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Figure 1: We mine Internet photo collections to generate time-lapse videos of locations all over the world. Our time-lapses visualize a
multitude of changes, like the retreat of the Briksdalsbreen Glacier in Norway shown above. The continuous time-lapse (bottom) is computed
from hundreds of Internet photos (samples on top). Photo credits: Aliento Más Allá, jirihnidek, mcxurxo, elka cz, Juan Jesús Orı́o, Klaus Wißkirchen,
Daikrieg, Free the image, dration and Nadav Tobias.

Abstract

We introduce an approach for synthesizing time-lapse videos of
popular landmarks from large community photo collections. The
approach is completely automated and leverages the vast quantity
of photos available online. First, we cluster 86 million photos into
landmarks and popular viewpoints. Then, we sort the photos by
date and warp each photo onto a common viewpoint. Finally, we
stabilize the appearance of the sequence to compensate for lighting
effects and minimize flicker. Our resulting time-lapses show diverse
changes in the world’s most popular sites, like glaciers shrinking,
skyscrapers being constructed, and waterfalls changing course.

CR Categories: I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Modeling and recovery of physical attributes;
I.4.3 [Image Processing and Computer Vision]: Enhancement—
Filtering and Geometric Correction; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Stereo and Time-varying im-
agery
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1 Introduction

We see the world at a fixed temporal scale, in which life advances
one second at a time. Instead, suppose that you could observe an
entire year in a few seconds—a 10 million times speed-up. At this
scale, you could see cities expand, glaciers shrink, seasons change,
and children grow continuously. Time-lapse photography provides
a fascinating glimpse into these timescales. And while limited time-
lapse capabilities are available on consumer cameras [Apple ; Insta-
gram ], observing these ultra-slow effects requires a camera that is
locked down and focused on a single target over a period of months
or years [Extreme Ice Survey ].

Yet, these ultra-slow changes are documented by the billions of
photos that people take over time. Indeed, an Internet image search
for any popular site yields several years worth of photos. In this
paper, we describe how to transform these photo collections into
high quality, stabilized time-lapse videos. Figure 1 shows a few
frames from one result video of a glacier receding over a decade.
This capability is transformative; whereas before it took months or
years to create one such time-lapse, we can now almost instantly
create thousands of time-lapses covering the most popular places
on earth. The challenge now is to find the interesting ones, from all
of the public photos in the world. We call this problem time-lapse
mining.

Creating high quality time-lapses from Internet photo sharing sites
is challenging, due to the vast viewpoint and appearance variation
in such collections. The main technical contribution of this paper is
an approach for producing extremely stable videos, in which view-
point and transient appearance changes are almost imperceptible,
allowing the viewer to focus on the more salient, longer time scale
scene changes. We employ structure-from-motion and stereo al-
gorithms to compensate for viewpoint variations, and a simple but
effective new temporal filtering approach to stabilize appearance.
Our second significant contribution is a world-scale deployment,



where we process over 80 million public Internet photos, yielding
several thousand mined time-lapses spanning the worlds most pho-
tographed sites.

2 Related work

Unstructured time-lapses Very related to our work, [Matzen and
Snavely 2014] discover changing elements in 3D scenes by clus-
tering reconstructed 3D patches into space-time cuboids. This ap-
proach is limited to reconstructing planar structures like billboards
or graffiti in urban scenes. The authors estimate the period of time
an element was visible in the scene and propose a 3D visualization
where the user can move through time and space, seeing only the
discovered elements that existed at the given time.

The 4D Cities project [Schindler et al. 2007; Schindler and Dellaert
2010] models changes in a city using historical imagery over several
decades. By reasoning about the visibility of features points, their
system infers missing or inaccurate timestamps and builds a sparse
4D reconstruction of the buildings in a city.

Our approach substantially differs from both projects in key as-
pects. Our focus is to generate complete time-lapse videos (with no
holes), instead of building sparse 4D representations of the world.
Our approach also works on a global scale, discovering thousands
of time-lapses all over the world, in contrast to the handful of sites
analyzed by previous work. Finally, our system is not limited in
scope to urban scenes and we generate time-lapse videos for di-
verse natural phenomena.

Lastly, Picasa FaceMovies [Kemelmacher-Shlizerman et al. 2011]
use a personal photo collection to generate a movie of how a person
ages through time. Besides the obvious difference of exclusively
targeting faces, FaceMovies stopped short of creating a continuous
time-lapse video which is a key focus of our work.

Time-lapse with human intervention: The ConstructAide sys-
tem [Karsch et al. 2014] aids in analyzing and visualizing construc-
tion progress by having the user guide the registration of unstruc-
tured photos to a 3D model of a building.

Another common approach to visualizing how a scene changes over
time is rephotography, where one compares two photos taken from
the same viewpoint. [Bae et al. 2010] presents a user interface to
guide a photographer to lock in the exact same viewpoint of a pre-
vious photograph of the scene.

Static time-lapses: The synthesis of time-lapse videos from static
video cameras, like webcams, has been explored in the literature.
In [Bennett and McMillan 2007], ordinary videos are condensed
into time-lapses, using sampling and filtering strategies to con-
vey different visual objectives. [Rubinstein et al. 2011] propose a
method to denoise small motions in a time-lapse, optimizing the re-
sulting video by borrowing pixel values in a spatio-temporal neigh-
borhood.

Static time-lapse videos also provide extensive information about
how the scene interacts with different lighting conditions. This
has been exploited to compute factored lighting models [Sunkavalli
et al. 2007] and perform photometric stereo to obtain scene
BRDFs [Ackermann et al. 2012]. Scene geometry can also be in-
ferred from the shadows cast by clouds [Jacobs et al. 2010] or by
finding correspondences along the shadow edges [Abrams et al.
2013]. By using a database of time-lapse videos, [Shih et al.
2013; Laffont et al. 2014] learn appearance transfer models that
can change the time of day or time of year of a photograph.

Appearance modeling: The works of [Amirshahi et al. 2008;
Whyte et al. 2009] perform image inpainting of occluders in an

Reference Camera

Selected Camera

Discarded Camera

Discarded Camera

Glacier

Figure 2: Top-down view of the Briksdalsbreen Glacier reconstruc-
tion. Red and green points correspond to the 9411 camera centers
in the SfM reconstruction. The reference image for the time-lapse in
Figure 1 is shown in top left and the blue star represents its camera
center. Selected cameras for the time-lapse are shown in green and
discarded cameras in red. The two images on the right correspond
to other clusters in the distribution of photos of the scene. Photo
credits: Daikrieg, jirihnidek and Nadav Tobias.

input photo using Internet photos of the same scene. In con-
trast, [Hays and Efros 2007] find similar scenes in a large Internet
photo collection to inpaint regions of an input image. [Laffont et al.
2012] compute coherent intrinsic images for a photo collection by
reasoning about reflectance of pairs of 3D points across the photo
collection.

3D change detection: To detect geometric changes in a
city, [Taneja et al. 2011; Taneja et al. 2013] warp different images
onto each other by using a previously captured 3D model. In [Ulu-
soy and Mundy 2014] probabilistic 3D change detection guides the
4D spatio-temporal reconstruction of laboratory scenes.

3 System overview

The input to our system is a collection of 86 million timestamped
and geotagged photos around the world. The system automatically
discovers all locations in the world with enough imagery and gen-
erates a time-lapse video for each.

Section 4 describes how candidate time-lapse video locations are
mined from unstructured photo collections. Each candidate time-
lapse video consists of a reference camera viewpoint and a set of
nearby images. Next, the images of each candidate time-lapse are
ordered chronologically and warped into the reference camera to
compensate for viewpoint differences, as explained in Section 5.
Section 6 describes our approach to stabilize the appearance of the
video to compensate for varying lighting conditions and occlusions
from transient objects like people.



(a) Briksdalsbreen Glacier, Norway (b) Goldman Sachs Tower, New York

Figure 3: Reference image and computed depthmap for Briskdalsbreen Glacier and Goldman Sachs Tower scenes. Warmer colors represent
pixels closer to the camera. Note that in the Goldman Sachs Tower scene, the building under construction is reconstructed even though it is
absent for part of the time-lapse. Photo credits: Daikrieg and Cebete.

4 Locating time-lapses at planet scale

In this section we present a method to discover locations for mined
time-lapse videos. These locations correspond to camera view-
points that, due to the prominence of the depicted scenes, have been
photograped from a similar viewpoint repeatedly over time by many
different tourists.

We pose the problem of discovering time-lapse viewpoints as
finding clusters of images that feature the same subject from
similar viewpoints. We first cluster the photos based on their
geolocations into landmarks and for each landmark we com-
pute 3D reconstructions using Structure-from-Motion techniques
[Agarwal et al. 2011]. Note that a landmark may have several dis-
joint reconstructions, e.g., inside vs. outside.

To find popular viewpoints within a 3D reconstruction, we use the
canonical view approach of [Simon et al. 2007]. Their approach
works by analyzing SIFT feature co-occurrences to partition the set
of images into groups of photos with similar content and viewpoint.
Representative images are then chosen for each group, by finding
images that share the most features within the group. We compute
the 20 highest ranked reference images (canonical views) for each
3D model.

For each reference image IR, we find “nearby” images {Ii} with
similar viewpoints and directions, satisfying the following criteria:

• the optical axis is within α degrees of the reference viewpoint
direction and,

• the camera center is located within a radius R = tan(α) · d
of the reference image camera center, where d is the average
distance from the reference camera center to 3D locations of
image features visible in the reference image,

where α is a camera inclusion threshold.

Finally, we filter all candidate time-lapses that contain fewer than
300 timestamped images. Note, that two different candidate time-
lapses from the same landmark might overlap in the photos they
include.

Figure 2 shows the discovered reference image of the Briskdals-
breen Glacier time-lapse and the camera centers of the nearby im-
ages as green points. Note the tongue of the glacier being occluded
by the landscape in the bottom right image, which is discarded by
our proximity constraint.

5 Geometric stabilization

In this section we describe how to correct the photos for differ-
ent viewpoints with respect to the reference image. If the scene is

nearly planar, a homography could be sufficient to warp image Ii
into reference image IR. We can compute such homographies by
using RANSAC on projections of the 3D tracks in the SfM model
from camera Ci to camera CR. This baseline method works well
for scenes without parallax, but as expected, is not able to stabilize
scenes with larger depth variations.

To account for parallax, we compute a depthmap D from the view-
point of the reference image IR. Although changes in the scene
geometry over time are not modeled, we found that computing one
global depthmap for the whole sequence provides adequate align-
ment for most scenes.

We use a temporal version of the classical plane sweep multi-view
stereo algorithm [Kang and Szeliski 2004], modified to account for
changing scene geometry and occluders like people. The main idea
is to compute matching costs between images that were taken close
in time. As with classical plane sweep, we generate a set of fronto-
parallel depth planes with respect to the reference image IR to com-
pute matching costs. We discard the nearest and farthest 1% of 3D
SfM points as well as 3D points with triangulation angles of less
than 2 degrees, and evenly distribute enough depth planes (with a
maximum of 200) over the depth range of the remaining 3D points
to cover all disparity values.

We now define our temporal matching cost. Traditionally, stereo
methods choose a reference image and only compute matching
costs against that image. This does not work for our scenes as
the scene geometry is changing over time. Instead, we compute a
matching cost for each image as reference, using only images with
nearby timestamps for matching, and then compute the overall cost
as the median of costs over time, as described next.

Given the sequence of input images (I1, . . . , In) ordered by times-
tamp, the per-image cost Ci

d(p) for pixel p at depth d at timestamp
i is defined as

Ci
d(p) = medianj∈[i−T,i+T ]NCCd(i, j, p) (1)

where NCCd(i, j, p) is the normalized cross correlation of a patch
of size K = 7 around p of the projections of images i and j to
the depth plane d, and T = 20 is the temporal window size. The
overall cost is then

Cd(p) = mediani∈[1,n]C
i
d(p). (2)

We compute a smooth depthmap D by using a standard MRF for-
mulation where the data term for each plane is the matching cost
Cd described above and the spatial term is a truncated L1 dis-
tance [Boykov et al. 2001]. We used a spatial term weight of 0.2
and a truncation parameter of 4 disparity values. Figure 3 shows
the resulting depthmaps for two sites.



(a) Median of all images (b) Median with homography alignment (c) Median with stereo alignment

Figure 4: Stabilization results for two different scenes, Goldman Sachs Tower (top) and Butchart Gardens (bottom). Aligning the images
with depth (c), produces a sharper composite compared to homography (b), or no alignment (a).

Finally, we compute the warped images Iwi by projecting each im-
age into the reference camera CR. For each pixel in IR, we find its
correspondence in Ii by using the depthmap to infer its 3D position
and projection into Ii, using z-buffering to account for occlusions.
We inpaint occluded pixels whose projection falls inside the image
boundary of Ii using [Telea 2004].

Figure 4 compares stabilization techniques. We test two methods,
stabilization with homographies and the proposed stabilization with
stereo, and compute for each the median image of the stabilized
sequence. We also show the median of all input images (without
stabilization) for comparison. The stereo method produces signifi-
cantly sharper results.

6 Appearance stabilization

In this section we describe how to stabilize the appearance of the
warped images to correct for different lighting conditions and oc-
cluders. We formulate this task as computing an output time-lapse
video frame for each warped image Iwi (p).

One effective approach for removing noise is median filtering.
[Bennett and McMillan 2007] apply a temporally moving median
filter to the frames of a time-lapse video. We adapt this method to
the warped image sequences by computing the median of the valid
pixels in the warped images, i.e., the pixels whose projection into
the input image camera lies within the image frame. We found that
large temporal windows are needed to reduce flicker but also result
in oversmoothed transitions.

To address this drawback, we introduce a new temporal regulariza-
tion approach. For each pixel, the goal is to compute its RGB value
over time, by regularizing the pixel values of the warped sequence.
Let xi = Iwi (p) ∈ [0, 1]3 be the RGB value in the warped image
i, and let yi be the RGB value in the output frame that we wish to

compute. We optimize the following:

min
y1,...,yn

∑
i|xi 6=∅

δ (‖yi − xi‖) + λ
∑
i

δ (‖yi+1 − yi‖) (3)

where δ(·) is a loss function, λ is a temporal smoothing coefficient
and xi = ∅ when p corresponds to pixel coordinates outside the
image boundary of Ii, i.e., has no correspondence in Ii. As for
occluded pixels, we found that inpainting them works better than
treating them as missing because they appear consistently around
depth discontinuities and our temporal regularization operates only
on a per-pixel basis, i.e., lacks a spatial regularization term. Fig-
ure 6 shows the effects of inpainting in the warped images and the
resulting artifacts in the output frames around depth discontinuities
if not used.

We experimented with several loss functions, including L1 and L2.
We found L2 works best for smooth transitions, whereas L1 be-
haves better at discontinuities; we obtained best results with Huber,
a robust loss function that is L2 near 0, and L1 elsewhere. Figure 5
compares a moving median with our Huber approach and shows the
advantage of our method (easier seen in the video).

7 Planet scale time-lapse results

We mined time-lapses from 86M public geolocated photos from
Picasa and Panoramio. We clustered 120K different landmarks and
computed 755K 3D reconstructions. We then discovered 10,728
time-lapses across 2942 landmarks, that contain more than 300 im-
ages, using the camera selection criteria of α = 10 degrees. We
mined the time-lapses on a cluster with over 1000 nodes.

Figure 7 shows that the discovered time-lapses cover the globe
and follow a similar distribution as publicly available Internet pho-
tos [Hays and Efros 2008]. Figure 8 shows a histogram of the length
of the discovered time-lapses. A view of London from Greenwich
Park contains several of the longest time-lapse sequences, with
more than 10K photos each.
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Figure 5: Appearance stabilization for the Goldman Sachs Tower scene. (a): 3 sample images of the sequence showing the building at
different stages of construction, with the pixel column of the y-t profiles highlighted. (b): y-t profile of the warped image sequence, showing
this pixel column over time (moving to right). (c): result of temporal moving median filter of width 80 [Bennett and McMillan 2007]. (d):
result of our proposed temporal regularization with smoothing coefficient λ = 100. Moving median blurs the transitions and has more
flickering, particularly in the sky pixels. Photo credits: Zack Lee, ToastyKen and Cebete.

(a) Without inpainting (b) With inpainting

Figure 6: Effects of inpainting in the resulting time-lapses. Top:
Warped images without inpainting (left) and with inpainting (right).
Occluded pixels and pixels outside the input frustrum are shown
in black. Note only occluded pixels are inpainted. Bottom: Cor-
responding frames of the resulting time-lapses. Note the artifacts
around the depth discontinuities without inpainting. Photo credits: Na-
dav Tobias.

To compute the final time-lapses, we subsampled time-lapse candi-
date locations containing more than 1000 photos, by choosing the
1000 closest images under our camera selection criteria. We gener-
ated time-lapse videos at a resolution of 1200 pixels in its larger di-
mension and set the temporal regularization parameter to λ = 100
for all sequences. We set the scale parameter of the Huber loss in

Equation 3 to 4/255 for the data term, i.e., 4 pixel values, and to
1/255 for the temporal term. We use Ceres Solver [Agarwal et al. ]
to solve for the temporal appearance independently per color chan-
nel. Although our depthmap parameter choices worked reasonably
well for most scenes, we fine-tuned the depthmap estimation pa-
rameters for some of the sequences in the video, in particular, the
size of the NCC filter and the weight of the spatial term.

For efficiency, we computed depthmaps at lower spatial (800 pix-
els) and temporal (500 images) resolution. To generate final time-
lapse videos, we play back the regularized output frames at a rate of
120 frames per second (subsampled by 4x to achieve 30fps), mean-
ing that time proceeds at a rate proportional to the rate of photos
taken.

A typical time-lapse with 1000 input posed photos takes about 6
hours to compute on a single machine, split equally between view-
point and appearance stabilization. SfM reconstruction of 1000
photos takes 16 hours for matching and 1 hour for reconstruction
with VisualSFM [Wu 2011]. While the algorithms can be optimized
a lot more for efficiency, we point out that a few hours is negligible
compared to the time period of several years it took to capture the
photos.

For the special case of Briksdalsbreen Glacier, we expanded the
time-lapse with more online photos, as our sequence contained few
recent photos. We downloaded images from Flickr using a manu-
ally specified query, e.g., “Briksdalsbreen Glacier”, and added them
to the reconstruction using 2D-to-3D matching techniques to regis-
ter the images.

Our time-lapses cover a broad range of interesting transformations:

• Construction: from individual buildings to whole skylines.
The time-lapse of the Goldman Sachs Tower (Figure 9(a)),



Figure 7: Map of the location of discovered time-lapses. Europe
contains the highest density of time-lapses, while few exist in Africa
and South America, as there are fewer photos available.

shows the building rise from the ground, followed by windows
coming in.

• Changing cities: smaller changes in the appearance of cities,
like billboards or changes in urban elements, like sidewalks,
etc. (see video).

• Vegetation: plants and trees growing, like the trees in the
Butchart Gardens (see video).

• Waterfalls: we found that waterfalls are constantly changing,
as branches dry up and new ones appear (Figure 9(b)).

• Renovations: monuments being renovated, like the Basilica
of St. Maria of Salute in Venice, in Figure 9(c).

• Seasons: seasonal changes, like the blooming cycles of the
flowers in Lombard Street (Figure 9(d)).

• Geological changes: retreating glaciers, erosion or, like in
Figure 9(e), the growth of a hot spring in Yellowstone due to
the deposit of minerals.

• Stationary: some scenes are interesting because of how little
they change. For example, the Swiss Guard is so still, that it
becomes part of the time-lapse of an entrance to the Vatican
(see video).

We evaluated a random subset of 500 time-lapses for 1) reconstruc-
tion quality, rating them as “good” or “bad”, and 2) interestingness,
either interesting or not interesting. We found about 45% of the
discovered time-lapses to be both good and interesting, 14% only
good and 25% only interesting.

See the supplemental video for more examples.

7.1 Failure modes

We observed a number of interesting failure modes in our system.
As noted by 4D cities, timestamps of online photos are not accurate.
When many photos are incorrectly timestamped, our regularization
approach can generate spurious halos, like in the second inset of the
Goldman Sachs Tower (Figure 9(a)).

The time-lapse of Las Vegas (see video), shows blurring in areas
where the geometry changes significantly over time. Generating
time-varying depthmaps from unstructured photo collections is an
exciting direction for future work.

In other cases, the 3D reconstruction (SfM or stereo) fails. For ex-
ample, in the Mendelhall Glacier scene (see video), some cameras
are registered to features on the moving glacier and our time-lapse
video fails to stabilize the background. Such scenes pose a special
challenge, as they break the assumptions in Structure-from-Motion
systems.
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Figure 8: Histogram of number of cameras in the discovered time-
lapses, ranging from 300 to 10953 photos.

Another limitation of our system are scenes whose recovered 3D
models contain both day and night photos. The synthesized time-
lapses show an unrealistic “twilight” effect that averages the day
and night photos and flickers over time, as seen in the Hong Kong
skyline time-lapse (see video).

Our depthmaps are inaccurate in regions that are known to be chal-
lenging for stereo algorithms, such as oblique surfaces, like ground
planes, clutter or occlusions, like busy squares, or thin structures.

Addressing these limitations is a great topic for future work.

8 Conclusion

We introduced an approach to mine time-lapses from Internet pho-
tos. Our system discovered 10,728 time-lapses that show how
the world’s most popular landmarks are changing over time. Our
method stabilizes the time-lapse video sequence so that the underly-
ing changes in the scene become visible. The depicted changes in-
clude buildings under construction, glaciers retreating, plants grow-
ing, seasonal changes, and many geological processes.

The scale and ubiquity of our mined time-lapses creates a new
paradigm for visualizing global changes. As more photos become
available online, mined time-lapses will visualize even longer time
periods, showing more drastic changes.
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