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Abstract

We present a framework for automatically enhancing videos of a static scene using a few photographs of the same scene.
For example, our system can transfer photographic qualities such as highresolution, high dynamic range and better lighting
from the photographs to the video. Additionally, the user can quickly modify thevideo by editing only a few still images of
the scene. Finally, our system allows a user to remove unwanted objects and camera shake from the video. These capabilities
are enabled by two technical contributions presented in this paper. First, we make several improvements to a state-of-the-art
multiview stereo algorithm in order to compute view-dependent depths usingvideo, photographs, and structure-from-motion
data. Second, we present a novel image-based rendering algorithm that can re-render the input video using the appearance
of the photographs while preserving certain temporal dynamics such asspecularities and dynamic scene lighting.

Categories and Subject Descriptors(according to ACM CCS): I.4.3 [Image Processing and Computer Vision]: Enhancement
– Registration I.4.8 [Image Processing and Computer Vision]: Scene Analysis – Stereo, Time-varying imagery

1. Introduction

We have recently witnessed a revolution in the resolution and
quality of digital still cameras, with reasonably priced digital
cameras now capturing surprisingly high quality photographs.
Image editing tools have also become relatively mature and easy
to use. In contrast, similarly priced video cameras capture video
that is noisier, of lower resolution, and more dif�cult to edity than
digital photographs.

There are many practical reasons for this disparity in progress.
Video produces much more data than still photography and thus
necessitates more aggressive compression and limited resolution.
Still cameras can use �ash or long exposure, while video cameras
have to generally make do with the available light in the scene and
use short exposure times to maintain frame rates. Manual photo
editing is commonplace because it is not too time-consuming,
whereas the time required to convincingly edit every frame of a
video is prohibitive.

Our goal is to bring some of the bene�ts of still photography
to video. We envision the user complementing a video shoot with

y In this paper we usevideo editingto refer to the manipulation of pixels
in a video rather than the re-ordering of video frames.

a few high quality photographs of the scene. In fact, future hard-
ware could be designed to simultaneously capture such datasets.
With the right video authoring tool, the user could then transfer
the desirable qualities from the photographs to the video. Such an
authoring tool could be created given an algorithm that can es-
tablish pixel-to-pixel correspondence between the video and the
photographs. However, solving this correspondence problem in
the general case is incredibly challenging. Scene motion, changes
in scene lighting, and differences in viewpoint and camera charac-
teristics can drastically alter the appearance of the scene between
the video and photographs.

In this paper, we demonstrate a step towards achieving the
broad goal of enhancing real world videos using photographs. To
make the problem feasible, we restrict ourselves to scenes with
static geometry (i.e., temporal changes in the video are due to
camera motion, view-dependent effects like specular re�ection,
and/or changes in scene lighting). Assuming static geometry al-
lows our system to establish correspondence using structure from
motion and multi-view stereo. We note, however, that establishing
dense correspondence in the presence of scene motion remains an
active area of research in computer vision, and we believe our ren-
dering framework could readily accommodate videos of dynamic
scenes given a robust correspondence algorithm.

Leveraging the correspondences computed using the static ge-
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(a) Super-resolution (b) High dynamic range (c) Enhanced exposure (d) Object touchup (e) Object removal

Figure 1: Video enhancements produced by our system. Given a low quality video ofa static scene (top row) and a few high quality
photographs of the scene, our system can automatically produce a variety of video enhancements (bottom row). Enhancements include
the transfer of photographic qualities such as (a) high resolution, (b) highdynamic range, and (c) better exposure from photographs to
video. The video can also be edited in a variety of ways by simply editing a few photographs or video frames (d, e).

ometry assumption, our system provides a general framework for
enhancing videos in a number of ways.

Transferring photographic qualities: A user can transfer
high resolution, better lighting, and high dynamic range from
a few high-quality photographs to the low-quality video. We
demonstrate that artifacts commonly found in consumer-level
video such as noise, poor exposure, and poor tone-mapping are
signi�cantly reduced using our system.

Video editing: A user can edit a video by editing just a few
photographs (or, equivalently, a few keyframes of the video).
These manual image edits, such as touch-ups, image �lters, and
objects mattes, are automatically propagated to the entire video.

Object and camera-shake removal:A user can remove un-
wanted objects from a video by roughly specifying its outline in a
few photographs or video frames. We also demonstrate the ability
to stabilize video by smoothing out the original camera path and
re-rendering the scene as seen from the new camera path.

Our research hasthreemain contributions.

First, we show that by augmenting consumer-level video with a
few high-quality photographs a uni�ed framework can be created
to solve a wide variety of problems that have been previously
investigated in isolation.

Next, we present several improvements to Zitnick et al.'s
multi-view-stereo (MVS) algorithm [ZK06]. Using numerous
real world scenes, we demonstrate that our improved MVS al-
gorithm is able to extract view-dependent depths of a scene con-
taining complex geometry, and do so robustly in the presence of
dynamic lighting, noise, and unconstrained camera paths.

Finally, our main technical contribution is a novel image-based
rendering (IBR) algorithm that can re-render the input video us-
ing the appearance of the photographs. The depths estimated by
stereo algorithms are generally imperfect; thus the typical IBR
approach of rendering and blending textured depth maps results

in blurring or ghosting artifacts. Our IBR algorithm is able to pre-
serve the high-frequency details of the photographs used to re-
construct the video by insteadstitching togetherlarge patches. In
addition, using a gradient-domain approach, our IBR algorithm
enforces temporal variations in the radiance of a scene-point ob-
served in the input video to be replicated in the enhanced video.
As a result, our enhanced videos combine the spatial richness of
the input photographs (e.g., high dynamic range, high resolution)
with the temporal richness of the input video like moving spec-
ularities and dynamic lighting without explicitly modeling these
phenomenon.

2. Related Work

The core of our work is a general technique for automatically
combining photographs and videos of a static scene to create
many interesting effects. Many effects shown in this paper are
commonly created by folks in the visual effects industry us-
ing software packages such as Shake, BouJou, and AfterEffects.
While the degree of automation in these packages has grown con-
siderably in the past decade, they still rely heavily on manual
effort (e.g., matting, rotoscoping, etc.) and specialized capture
equipment (e.g., blue screen �lming, steady cams, use of robotic
arms to capture precise video paths, etc.); all are highly unappeal-
ing solutions to the amateur user. For example, let us consider
the task of editing the surface texture of an object in a video.
One could use rotoscoping to track the surface (which could re-
quire considerable manual effort) and propagate user edits from
a reference video frame to all other video frames. To make mat-
ters worse, the rotoscoping option could only be used for near-
planar surfaces. This is because a non-planar surface could ex-
hibit self-occlusions and other complex distortions with changes
in viewpoints. Alternatively, the user could use the commonly
used matchmove feature which allows the insertion of virtual ob-
jects into a video while automatically accounting for camera mo-
tion. However, this feature would still require the user to model,

c The Eurographics Association 2007.



P. Bhat et al. / Using Photographs to Enhance Videos of a Static Scene

Image Based
      Rendering

video
reconstruction

spacetime
fusion

Output
Geometry
Estimation

structure
from motion

multi-view
stereo

Output

low quality video 

photos edited
photos

video frame depths

photo-1
depths

photo-n
depths

reconstructed video

enhanced video

System Inputs

Figure 2: Our system for enhancing videos using photographs consists of two main components. The geometry estimation component
computes view-dependent depths for each video frame and photographusing structure from motion and multi-view stereo. The image-
based rendering component uses the estimated geometry to assign eachpixel in the video to a corresponding pixel in the photographs. This
pixel-to-pixel mapping is used to reconstruct the input video using the original or manually-edited photographs. Finally, our spacetime
fusion algorithm improves the result by combining the spatial richness of thereconstructed video with the temporal dynamics of the input
video. Figures3, 6, and7 show an example sequence with intermediate results produced by individual system components.

skin, and light the virtual object, and then create an occlusion
matte for the �nal compositing. In contrast, our technique com-
pletely automates the creation of many commonly used effects.
Admittedly, however, our current technique is restricted to videos
of a static scene.

In the research community, day-time photographs have been
used to improve the legibility of night-time videos [RIY04], and
Shechtman et al. [SCI05] demonstrated video super-resolution
using stills. Both of these systems, however, assume no paral-
lax between the video and photographs. There is also a long his-
tory of work that takes advantage of multiple videos. Perhaps the
closest related work in spirit is Video Epitomes [CFJ05], which
can reconstruct portions of a video by �rst learning its epitome.
This representation can be used to reduce noise, �ll holes in
video, or perform super-resolution (assuming some portions of
the video are more zoomed-in than others). Similarly Sawhney et
al. [SGH� 01] transfer the appearance of a high-resolution video
to a nearby low-resolution video. In contrast to these two ap-
proaches, we transfer appearance from nearby photographs rather
than video, which introduces additional challenges such as tem-
poral consistency.

Another possibility is to use additional images or videos that
are not necessarily of the same scene as examples for a ma-
chine learning approach. This approach has been demonstrated
for super-resolution of images [FJP02] and video [BBM03]. In
contrast, our task is easier because we are given high-resolution
examples of thesamescene. Not surprisingly, our results are
much more faithful to the real scene. The analogies approach
learns a transformation between two images [HJO� 01] or two
videos [HE02]; our video editingapplication is similar to these
methods as it uses analogy-style user input, though unlike previ-
ous work we apply transformations de�ned on images to videos.

Several recent techniques are designed to fuse multiple pho-
tographs or videos to improve the resulting depictions. Examples
for photographs include interactive photomontage [ADA � 04],
combined long and short exposures [JSTS04], and combined
�ash/no-�ash [PAH� 04]. Sand and Teller [ST04] describe a reg-

istration algorithm for fusing two videos shot along similar cam-
era paths. In constrast we fuse photographs and video to produce
video, and do not restrict camera paths.

The two core algorithms in our system, multi-view stereo
(MVS) and image based rendering (IBR), have many antecedents.
Stereo continues to be an active area of research for both two-
views [SS02] and multiple views [SCD� 06]; our MVS algorithm
is an extension of the algorithm proposed by Zitnick et al. [ZK06].
Image-based rendering and novel-view interpolation [KS02] con-
tinue to receive considerable attention; we describe a novel IBR
approach that uses both graph-cuts [BVZ01] and gradient-domain
compositing [PGB03] while taking camera motion into account.
Our graphcuts compositing preserves high-frequency details of
the images used for reconstruction (e.g., photographs) while
the our gradient-domain compositing hides spatial and temporal
seams between the images. Moreover, if the camera path of the
output video matches the camera path of the input video then our
IBR algorithm can also incorporate the view-and-time dependent
lighting effects captured by the input video.

Many of the results we demonstrate can be generated using
other specialized techniques. Examples include producing high-
dynamic range video [KUWS03], correcting poorly-exposed
video [BM05], creating object mattes [WBC� 05], consistently
editing an object in multiple images [SK98], removing objects
by �lling holes in video [WSI04], and IBR-based video stabiliza-
tion [BBM01]. Our approach makes the trade-off of restricting to
static scenes and optionally including photographs to give a sin-
gle (and, we believe, extensible) framework that achieves each of
these effects.

3. Overview

Figure2 provides a high level overview of our system pipeline.
The inputs to the system depend on how the user wishes to en-
hance the video. To transfer photographic qualities, the user in-
puts both a video and a few photographs of the scene (see Fig-
ure3). For other enhancements the user can choose to input pho-
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Input photographs Input and output videos

Figure 3: Example inputs and output of our system. Given a video with overexposedregions (top row) and a few photographs of the scene
shot with proper exposure (left column), our system automatically produces an enhanced video (bottom row). Only two of the eleven input
photographs have been shown here.

tographs, or to simply choose a few keyframes of the video to
serve the same purpose. For example, to perform object removal,
the user speci�es a rough outline of the object in a few video
frames or photographs. Similarly, to perform video editing the
user provides registered pairs of original and edited images (sim-
ilar to the user input used by Image Analogies [HJO� 01]); the
image-pairs may be created using photographs or video frames.

After the inputs are speci�ed, the system performs geome-
try estimation and image based rendering to create an enhanced
video. In the remainder of this paper we focus on the details of
these two system components, and then present a variety of video
enhancements produced by our system. Finally, we conclude by
discussing the limitations of our approach and suggesting areas
of future research.

4. Geometry Estimation

The �rst phase of our pipeline consists of estimating the geom-
etry of the scene imaged by the video and photographs. We be-
gin by recovering camera poses and sparse scene geometry using
a structure from motion (SFM) algorithm. Then, we produce a
view-dependent depth map (example shown in Figure6) for each
photograph and video frame using a multi-view stereo (MVS) al-
gorithm.

4.1. Structure from motion

Our system uses the structure-from-motion implementation of
Snavely et al. [SSS06]. Like any standard structure-from-motion
library, Snavely's system produces projection matrices for each
photograph and video frame, a sparse cloud of 3D scene points,
and a list of the viewpoints from which each scene point is visible.

4.2. Multi-View Stereo

Our multi-view stereo algorithm extends the approach proposed
by Zitnick et al. [ZK06]. We choose to build on their algorithm

because it is speci�cally tailored for image based-rendering of
scenes constructed from video footage. They construct view de-
pendent depths maps using an over-segmentation approach that is
robust to image noise and some types of scene specularities. We
make three improvements on their work: (1) we specialize our al-
gorithm for heterogeneous datasets containing both video frames
and photographs; (2) we use a wider range of disparity planes re-
sulting in higher quality depth maps; and (3) we use 3D scene
points generated by the structure from motion system to improve
depth estimation.

Before elaborating on the various improvements we are
proposing, here is a brief introduction to the previous algorithm.
In the �rst step, each input image is divided into segments us-
ing a color-based over-segmentation algorithm. The second step
computes a disparity for each segment. This step is performed
by constructing a pair-wise Markov Random Field (MRF) for
each image. Each node in the MRF corresponds to a segment,
and edges are added between all nodes corresponding to abut-
ting segments. Similar to the color consistency constraint used
in pixel-based MRFs, the prior of the MRF biases neighboring
segments with similar average colors to have similar depths. The
likelihood or data term of the MRF is computed using a standard
color similarity measure, as well as incorporating occlusion in-
formation based on current disparity beliefs. The disparity beliefs
of all segments for all images are simultaneously updated using
loopy belief propagation. At each iteration, the data term of each
MRF is biased to be consistent with the beliefs of MRFs from
neighboring images. Neighboring MRFs are also used to com-
pute occlusion information. As a result, information is shared be-
tween all neighboring images, and the �nal disparities are largely
consistent.

It should be noted that we do not expect the reader to be
able to implement our MVS algorithm without reading Zitnick et
al.'s paper [ZK06] that describes the previous algorithm in de-
tail. Though a full understanding of the previous algorithm is
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(a) (b) (c) (d)

Figure 4: An overview of viewpoint neighbors: (a) Viewpoints
corresponding to video frames (orange nodes) and photographs
(blue nodes). (b) Each photograph is connected as a neighbor
to its two nearest photographs and its nearest video frame (blue
links). (c) Each video frame is connected to its two nearest video
frames (red links) and (d) two video frames that are M frames
away (yellow links). Here M is three, though we typically set M
to ten. Distance between viewpoints is determined using our view-
point distance metric.

not required to appreciate the various improvements we will now
present.

4.2.1. Handling video and photographs

Working with both photos and videos requires special attention
to color matching, construction of the viewpoint neighborhood
graph, and the de�nition of a metric for proximity of viewpoints
that incorporates similarity of �elds of view.

4.2.1.1. Determining viewpoint neighbors The previous algo-
rithm assumes that neighboring viewpoints are de�ned by the user
based on the camera setup. We automate this step. For each view-
point, the neighboring viewpoints are determined based on 2 ob-
jectives. First, the neighborhood graph (created by treating view-
points as nodes and pairs of neighboring viewpoints as edges),
should avoid disconnected components. This objective ensures
that depth information can propagate between all viewpoints
through the data term of the MRF. Second, viewpoints should be
considered neighbhors when they facilitate robust stereo match-
ing. If only very close viewpoints are matched as neighbors, the
small baselines may lead to ambiguous and low-precision depths.
Alternatively, only matching viewpoints that are far from one an-
other will lead to problems due to occlusions. We thus pair each
viewpoint with a mixture of nearby and distant viewpoints, as il-
lustrated in Figure4 and described in its caption.

4.2.1.2. Viewpoint distance metric One could use the Eu-
clidean distance between viewpoints to evaluate which views are
near or far from each other. However, this metric can perform
poorly when, for example, two nearby cameras point in opposite
directions. We instead measure distance as the inverse of the num-
ber of 3D scene points observed in common by two viewpoints.
In the absence of scene point information the number of feature
matches between two images can also be used to compute dis-
tance. Our distance metric can be seen as measuring the amount
of overlap in scene structure observed by two viewpoints.

4.2.1.3. Color matching The video frames and photographs
generally have different color characteristics due to differences

(a) (b) (c) (d)

Figure 5: Options for computing disparity planes: (a) Disparity
planes generated using planes parallel to a reference viewpoint
(blue camera). (b) Disparity planes generated using planes par-
allel to each viewpoint (i.e., view-dependent disparity planes). (c)
3D scene points generated by SFM. (d) Non-fronto-parallel dis-
parity planes generated to approximate the 3D scene points.

in lighting and re�ection, exposure, and sensor characteristics,
making it more dif�cult to compute correspondences. Thus, when
computing the data term for any reference view, we �rst match
the color distribution of each neighboring view to that reference
view using the color-matching algorithm proposed by Reinhard et
al. [RAGS01].

4.2.2. Augmenting the set of disparity planes

To improve the ability of the multi-view stereo algorithm to re-
construct the depths of observed surfaces, we augment the set of
available disparity planes in two ways.

4.2.2.1. View-dependent disparity planesIn the previous al-
gorithm, the set of possible segment depths for each viewpoint
are derived from a set of disparity planes that are parallel to the
projection plane of a single reference viewpoint (Figure5a). The
more orthogonal a camera's viewing axis is to the reference cam-
era's viewing axis, the more dif�cult it is for this set of dispar-
ity planes to adequately approximate the depths for that camera.
In our algorithm, each viewpoint uses a set of unique disparity
planes that are parallel to its own projection plane (Figure5b).
In addition to improving the depth estimation, this modi�cation
allows our algorithm to handle camera paths that could not be
handled by the previous algorithm, such as a 360� loop around
an object. It should be noted that view-dependent disparity planes
arenot a novel contribution on our part and have been used in
other stereo algorithms [KS04].

4.2.2.2. Non-fronto-parallel disparity planes Many surfaces
in real-world scenes are slanted planes, e.g., �oors and walls.
Though fronto-parallel disparity planes allow reconstruction of
arbitrary shape, these slanted planes can be more succinctly de-
scribed using non-fronto-parallel disparity planes. Thus, we aug-
ment the initial set of disparity planes with several slanted planes
that are recovered from the 3D scene points (Figure5c, 5d)
using iterative RANSAC [Tor98]. There has been some prior
work in using non-fronto-parallel disparity planes in MVS al-
gorithms [YWY � 06,KSK06]. These methods extract non-fronto-
parallel planes by matching small texture patches between two
neighboring viewpoints. In contrast, using the 3D scene points
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generated by the SFM algorithm allows our plane extraction
method to incorporate information from all viewpoints.

4.2.3. Incorporating SFM scene points

Structure from motion yields a sparse estimate of 3D scene struc-
ture that can be used as a prior in the multi-view stereo algorithm.
Each 3D scene point is associated with a list of viewpoints that
observe it. If we project a scene point onto a segment in each of
these viewpoints, the depth of the segment should be consistent
with the depth of the scene point. Thus, we modify the data term
in the MRF to minimize the distance between each 3D scene point
and the hypothesized disparity plane of the segment onto which
the 3D scene point projects.

5. Image Based Rendering

The view-dependent depths computed in the �rst phase of our
system implicitly de�ne a correspondence between each pixel in
the video and pixels in one or more photographs, as well as a
correspondence between pixels in consecutive frames of video.
In the second phase of our system, we use this correspondence
to reconstruct the video using the appearance of the photographs
while preserving the temporal dynamics of the video. The �rst
algorithm in this phase, which we callvideo reconstruction, uses
an MRF formulation to choose a photograph from which to copy
color for each video pixel, with the goal of producing a plau-
sible and seamless composite. The second algorithm, which we
call spacetime fusion, produces the �nal result by integrating a
gradient �eld created using the spatial gradients of the video-
reconstruction result and temporal gradients of the input video.
The gradient �eld is de�ned in a manner that enforces the tempo-
ral variations in the radiance of a scene-point observed in the input
video to be replicated in the �nal result. As a consequence, the �-
nal result mimics the temporal variations of the input video (e.g.,
dynamic lighting, moving specularities, etc) and avoids tempo-
ral incoherence caused by errors in the depth estimates and large
exposure changes in the source photographs.

5.1. Video Reconstruction

Since the projection matrix of each video frame is known, one
approach to reconstructing the video would be to perform novel
view interpolation (e.g., [ZKU� 04, HKP� 99]) from the pho-
tographs for each video frame. However, typical view interpo-
lation algorithms produce a result that is a weighted average of
the warped input images, which generally (and in our experience)
result in ghosting artifacts and loss of high-frequency details. In-
stead, we use an MRF formulation to create a composite from
large, coherent patches of the projected inputs while minimizing
the visibility of the patch boundaries. Also, unlike the classic view
interpolation problem, we have depth and color information (al-
beit of lower quality) for each video frame we are trying to inter-
polate (reconstruct) from the input photographs. This information
can be used to guide the choice of which photograph to use for
a particular video pixel. In particular, we can favor source pho-
tograph pixels that have similar depth and color to those of the

existing video pixel to resolve occlusions and promote visually
faithful reconstructions.

We will now describe the version of the video reconstruction
algorithm designed for enhancements that transfer photographic
qualities to video. The minor modi�cations required for other
video enhancements are described later in this section.

Given a video frameVi , we begin by selecting a set of source
viewsS1::N to be used in its reconstruction.S1::N is formed of the
N nearest photographs toVi . We useN = 4, except when doing
object and camera-shake removal, as described later in this sec-
tion. We determine the nearest photographs using the viewpoint
distance metric de�ned in Section4.2.1. Using a z-buffered point
splatting algorithm, we then separately re-render each source
view Sj from the viewpoint of video frameVi . The result is a set of
N re-projected imagesP1::N and corresponding re-projected depth
maps. Each imagePi provides each pixel inVi with one or zero
reconstruction candidates (Pi may be unde�ned in some regions
of Vi). Note that, for the case of superresolution, we spatially up-
sample the video frames and their depth maps as a pre-process.

The video reconstruction problem can now be formulated as a
labeling problem in an MRF framework. In particular, the goal is
to assign to each pixelp 2 Vi a labelL(p) indicating which of the
N reconstruction candidates provided byP1::N should contribute
to the �nal result. Ideally, we would optimize the labeling of all
video frames in a single MRF formulation instead of constructing
an MRF for each frame independently. However, inference on a
3D MRF can be computationally expensive, and we have found
experimentally that acceptable results are produced by comput-
ing each frame independently. The per-frame approach is able to
maintain some temporal coherence because the multi-view stereo
algorithm encourages depths in each video frame to be consistent
with the depths in neighboring video frames. Any residual tem-
poral incoherence in the reconstructed video is removed by the
spacetime fusion algorithm.

Our cost function to evaluate the quality of a given labeling L is
in the form of a standard Markov Random Field:

C(L) = å
p2 Vi

CD(p;L(p)) + l å
f p;qg2N

CS(p;q;L(p);L(q)) ; (1)

whereCD is the data cost function,CS is the smoothness cost
function, p andq are neighboring pixels de�ned byN which is
the set of all eight-connected neighbors inVi , andl is a user de-
�ned parameter that controls the trade-off between data cost and
smoothness cost. We typically setl to 2.0.

The data cost function encourages video pixels to be recon-
structed from photographs with similar color and depth. We de-
�ne CD as:

CD(p;L(p)) =

8
<

:

1 i f PL(p)(p) is unde f ined
1 i f jd(Vi ; p) � d(PL(p) ; p)j > k
jjVi (p) � PL(p)(p)jj

;

wherePL(p) is the projection associated withL(p), d(I ; p) denotes
the depth value at pixelp in I , andk is a user de�ned constant that
controls the mismatch between the depth of a pixel and its depth
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Photograph depths Video depths

Figure 6: View-dependent depth maps generated by our multi-view stereo algorithmfor the images in the top row of Figure3.

in a projected image. We typically setk to a value that corre-
sponds to a projection error of 5 pixels.

To make the functionCD more robust to differences in the color
distribution ofVi andP1::N, we �rst match the color distribution
of eachPi to the color distribution ofVi using the method of Rein-
hard et al. [RAGS01]. This step is repeated for each framei. Note
that these transformed colors are only used for computingCD and
are not used in creating the �nal composite.

In Equation (1), CS measures how well the labeling produces
a seamless reconstruction.CS is similar to the smoothness cost
introduced by Kwatra et al. [KSE� 03], and is de�ned using two
terms,X andY:

X = jjPL(p) (p) � PL(q)(p)jj + jjPL(p)(q) � PL(q)(q)jj ;

Y = 2:0� (r p;qPL(p) + r p;qPL(q));

where image color channel values are in the range[0::1] and
r p;qPi returns the gradient magnitude between pixelsp and q
in Pi . Lastly,CS(p;q;L(p);L(q)) = X � Y. Thus,CS encourages
a seam between two projections to either pass through regions
where the projections have similar colors (i.e., termX), or to run
along strong edges (i.e., termY).

We assign each pixelp 2 Vi to one of its candidate labels by
using alpha-expansion moves [BVZ01] to �nd a labeling that is
the approximate global minimum of our cost function. Note that
for some pixels inVi the cost is in�nite, which means that no re-
projected depths were a suitable match; this can occur if the corre-
sponding surface point was not observed in any of the source pho-
tographs. Such pixels are not assigned a label, resulting in holes
in the reconstructed video that are later �lled in by the spacetime
fusion algorithm.

5.1.1. Video reconstruction specializations

The above algorithm can be applied to transfer qualities from pho-
tographs to video. For other applications of our framework, how-
ever, some modi�cations are required.

Object Removal: To remove an object from a video, the user
speci�es a rough mask for the object in one or more source im-
ages, which may be photographs or video frames. The masks are
drawn to inscribe the object (i.e., no pixels outside the object
boundary are selected). The union of the masks is then transferred
to every video frame and dilated in order to select the entire object

(and possibly a few background pixels near the object boundary).
Now the goal is to reconstruct the masked portion of each video
frame using the unmasked portion of nearby video frames and
photographs.

Remember, the video reconstruction algorithm assumes that
the approximate depths and colors of the region being recon-
structed is avaliable before the reconstruction. However, the color
and depth information for our target regions (i.e., masked portion
of each video frame) is not avaiable. We approximate this color
and depth information by re-projecting the unmasked portions of
a large number of nearby video frames and photographs (typically
75) into each video frame's masked area, resulting in several can-
didates for each masked video pixel. We set the depth and color
of each masked pixel to the median value of its candidates. Note
that these values do not need to be very precise, since they are
only used as a guide to the video reconstruction algorithm when
selecting among source images for a video pixel. Now we can use
the video reconstruction algorithm to reconstruct the masked re-
gion of the video frame. The source viewsS1::N for each video
frame in the video reconstruction algorithm are generated using
the unmasked portions of the 75 nearest video frames and pho-
tographs.

Camera-shake removal: To remove camera shake from an in-
put video our system creates a new camera path by smoothing the
recovered extrinsic camera parameters (translation and rotation)
of nearby video frames. Unfortunately, the result of this opera-
tion is that color and depth information is not available for the
new viewpoints we wish to reconstruct, though color and depth
are available for nearby views (i.e., original video frames). We
use the approach described in the object removal case to approx-
imate the color and depth information in the new viewpoints, and
then apply the video reconstruction algorithm to reconstruct each
new viewpoint using 20 nearest video frames and photographs as
source images. Since the new viewpoints have not been captured
in any of the input images we cannot use our viewpoint distance
metric to determine the distance between two viewpoints. Instead
we simply use the Euclidean distance between the viewpoints as
determined by their extrinsic camera parameters.

Video editing: When performing video edits, each input pho-
tographSj is accompanied by a user-edited version of the photo-
graph,S0

j . We would like the video reconstruction algorithm to
produce a video that is constructed using the pixel inS0

1::N. So
we project these images to form reconstruction candidatesP0

1::N
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for each video frameVi , just as we projectedS1::N to form P1::N.
To avoid visible seams in the output, the smoothness costCS is
computed from the colors ofP0

1::N. The data costCD, however,
is computed from the unedited colors ofP1::N since the data cost
measures how well the photographs and unedited video frames
match.

A problem with this approach is that it is unreasonable to ex-
pect the user to manually edit every photograph in the input and,
moreover, to edit each photograph in a perfectly consistent fash-
ion; that is, some of the images may not be edited and, in im-
ages that are edited, the edited pixels in different images that cor-
respond to the same real-world location may not have the same
color. These differences can lead to �ickering in the �nal video.
To mitigate this problem we propagate user edits across the pho-
tographs to ensure that they are consistent before running the
video reconstruction algorithm. Starting with one of the edited
photographsS0

j , call it the “sender,” we re-project its depths into
its neighboring photographs, call them “receivers.” At each pixel
in receiverSk, if the re-projected depth is withink of the receiver
depth, then we copy the re-projected color ofS0

j into S0
k. The

receivers are then added to a FIFO queue, and the process is re-
peated, drawing from the queue until it is empty. Once a photo-
graph has been a sender, it is never reused as a sender or receiver.
Figure7 shows a video editing result where the user has applied a
painterly effect that randomly places brush strokes onto each pho-
tograph. In this case the painterly effect across the photographs is
made consistent using our edit propagation mechanism. Then the
video reconstruction and spacetime fusion algorithms are used to
transfer the painterly effect from the photographs to video. As a
result brush strokes appear to adhere to the surfaces in the video
without temporal inconsistency (see supplementary video).

5.2. Spacetime Fusion

The video created by the video reconstruction algorithm will re-
semble the photographs, but may suffer from several artifacts. The
main problem of concern is that a video reconstructed using pho-
tographs often appears oddly lifeless, because it lacks the rich
temporal variations found in videos even of static scenes; for ex-
ample, the position of specular highlights will not move as the
viewpoint changes. In addition, spatial and temporal seams be-
tween various photographs used to reconstruct the video may still
be visible due to large exposure variations in the photographs.
Also, holes may appear in the areas of the reconstructed video
where none of the projections were de�ned (e.g., portions of the
scene not seen in any of the photographs).

A common approach to compositing regions from several pho-
tographs (or videos) while minimizing visible seams is to com-
bine them in the gradient domain [PGB03, WRA04]. Typically,
gradient-domain compositing is performed by copying gradients
rather than colors from the source imagery to form a gradient
�eld G(x;y;t). Then, the enhanced videoE(x;y;t) is created by
solving for a video whose gradient �eld is as close as possible
to G(x;y;t). Our spacetime fusion algorithm is similar in spirit to
this approach.

Frame t Frame t+1

Gt

Figure 8: The �gure depicts a glass window (with shiny frame)
seen in two consecutive video frames. A change in camera view-
point causes the re�ection of the sun (shown in red) to shift with
respect to the window pane. Using pixel depths we can deter-
mine all pairs of pixels in the two frames that correspond to the
same real world location (e.g., the pixel-pair outlined with a dot-
ted square). The spacetime fusion algorithm constrains the tem-
poral gradient between such pixel-pairs to match the input video,
thus preserving the dynamics of the re�ection.

For our applications, we wish the output to exhibit the rich spa-
tial properties of the photographs, as well as, the temporal varia-
tions of the input video. We modify the standard gradient-domain
composing methods, by using the motion-compensated temporal
gradientsGt from the input video, and spatial gradientsGx and
Gy from the photographs.

Speci�cally, we de�ne the spatial gradients as follows. In ar-
eas where the labeling of a video frame is unde�ned (i.e., holes)
we copy spatial gradients from the input video. To improve the
color consistency, we �rst transform colors in the hole region by
color matching the original frame to the non-hole portions of the
reconstructed frame (again using the color distribution matching
method of Reinhard et al. [RAGS01]). In areas where the label-
ing of a video-frame transitions from one source to another (i.e., a
photograph-to-photograph or photograph-to-hole transition), the
pixels used in computing the gradient may come from different
sources; in this case, we average the spatial gradients of the two
overlapping sources at the transition seam. Spatial gradients in all
other regions are copied directly from the reconstructed video.

The temporal gradients, on the other hand, are created from the
original input videoafter accounting for motion. We have found
that using Wang et al.'s [WRA04] approach of constraining tem-
poral gradients between temporally adjacent pixels (i.e., between
pixels(x;y;t) and(x;y;t + 1)) leads to severe ghosting artifacts for
videos with camera motion. Also, to properly capture the tempo-
ral variations in the input video, we need to constrain the temporal
gradient between input video pixels that correspond to the same
real-world location (Figure8). Therefore, the temporal gradient
Gt (x;y;t) is de�ned using the pixel at(x;y;t) in the input video
and its corresponding pixel in framet + 1. The correspondence is
computed by re-projecting the pixel (with depth) at timet into the
viewpoint of the frame at timet + 1.

We create the enhanced videoE by solving an over-constrained
system of linear equations formed by the following three con-
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Edited photograph Edited video

Figure 7: A video editing example: (Left column) one of the eleven input photographs processed using a painterly effect found in Adobe
Photoshop; (Right column) painterly video created by transfering the painterly effect from the photographs to the input video.

straints for each pixel inV:

E(x+ 1;y;t) � E(x;y;t) = Gx(x;y;t);

E(x;y+ 1;t) � E(x;y;t) = Gy(x;y;t);

E(x+ u;y+ v;t + 1) � E(x;y;t) = Gt (x;y;t);

where(u;v) is a correspondence vector linking the pixel at(x;y;t)
and its corresponding pixel in framet + 1. (Each color channel
forms an independent set of linear equations.)

Since(u;v) is a non-discrete motion vector and the variables
in the linear system correspond to discrete locations,(u;v) must
somehow be discretized. One option is to simply round(u;v)
to the nearest integers. We have obtained more accurate results,
however, using a form of bi-linear interpolation. That is, each cor-
respondence vector results in temporal constraints for the four in-
teger coordinates nearest to(x+ u;y+ v;t + 1), weighted by the
distance between the �oating-point location and the integer loca-
tion. We further weight each temporal constraint byA(x;y;t) � t ,
whereA(x;y;t) is a measure of the con�dence in the accuracy of
(u;v), andt is a user-de�ned constant that controls the trade-off
between �delity to the spatial gradients and the temporal gradi-
ents.A(x;y;t) is set to the probability of the depth assigned to
(x;y;t) during multi-view stereo phase of geometry estimation.
The results in this paper were generated using a value between
7.0 and 9.0 fort .

We use the LASPack [Ska95] conjugate gradient solver to
solve the over-constrained linear system. Constraints involving
pixels outside the boundaries of the video spacetime volume are
modeled using Neumann boundary conditions. Large videos that
cannot be solved in main memory are solved in slabs of 20-30
frames. When solving a slab of frames, the boundary conditions
for faces shared with adjacent slabs are modeled using Dirich-
let boundary conditions, while the remaining faces continue to
use Neumann boundary conditions. Using mixed boundary con-
ditions in this manner allows information to �ow through the en-
tire video during optimization and ensures temporal coherency
between adjacent slabs in the �nal result.

5.2.1. Spacetime fusion specializations

In some cases, the user might not want to transfer the temporal
variations from the input video to the enhanced video (e.g., if the

input video exhibits noise or other unwanted temporal variations),
but may still wish to remove other artifacts in the reconstructed
video using spacetime fusion; mainly temporal �ickering caused
by large exposure variations in the photographs. We can remove
these artifacts by assuming pixels that correspond to the same
real-world location exhibit constant brightness between adjacent
video-frames. That is, the motion-compensated temporal gradi-
entsGt (x;y;t) are set to zero for allx, y, andt. The spacetime
fusion result in Figure3 was generated in this manner to avoid
transferring the abrupt changes in sunlight from the input video
to the enhanced video.

Finally, when performing spacetime fusion for theobject re-
movalcase we cannot use the depth and color information from
the masked regions of the input video since these regions con-
tain the object we want to remove. Instead, we de�ne the motion
vectors(u;v) for these regions using the depths projected from
the neighboring frames that were used to �ll in the color informa-
tion during video reconstruction (Section5.1.1). Then, we assume
scene points in the masked regions exhibit constant brightness,
and set the motion-compensated temporal gradients for these re-
gions to zero. The motion vectors and temporal gradients for the
camera shake removalcase are de�ned in exactly the same man-
ner.

6. Video Enhancements

Once a mechanism is developed that can register photographs to
a video and then blend the two data sources in a seamless fashion,
the same mechanism can be used in a wide variety of applications.
The following are a few of the video-enhancement applications
we have explored using with our system.

Super-Resolution.Figure1a shows an example where we ef-
fectively quadruple the resolution of a video in each spatial di-
mension using seven high-resolution photographs. For ef�ciency,
the photographs were scaled down to the size of the video
frames before computing depths. To generate high-resolution
video frames, depths from the low-resolution photographs were
upsampled to match the output resolution. Color data was ob-
tained from the original high-resolution photographs.

HDR Video. Figure 1b shows a video of a scene with high
dynamic range. Due to the enormous contrast in the scene, no
single exposure setting can faithfully capture all the subtleties of
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(a) Input video (b) Video matte (c) Selective decolorization (d) Object touch-up (e) Object touch-up

Figure 9: Video editing examples: Using the depths generated for the input video (a),and a user-drawn object-matte in a single video
frame, the system can produce an object-matte for the entire video (b). (c)The object-matte can be used for a variety of effects like
selective decolorization. (d) Any touch-ups made to an object in one or more video frames can be consistently applied to the entire video;
in this case, re�ections on top of the photos are removed. (e) Our systemcan also apply touch-ups to an object while preserving the
lighting effects exhibited by the original object; in this case, the photos are changed without modifying the re�ections.

the scene geometry. We augmented our video capture session with
six sets of exposure bracketed photographs which were used to
create six HDR photographs. Using the HDR photographs our
system increased the dynamic range of the input video.

Enhanced exposure.The input video in (Figure1c) shows a
dinner-table scene lit by light cast through a window on a rainy
night. The video contains view-dependent and dynamic lighting
effects. Rain drops �owing down the window pane cast dynamic
caustics on the dinner table. Also, the silverware in the scene ex-
hibits view-dependent specular highlights. Unfortunately, due to
the limited light in the scene the video is severely underexposed in
some regions. To improve the exposure of the video we captured
twelve photographs of the scene using longer exposure time than
it is possible when capturing a video. The input video and pho-
tographs were processed by our system to produce a video with
enhanced exposure that exhibits the same temporal dynamics as
the original video. The example in Figure3 shows another expo-
sure enhancement result where a video with overexposed regions
was enhanced using photographs shot with proper exposure.

Video Editing. Figures1d, 7, and9 show a variety of video
editing operations that can be used to enhance a video.

Matte generation.Figure9b shows a result where a user-drawn
object matte in a single video frame is used to automatically cre-
ate an object matte for the entire video. The resulting video matte
is consistent with the occlusions in the scene. Such a video matte
can be used to create a variety of effects like selectively decol-
orizing the selected object (Figure9c).

Object touch-up.In the example shown in Figure1d we used a
texture synthesis algorithm to remove the scar from the tree trunk
in a single video frame. Then our system used the modi�ed pixels
in the video frame to consistently edit the entire video. Similarly,
to remove the re�ections on the framed photos (Figure9d) we
replaced each photo with a re�ection free image in a single video
frame. We also produced the converse result where the photos in
the video were replaced with different photos while preserving
the re�ections (Figure9e).

Painterly video.Several image �lters when applied to video
frames independently produce a video that is temporally incoher-
ent; most notable of these �lters are painterly effects that "paint"
a given image using varied brush strokes. To create a painterly

version of the video shown in Figure3 we �rst applied a painterly
�lter to all input photographs. The inconsistencies in the �ltered
photographs were then removed using the edit propagation mech-
anism described in section5.2.1. The painterly �lter was then
transferred from the �ltered photographs to the video using our
IBR algorithm to produce a temporally-coherent result (see Fig-
ure7 and supplementary video).

Object removal. Figure 1e shows an example where a no-
parking sign is occluding much of the scenic background. We
speci�ed the object to be removed, in this case the no-parking
sign, by drawing a rough mask in a single video frame. The sys-
tem then re-renders the input video without the no-parking sign
by using the object removal technique described in section5.2.1.

Camera shake removal. Our system is also able to remove
camera shake from a jerky input video by �rst locally smooth-
ing the projection matrices of the input camera path to create a
smooth camera path. A stabilized video is then created by ren-
dering the scene as seen from the smooth camera path using
our IBR algorithm (see supplementary video). Unlike traditional
video-stabilization methods, which use 2D stabilization (or piece-
wise 2D stabilization), our method has the advantage of handling
videos with signi�cant depth changes and camera shake caused
by 3D camera rotation. Also, our method incorporates informa-
tion from several video frames to �ll in information at frame bor-
ders to avoid cropping–a common problem with 2D techniques.
While our method is not the �rst to use 3D scene reconstruction
for video stabilization (see Buehler et al. [BBM01]), our results
are likely to be of higher quality due to advances made by our
MVS and IBR algorithms.

All enhancement examples were generated using the same pa-
rameter values listed in the paper with the exception of thet pa-
rameter in spacetime fusion. For some examples we generated
three spacetime-fusion results in parallel using three different set-
tings for t (t settings were picked from the range listed in Sec-
tion 5.2) and used the most visually pleasing result.

7. Discussion and future work

To demonstrate the versatility of our system we chose to qual-
itatively test it on numerous real-world examples. Our supple-
mentary video demonstrates eleven results generated using eight
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different scenes. Five of the eight input videos suffer from prob-
lems like low resolution, specularities, improper exposure, and
dynamic lighting. Our experiments demonstrate that using pho-
tographs, along with low-quality video, can produce better depth
estimates than using the video alone since our MVS algorithm
propagates depth information across all views. In addition, the
estimated depths need not be perfect as our IBR algorithm can
substantially reduce reconstruction artifacts caused by erroneous
depths (see our supplementary video).

While our results look visually pleasing, under careful scrutiny
some artifacts can be seen in most of the results. These artifacts
can be traced to errors in the output of the various computer vi-
sion algorithms used in our system. For example, structure-from-
motion sometimes yields imprecise projection matrices, which
leads to incorrect epipolar constraints being used in the depth
estimation. Some artifacts are caused when the image over-
segmentation algorithm produces segments that straddle depth
discontinuities thus violating the MVS assumption that each seg-
ment can be assigned to a single disparity plane. Also, the depths
estimated by our MVS algorithm are rarely perfect, and these
errors can also lead to artifacts. Lastly, the spacetime fusion al-
gorithm can sometimes introduce a hazy blur in the result video
when the depths used to compute the temporal gradient are im-
precise. In general, our IBR algorithm is robust to modest errors
in depth estimation, but large errors can result in artifacts.

7.1. Future Work

7.1.1. Processing speed

The current processing speed of our system is quite slow with �ve
minutes being spent on each video frame (resolution: 853 x 480);
where two minutes are spent on SFM, two minutes are spent on
MVS and the last minute is spent on IBR. There is a lot of room
for improvement in our unoptimized research code since runtime
speed was not our primary concern. Recent work on computing
SFM for video with real-time performance [Nis05] would be es-
pecially bene�cial to our system. Our spacetime fusion algorithm
can probably be sped up using a preconditioner similar to the one
proposed by Szeliski [Sze06].

7.1.2. User interaction

While computer vision algorithms will continue to improve, we
cannot expect them to always perform perfectly. In this paper we
show how far automatic algorithms can be pushed; however, a
production-quality system would need to incorporate user inter-
action to further improve the results. Ideally, users could locally
�x problems and the system would propagate those �xes across
the output. We plan to explore user interaction within the context
of our system as future research.

7.1.3. Dynamic scenes

We have demonstrated that video can be enhanced in a number of
useful ways by capturing and incorporating several photographs
of the scene. We have also described a framework that can

achieve these improvements. However, the system described in
this paper is only the �rst step in achieving our overall goal,
since most videos that people take depict dynamic scenes.
It is important to note that our restriction to static geometry
is solely due to our method for computing correspondences;
our IBR algorithm for video editing and transferring pho-
tographic qualities, for example, can be integrated with any
method that can compute correspondence, even for dynamic
scenes. We see promise in the advances being made in the
general correspondence problem, such as long-range optical
�ow [ WB04], non-rigid shape reconstruction [BZS� 06] and
synchronized camera arrays [WJV� 05]. As computer vision
algorithms continue to improve, we believe that the static-
scene restriction can be lifted, and that our overarching goal
of generally using photographs to enhance videos can be realized.
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