International Symposium

(1995), pp. 118–126.

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form deforma-
tion of solid geometric models. Computer Graphics 20, 4 (Aug.
1986), 151–160.

[SPCM97] SCHEEPERS F., PARENT R. E., CARLSON W. E.,
MAY S. F.: Anatomy-based modeling of the human muscula-
ture. In Proceedings of SIGGRAPH 97 (1997), pp. 163–172.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER

K.: Elastically deformable models. Computer Graphics (Pro-

ceedings of SIGGRAPH 87) 21, 4 (July 1987), 205–214.

[TW88] TERZOPOULOS D., WITKIN A.: Physically based mod-
els with rigid and deformable components. IEEE Computer

Graphics and Applications 8, 6 (Nov. 1988), 41–51.

[WG97] WILHELMS J., GELDER A. V.: Anatomically based
modeling. In Proceedings of SIGGRAPH 97 (1997), pp. 173–
180.

[WW90] WITKIN A., WELCH W.: Fast animation and control
of nonrigid structures. Computer Graphics (Proceedings of SIG-

GRAPH 90) 24, 4 (August 1990), 243–252.

c© The Eurographics Association 2005.


