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Figure 1 On the left, a panoramic sequence of images showing vignetting artifacts. Note the change in brightness at the edge of each
image. Although the effect is visually subtle, this brightness change corresponds to a 20% drop in image intensity from the center to
the corner of each image. On the right, the same sequence after vignetting is removed.

Abstract

We discuss calibration and removal of “vignetting” (ra-
dial falloff) and exposure (gain) variations from sequences
of images. Unique solutions for vignetting, exposure and
scene radiances are possible when the response curve is
known. When the response curve is unknown, an exponen-
tial ambiguity prevents us from recovering these parameters
uniquely. However, the vignetting and exposure variations
can nonetheless be removed from the images without resolv-
ing this ambiguity. Applications include panoramic image
mosaics, photometry for material reconstruction, image-
based rendering, and preprocessing for correlation-based
vision algorithms.

1. Introduction
Photographed images generally exhibit a radial falloff of in-
tensity from the center of the image. This effect is known
as “vignetting”. Although lens manufacturers attempt to de-
sign their lenses so as to minimize the effects of vignetting,
it is still present to some degree in all lenses, and can be
quite severe for some aperture and focal length settings. We
have found that at their maximum aperture settings, even
high-quality fixed focal length lenses transmit 30% to 40%
less light at the corners of an image than at its center. Zoom
lenses and wideangle lenses for rangefinder cameras can ex-
hibit even more severe vignetting artifacts.

Vignetting presents problems for a wide variety of appli-
cations. It affects graphics applications in which sequences
of images are combined or blended, such as image-based
rendering, texture projection and panoramic image mosaics;
measurement applications in which radiometric quantities
are estimated from images, such as material or lighting es-
timation; and vision applications in which brightness con-
stancy is assumed for recovering scene structure, such as

stereo correlation and optical flow. Yet despite its occur-
rence in essentially all photographed images, and its detri-
mental effect on these algorithms and systems, relatively
little attention has been paid to calibrating and correcting
vignette artifacts.

As we demonstrate, vignetting can be corrected easily
using sequences of natural images without special calibra-
tion objects or lighting. Our approach can be used even
for existing panoramic image sequences in which nothing is
known about the camera. Figure 1 shows a series of aligned
images, exhibiting noticeable brightness change along the
boundaries of the images, even though the exposure of each
image is identical. On the right, the same series of images
is shown with vignetting removed using our algorithm.

The sources of vignetting can be classified according to
the following four sources:1

Natural vignetting refers to radial falloff due to geomet-
ric optics: Different regions of the image plane receive dif-
ferent irradiance (see Figure 2). For simple lenses, these ef-
fects are sometimes modeled as a falloff of cos4(θ), where
θ is the angle at which the light exits from the rear of the
lens. Note that in all lenses, the distance from the exit
pupil to the image plane changes when the focus distance is
changed, so this component varies with focus distance. The
cos4 law is only an approximation, which does not model
real cameras and lenses well [24].

Pixel vignetting refers to radial falloff due to the angular
sensitivity of digital optics. This type of vignetting – which
affects only digital cameras – is due to the finite depth of the
photon wells in digital sensors, which causes light striking
a photon well at a steeper angle to be partially occluded by
the sides of the well.

1We have used the terminology of Ray [20] and van Walree [24], but
the definition of pixel vignetting is taken from Wikipedia [25], which uses
a slightly different classification of the other types.
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Figure 2 Illustration of the cos4 law. Points at the edge of
the image plane receive less light than points at the center, due
to inverse square falloff, Lambert’s law, and foreshortening of
the exit pupil. Carl Zeiss Planar 1.4/50 diagram by Mikhail
Konovalov c© Paul van Walree.

Figure 3 Left: image of a wall at f/1.4. Middle: same wall
at f/5.6, showing that optical vignetting decreases with aperture
size. Right: the shape of the entrance pupil varies with both the
aperture (x axis) and the angle of incidence (y axis). The white
openings correspond to the clear aperture for light that reaches
the image plane. c© Paul van Walree.

Optical vignetting refers to radial falloff due to light
paths blocked inside the lens body by the lens diaphragm. It
is also known as artificial or physical vignetting. This is eas-
ily observed by the changing shape of the clear aperture of
the lens as it is viewed from different angles (see Figure 3),
which reduces the amount of light reaching the image plane.
Optical vignetting is a function of aperture width: It can
be reduced by stopping down the aperture, since a smaller
aperture limits light paths equally at the center and edges of
frame.

Some lens manufacturers [26] provide relative illumi-
nance charts that describe the compound effects of natural
and optical vignetting for a fixed setting of each lens.

Mechanical vignetting refers to radial falloff due to
certain light paths becoming blocked by other camera el-
ements, generally filters or hoods attached to the front of
the lens body (see Figure 4).

In the remainder of this work we will use the term “vi-
gnetting” to refer to radial falloff from any of these sources.

Because vignetting has many causes, it is difficult to pre-
dict the extent of vignetting for a given lens and settings.
But, in general, vignetting increases with aperture and de-
creases with focal length. We have observed that the effect
is often more visually prominent in film images than in dig-
ital images, probably due to the larger film plane and the
steeper response curve.

Figure 4 The corners of the left image are blocked by a hood
that is too long for the lens, as shown on the right. The lens
is a Carl Zeiss Distagon 2/28, diagram by Mikhail Konovalov
c© Paul van Walree.

2. Related Work
Existing techniques for calibrating the vignetting effect typ-
ically require special equipment or lighting conditions. For
example, Stumpfel et al. [22] acquire numerous images
of a known illuminant at different locations in the image
field and fit a polynomial to the acquired irradiances. In as-
tronomy, related techniques are known as flat-field correc-
tion [17]. Kang and Weiss [13] have explored calibrating
camera intrinsics using a simplified model of the vignetting
effect, albeit with limited success.

Other researchers have simply attempted to detect vi-
gnettes [18], but do not attempt to model their form or cor-
rect their effects.

Schechner and Nayar [21] utilized a spatially varying fil-
ter on a rotating camera to capture high dynamic range in-
tensity values. They calibrate this artificially-constructed
spatial variation – which they call “intended vignetting” –
using a linear least-squares fit. Our methods are a general-
ization of this approach in which exposures may vary be-
tween frames, and the response curve is not known in ad-
vance.

The effects of gain variation are widely known in the mo-
tion estimation literature. Altunbasak [3] uses a simple cos4

model of vignetting to compensate for spatial and temporal
gain variation across an image sequence with known cam-
era response. Candocia [6] developed a method to compen-
sate for temporal exposure variation under unknown cam-
era response, without reconstructing the absolute response
or intensity values. More recently, Jia and Tang [12] have
described a tensor voting scheme for correcting images with
both global (gain) and local (vignetting) intensity variation.

Concurrent with our research, Litvinov and Schech-
ner [15, 16] have developed an alternate solution to the same
problem. Their approach applies a linear least squares so-
lution in the log domain, using regularization in order to
constrain response and spatial variation, as opposed to our
use of parametric models.

3. Model and Assumptions
We will assume that the vignetting is radially symmetric
about the center of the image, so that the falloff can be pa-



rameterized by radius r. We define the vignetting function,
denoted M(r), such that M(0) = 1 at the center.

We also assume that in a given sequence of images, vi-
gnetting is the same in each image. On SLR cameras this
can be ensured by shooting in Manual or Aperture Priority
mode, with a fixed focal length and focus distance, so that
the geometry of the lens remains fixed over all frames.

We will also assume that the exiting radiance of a given
scene point in the direction of the camera is the same for
each image. This assumption will hold for all Lamber-
tian scenes under fixed illumination, in which the radi-
ance is constant over all directions. It also holds for non-
Lambertian scenes under fixed illumination such that all
frames share the same center of perspective. In the latter
case, all images share the same ray exiting from a scene
point, so the radiance does not change between frames.

Under these assumptions, we can model the pixel color
Px,i of a scene point x as seen in frame i as

Px,i = R(tiLxM(rx,i)), (1)

where R is the camera response curve, M is the vignetting
function, ti is the exposure (shutter duration) of frame i, Lx
is the radiance of the point in the direction of the camera,
and rx,i is the distance of the projection of x in image i from
the optical center of the frame.

In portions of this work we will use parameterized mod-
els for M and R. We will use the notation Mα and Rβ to
refer to instances of these models with specific parameter
vectors α and β , respectively.

4. Auto-Calibration
In this section we will discuss our methods for calibrating
vignetting when the scene radiances are unknown and arbi-
trary (but are held fixed over all frames).

4.1. Known Response
If the response curve is known, we can recover high dy-
namic range pixel irradiances using multiple exposures of
the same image. However, this may be time-consuming in
practice: Even high-end cameras with automatic bracketing
features will generally only provide at most two additional
exposures on either side of the principal exposure. Instead,
we make use of a small range of pixel exposures due to
vignetting and camera exposure compensation. To accom-
plish this, we optimize the nonlinear objective function

Qd(α, ti,Lx) = ∑
x,i

d [Px,i,R(tiLxMα(rx,i))] (2)

where d [x,y] is a distance metric.
Note that we can only solve for the unknowns up to a

scale ambiguity between the exposures ti and radiances Lx.
We make the solution unique by choosing a particular frame

as the “reference” frame such that t0 = 1. Our approach to
minimizing Equation 2 is discussed in Section 6.

Schechner and Nayar [21] solved a linear version of this
objective function, in which the response curve is inverted
and the probability distribution of the recovered intensity is
modeled as a Gaussian. Our approach differs mainly for
saturated or nearly saturated pixels: In the linear approach,
the covariance of the Gaussian becomes infinite and these
pixels are effectively discarded in the optimization. In con-
strast, our approach retains saturated pixels as useful infor-
mation, because they constrain the incoming radiance to be
above the well-exposed range of intensities. In addition, we
also recover the exposure of each frame.

4.2. Unknown Response
We now pose the following question: Can the vignetting
function be recovered when the response curve is also un-
known? Consider the objective function

Qd(α,β , ti,Lx) = ∑
x,i

d
[
Px,i,Rβ (tiLxMα(rx,i))

]
(3)

This objective function does not have a unique mini-
mizer, even when we fix some values to account for the
scale ambiguity mentioned in Section 4.1. We can easily
demonstrate the existence of a family of scenes that pro-
duce exactly the same pixel values, and therefore will all
produce the same value of Q. The construction of this fam-
ily, parameterized by γ , is as follows:

If Px,i = R(tiLxM(rx,i)), then let

R′(Ex,i) = R(E1/γ

x,i ) (4)

t ′i = tγ

i (5)
L′x = Lγ

x (6)
M′(rx,i) = M(rx,i)γ (7)

Therefore,

R′(t ′i L
′
xM′(rx,i))) = R(tiLxM(rx,i)) (8)

This construction defines a family of scene parameters
(response curve, exposure, radiance, and vignetting) that
all produce exactly the same images. Therefore, it is not
possible to uniquely solve for a vignetting function when
the response curve is unknown, without applying additional
constraints.2

However, since this family of scene parameters all gen-
erate the same image pixels, it is possible to remove the vi-
gnetting effect without resolving either the γ-ambiguity or
the scale ambiguity between ti and Lx. It suffices to find any
solution in this family, remove the vignette, and regenerate

2Litvinov and Schechner [16] have suggested using entropy maximiza-
tion to solve for γ .



new pixel values using our image formation model with the
recovered parameters.

That is, the pixels generated by our imaging model with
the vignette removed are the same for the entire family of
optimal solutions. If the original pixel with vignetting is

Porig = R(tiLxM(rx,i))
= R′(t ′i L

′
xM′(rx,i)), (9)

then we can generate new vignette-free pixel values as

Pnew = R′(t ′i L
′
x)

= R((tγ

i Lγ
x)1/γ) (10)

= R(tiLx)

This allows us to reconstruct vignette-free images with-
out knowing the response curve in advance. We apply this
mechanism in Section 6.3 to eliminate vignetting artifacts
from panoramic mosaics.

5. Parameterizations and Algorithm
In this section we describe some of the specific parameter-
izations and techniques used to solve for and remove vi-
gnetting and exposure variations.

All our image sequences are pan-tilt sequences: multi-
ple images that undergo no translation and only rotations
about the center of perspective between frames. We as-
sume that the scene is distant relative to the camera size,
so that corresponding points on different images in this se-
quence receive the same radiance incident on the lens sur-
face. This assumption allows us to infer that the differences
in the intensity of corresponding pixels is due solely to lens
and camera effects. Images were aligned using Brown and
Lowe’s Autostitch software [5, 4]. This method is robust to
gain variations between images, so vignetting and exposure
variation do not interfere with the spatial alignment.

Since we are modeling a compound effect from multiple
sources, we use an approximate model of the radial falloff
function. We have found that our ground truth images fea-
turing optical and natural vignetting (Section 6.1) are well
fit by parameterizing M(r) as a 6th order even polynomial.
We enforce the definition M(0) = 1 by holding the 0th order
coefficient constant:

Mα(r) = 1+α2r2 +α4r4 +α6r6. (11)

Although there is no unique minimizer to the objective
function of Equation 3, we can use a model and prior that
will provide a maximum a priori solution. Our model is
the first 5 dimensions of the EMoR subspace [9], a PCA
subspace that has been shown to represent a family of mea-
sured response curves well. Our prior is a Gaussian proba-
bility in this subspace. We estimate this Gaussian using the
same database of response functions used to construct the

EMoR model [8]. This is incorporated into the objective
function of Equation 3 as an additional term, penalizing re-
sponse curves that are far from the sample distribution with
covariance Σ:

Q(α,β , ti,Lx) = Qd(α,β , ti,Lx)+λQΣ(β ), (12)

where λ controls the strength of the prior relative to the data
term, and QΣ(β ) = β T Σ−1β . The new term QΣ(β ) is thus
proportional to the negative log likelihood of the Gaussian
distribution.

How many constraints are necessary to solve our prob-
lem? When computing the solution, we need only consider
points that are visible in more than one image. Each such
point adds 2 or more constraints (depending on the number
of images that include that point) and only 1 unknown. Our
vignette model has 3 unknowns, the camera response model
has 5 unknowns, and each of the N images has an unknown
exposure value. Therefore, we need in theory only 8 + N
points to compute a solution. However, we find in prac-
tice that due to image misalignment, noise, and the use of a
polynomial basis for M – which is prone to extrapolation –
many more points are needed for a robust solution. Each of
the examples shown in this section used 1000-2000 points,
sampled uniformly in a cylindrical coordinate system and
projected into the individual images.

For color images, we make the simplifying assumption
that all color channels have the same vignetting, response
curve, and gain, but different intensity values Lx. Thus each
pixel provides three constraints.

To minimize Equations 2 and 3 we used an alternating
optimization scheme, first fixing the parameters α , β and ti
while optimizing the Lx, then fixing the Lx while optimizing
parameters α , β and ti. This exploits the dependency struc-
ture of the problem, in which the Lx depend on the other
parameters but not upon each other, so that each subprob-
lem solves for only a small number of parameters. Each
subproblem optimizes the same objective function, taking
a downhill step, and therefore the alternating optimization
will converge.

We used the Nelder-Mead downhill simplex method [19]
to solve each of the subproblems. The monotonicity con-
straint of the EMoR model is implemented as an infinite ob-
jective cost for values of β corresponding to non-monotonic
response functions. We initialize the parameters as α =
0,β = 0, ti = 1, corresponding to no vignetting, mean re-
sponse, and uniform exposure.

Since there are many Lx variables, their sub-optimization
can be somewhat slow. We have accelerated this step by us-
ing a fast approximation in early iterations. In particular, we
solve for Lx in Equation 1 and average the N observations:

Lx =
1
N ∑

i

R−1
β

(Px,i)

tiMα(rx,i)
, (13)



where N is the number of images overlapping sample x.
Then the full nonlinear objective function is evaluated using
this approximate solution. If the energy is found to increase,
the full nonlinear optimization is performed instead. Thus,
in early iterations of the algorithm, we can take a fast down-
hill step without performing the full nonlinear optimization,
postponing costly computations until later iterations. Our
implementation – using Python’s numarray module – took
from 2 to 15 minutes to optimize parameters for the exam-
ples shown in Section 6, depending on the number of sam-
ple points and the amount of overlap between images.

We have experimented with both a squared distance met-
ric and a robust thresholded error metric to compare pixel
values. We have found in practice that the robust metric
provides only a subtle improvement over squared distance,
at a cost of significantly slower convergence. All of the re-
sults shown here therefore employed the squared distance
metric, d(P1,P2) = (P1−P2)2.

6. Results
6.1. Reference Calibration
To obtain ground truth vignetting calibration, we apply a
method inspired by that of Stumpfel et al. [22]. First, the
response curve is recovered using multiple exposures [7].
Then, objects with fixed emissive properties are pho-
tographed at multiple spatial locations within the frame. We
use a matte white card, taking care to avoid uneven lighting
and specular reflections. Given the inverse response curve,
the irradiance at a pixel is recovered from multiple expo-
sures as Ex,i = 1

N ∑i wiR−1(Px,i)/ti. The weighting wi is cho-
sen to downweight bright or dark pixels, for which the slope
of R−1 is very high and the inverted values therefore have
high variance.

We fit a polynomial vignetting function directly to the
white card image by optimizing the following equation over
all pixels:

Q(α) = ∑
x

(Ex,i−M′
α(rx,i))2 (14)

where M′
α(rx,i) = tiL0Mα(rx,i), and L0 is the radiance of the

reference object. The scale factor tiL0 is unknown, but we
solve for α using the condition M(0) = 1.

Using this method, we obtained “ground truth” measure-
ments and fit over a range of focal lengths, apertures, and
focus distances. Our findings are summarized as relative
illuminance charts in Figure 5. Each of these charts is nor-
malized so that M(0) = 1 and the corners of the acquired
image lie at rx,i = 1.

Figures 5a) and 5b) illustrate reference calibration for a
zoom lens. This lens exhibits significant vignetting across
its entire range of focal lengths, but shorter focal lengths
exhibit more significant vignetting. The vignetting is the
same for most aperture settings, but at very wide apertures
the effect of optical vignetting becomes more apparent.
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Figure 6 Comparison of our results to ground truth, for Canon
EOS 10D, 28mm-135mm zoom at 28mm, f/3.5. Polynomial fit
to ground truth in black dashes, our solution in solid red.

Figures 5c) and 5d) illustrate measurements for a fixed-
focal length lens. Such lenses can generally be designed
to mitigate image artifacts such as vignetting, because they
have fewer optical elements. Indeed at smaller apertures the
lens remains nearly vignette-free, but at apertures greater
than f/4 and focus distances further than .5m, the vignetting
becomes quite significant. At f/2.8, points at the corner of
the image receive just 60% of the light received at the center.

6.2. Auto-Calibration with Known Response

To analyze the accuracy of our auto-calibration approach we
acquired a panoramic sequence of images of a natural scene
using the same lens and settings as one of our white card
images from Section 6.1, and fit a vignetting function to the
panoramic sequence by optimizing Equation 2 over 2000
points in the cylindrical coordinate system of the panorama.
A comparison of vignette curves using the two methods is
shown in Figure 6.

The fits are nearly identical, except toward the corners of
the image (rx,i → 1) where fewer image samples constrain
the fit.

6.3. Vignette-Free Panoramic Mosaics

To reconstruct image sequences free of vignettes and ex-
posure variation, we minimize Equation 3 (or Equation 2,
if the response curve is previously calibrated) using a sam-
pling of points chosen as described previously. We note
that in an aperture-priority sequence, each image is exposed
properly for its own field of view, but there may be no sin-
gle image exposed at a level that represents the entire scene
well. We therefore compute a new “ideal” exposure for the
entire sequence using the geometric mean of the individual
exposures:

tnew =

(
∏

i
ti

)1/N

(15)
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Figure 5 Relative illuminance charts. a) Canon 28mm-135mm zoom, multiple focal lengths. b) Canon 28mm-135mm zoom, multiple
apertures. c) Canon 100mm, multiple apertures. d) Canon 100mm, multiple focus distances. For these lenses, falloff increases with
aperture and focus distance, but decreases with focal length.

Figure 7 A panoramic mosaic using aperture-priority exposure,
aligned and composited without blending. Above: original im-
ages. Below: after vignette and exposure compensation.

We now solve for the vignette-free exposure-compensated
pixel values by inverting the image formation equation, di-
viding out the vignette and exposure variation, and reapply-
ing the new ideal exposure and recovered response curve.

P new
x,i = Rβ

(
tnewR−1

β
(Px,i)

Mα(rx,i)ti

)
(16)

Figure 7(top) shows a mosaic of images photographed
in the camera’s aperture priority mode with no compensa-
tion and no blending. Aperture priority means that each
image has the same aperture but varying shutter duration,
so that the exposure differs in each frame but not the vi-
gnetting. Figure 7(bottom) shows the same images with
vignette and exposure compensation, and no blending. For
this image, the response curve of this camera was separately
calibrated [7]. Note that traditional panoramic mosaics are
photographed using fixed exposure settings, whereas our
method enables even aperture priority sequences such as
this one to be stitched together as panoramas.

Although we cannot recover absolute or relative radi-
ance values from images with unknown response curve,
we demonstrate that vignettes and exposure variation can

Figure 8 Foggy lake. From top: original images; original im-
ages after Photomontage blending; vignette compensation only;
vignette compensation and Photomontage blending.

nonetheless be removed from such images. Figure 8 is one
such sequence, showing significant exposure variation and
vignetting artifacts can be eliminated with our process. Fig-
ure 9 illustrates the same capability using a panoramic se-
quence of 12 images taken during the Apollo 11 mission in
July 1969 [1, 23]. Reference calibration of this camera is
presently impossible, as the camera and lens were left on
the surface of the moon in order to minimize fuel consump-
tion for the astronauts’ return voyage. Despite the poor
alignment of the images (probably due to parallax), our al-
gorithm robustly compensates for almost all the brightness
variation within and between the images.

Although our method aligns the color values of the mul-
tiple images in a panoramic sequence, it does not eliminate
all edge artifacts. One reason is that the polynomial model



Figure 9 Apollo 11. From top: original images; original images after Photomontage blending; vignette compensation only; vignette
compensation and Photomontage blending.

for vignetting does not accurately represent all sources of
radial falloff, and also extrapolates poorly towards the cor-
ners of images where the samples are sparser. These re-
maining artifacts can generally be removed using image
blending methods.

However, we consider blending to be orthogonal to vi-
gnette and exposure compensation, as blending alone does
not alleviate vignetting or exposure artifacts. To demon-
strate this effect, we applied the Photomontage method of
Agarwala et al. [2], which identifies optimal seams be-
tween images using graph cuts, then blends the images us-
ing gradient-domain fusion [14]. Without vignette or expo-
sure compensation, strange shadows and low-frequency in-
tensity oscillations can be seen in the composite image (see
right side of top 2 images in Figure 8). However, with vi-
gnette and exposure compensation, the seams between im-
ages are already nearly invisible even before blending (3rd

from top).
Note that after exposure and vignette compensation, the

surface of the moon in Figure 9 appears brighter in the di-
rection opposite the sun (near the photographers’ shadows,
in the center of the image) than in the direction towards the
sun. This is not an artifact of the algorithm, but a man-
ifestation of the high retroreflectivity of the moon’s sur-
face [10, 11]. The variation in brightness can also be in-
ferred indirectly by examining the gradients of filtered ver-
sions of the original images: The x component of the gradi-
ents point away from the sun in each image. This physical
effect is observable only after vignette and exposure com-
pensation.

7. Conclusion and Future Work
Vignetting is often ignored due to the perceived difficulty
of calibration, but it is a significant effect even for high-end



cameras and lenses. We have shown that when the response
curve is known, the vignetting function and exposure varia-
tions can be calibrated using corresponding points in multi-
ple images. Such calibration is necessary to obtain accurate
image radiometry, such as when estimating reflectance or
incident illumination.

When the response curve is unknown, the vignetting
function, image exposure, and scene radiance cannot be re-
covered uniquely. However, images can be reconstructed
with uniform exposure and without vignettes using any of
the family of solutions to an optimization. In addition to the
demonstrated application to panoramic image mosaics, this
type of vignette and exposure compensation can be utilized
to improve the quality of image-based rendering, and also as
a preprocessing step for a variety of vision algorithms which
assume spatial and temporal invariance, such as BRDF mea-
surement, photometric stereo, multiview stereo and optical
flow.

Several areas for improvement remain. Our system
presently requires multiple frames with the same vignetting
function, implying the lens settings must be held fixed; We
would like to be able to compensate for vignetting in ar-
bitrary panoramic sequences, or even in a single frame.
Both of these problems will likely require more sophisti-
cated models for vignetting beyond our simple polynomial
fit. We are also interested in methods to compensate for
other artifacts seen in panoramic mosaics, such as variable
color balance, glare, and lens flare.
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