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Abstract

This paper extends the traditional binocular stereo problem
into the spacetime domain, in which a pair of video streams is
matched simultaneously instead of matching pairs of images
frame by frame. Almost any existing stereo algorithm may
be extended in this manner simply by replacing the image
matching term with a spacetime term. By utilizing both spa-
tial and temporal appearance variation, this modification re-
duces ambiguity and increases accuracy. Three major appli-
cations for spacetime stereo are proposed in this paper. First,
spacetime stereo serves as a general framework for struc-
tured light scanning and generates high quality depth maps
for static scenes. Second, spacetime stereo is effective for a
class of natural scenes, such as waving trees and flowing wa-
ter, which have repetitive textures and chaotic behaviors and
are challenging for existing stereo algorithms. Third, the ap-
proach is one of very few existing methods that can robustly
reconstruct objects that are moving and deforming over time,
achieved by use of oriented spacetime windows in the match-
ing procedure. Promising experimental results in the above
three scenarios are demonstrated.

1. Introduction
Shape estimation from stereo images has been one of the core
challenges in computer vision for decades. The vast majority
of stereo research has focused on the problem of establishing
spatial correspondences between pixels in a single pair of im-
ages for a static moment in time. The appearance of the real
world varies over time, due to lighting changes, motion, and
changes in shading or texture over time. Traditional stereo
algorithms handle these variations by treating each time in-
stant in isolation. In this paper we argue that better results
may be obtained by considering how each pixel varies over
time and using this variation as a cue for correspondence an
approach we call spacetime stereo.

The basic principle of spacetime stereo is straightforward.
First, consider conventional stereo algorithms, which gener-
ally represent correspondence in terms of disparity between a
pixel in one image and the corresponding pixel in another im-
age. The matching function used to compute disparities typi-
cally compares spatial neighborhoods around candidate pairs

of pixels. Spacetime stereo simply adds a temporal dimen-
sion to the neighborhoods used in the matching function. The
spacetime window can be a rectangular 3D volume of pixels,
which is useful for reconstructing scenes in which changes
in lighting and appearance, rather than shape changes, dom-
inate. When the object is moving significantly, the disparity
must be treated in a time-dependent fashion. In this case, we
compute matches based on oriented spacetime windows that
allow the matching pixels to shift linearly over time. In ei-
ther case, the match scores based on spacetime windows are
easily incorporated into existing stereo algorithms.

The spacetime stereo approach has several advantages.
First, it serves as a simple yet general framework for comput-
ing shape when only appearance or lighting changes. These
changes may be natural, e.g., imparted by the weathering
of materials or the motion of the sun, or they may be arti-
ficially induced, as in the case of structured light scanning.
We present results specifically for the latter. Second, when
shape changes are small and erratic and the appearance has
complex semi-repetitive texture, such as one might find when
observing a waterfall or a collection of leaves on a tree blow-
ing in the wind, spacetime stereo allows robust computation
of average disparities or “mean shapes.” Finally, for objects
in motion, possibly deforming, the oriented spacetime win-
dow matching provides a way to compute accurate disparity
maps when standard stereo methods fail. This last case is
shown to be particularly effective for structured light scan-
ning of moving scenes.

The rest of the paper is organized as follows. Section 2
discusses prior work both in stereo and in structured light
scanning. Section 3 presents spacetime metrics used to eval-
uate candidate correspondences. Section 4 describes how to
adapt existing stereo algorithms to perform spacetime stereo
matching. Section 5 presents experimental results. Section 6
concludes with a discussion of the strengths and weakness of
the approach.

2. Previous work
Our work builds upon a large literature on stereo correspon-
dence and structured light scanning. Here we summarize the
most relevant aspects of this body of work.

Stereo matching has been studied for decades in the com-



puter vision community. We refer readers to Scharstein and
Szeliski’s recent survey paper [15] for a good overview and
comparison of the current state of art. Current stereo algo-
rithms are able to simultaneously solve for smooth depth
maps for texture-less regions and model depth discontinu-
ity and occlusion in a principled and efficient way. Current
stereo algorithms match two or more images acquired at a
single time instant and do not exploit motion cues that exist
over time.

Recently, a number of researchers have proposed inte-
grating stereo matching and motion analysis cues, an ap-
proach called motion stereo. For example, Mandelbaum et
al. [12] and Strecha and van Gool [16] recover static scenes
with a moving stereo rig. Tao et al. [17] represent a scene
with piecewise planar patches and assume a constant veloc-
ity for each plane to constrain dynamic depth map estima-
tion. Vedula et al. [18] present a linear algorithm to com-
pute 3D scene flow based on 2D optical flow and estimate
3D structures from the scene flow. Zhang et al. [20] com-
pute 3D scene flow and structure in an integrated manner, in
which a 3D affine motion model is fit to each local image
region and an adaptive global smoothness regularization is
applied to the whole image. They later improve their results
by fitting parametric motion to each local image region ob-
tained by color segmentation, so that discontinuities are pre-
served [21]. Carceroni and Kutulakos [4] present a method
to recover piecewise continuous geometry and parametric re-
flectance under non-rigid motion with known lighting posi-
tions. Unlike this previous motion stereo work, spacetime
stereo does not estimate inter-frame motion, but rather lin-
earizes local temporal disparity variation. The local tempo-
ral linearization is generally valid for continuous visible sur-
faces so long as the cameras have a sufficiently high frame
rate with respect to the 3D motion. A key advantage of our
approach is that it does not require brightness constancy over
time. Caspi and Irani [5] use a related idea to align image
sequences assuming a global affine transformation between
sequences. Our approach can be viewed as extending this
method to compute a full stereo correspondence instead of
an affine transformation.

One important application where brightness constancy is
especially violated is structured light scanning, where con-
trolled lighting is used to induce temporal appearance varia-
tion and used to reconstruct accurate shape models. We re-
fer the readers to the related work sections in [8, 19] for a
more complete review and summarize the most relevant re-
search here. Kanade et al. [9] and Curless and Levoy [6]
used temporal intensity variation (the latter called it “space-
time analysis”) to resolve correspondence between sweeping
laser stripes and sensor pixels. Pulli et al [13] adapted space-
time analysis to match a sweeping projector stripe observed
by multiple video cameras. Bouguet and Perona [3] applied
spacetime analysis to shadow profiles simultaneously cast
onto a scene and a calibrated plane as observed by a single

video camera. These single-stripe spacetime analysis meth-
ods are limited to static scenes and require hundreds of im-
ages for reconstructing an object.

In the direction of using fewer images, Sato and
Inokuchi [14] describe a set of hierarchical stripe patterns to
give range images with log N images, where N is the num-
ber of resolvable stripes. In particular, each camera pixel
observes a bit code over time that uniquely determined its
correspondence. The method is limited to static scenes. Hall-
Holt and Rusinkiewicz [8] describe a method that consists of
projected boundary-coded stripe patterns that vary over time.
By finding nearest stripe patterns over time, a unique code
can be determined for any stripe at any time. The constraint
in this case is that the object move slowly to avoid erroneous
temporal correlations, and only depths at stripe boundaries
are measured. Note that each of these methods is specially
designed for a certain class of patterns and is not applicable
under more general illumination changes.

Zhang et al. [19] proposed an approach in which a pat-
tern consisting of multiple color stripes is swept through the
scene and multi-pass dynamic programming is used to match
the video sequence and the pattern sequences. The work can
be viewed as extending spacetime analysis to simultaneously
resolve multiple stripes at the same time. Their spacetime
results show clear improvements in terms of matching accu-
racy over pure frame by frame spatial matching. However,
the method is limited to static objects. In this paper, we ex-
tend spacetime analysis to handle moving scenes.

Finally, in these same proceedings, Davis et al. [7] de-
velop a similar spacetime stereo framework as the one pre-
sented here. However, their work is focused on analyzing
and presenting results for geometrically static scenes imaged
under varying illumination. In this paper, we develop ideas
that handle illumination variation, as well as geometrically
“quasi-static” and moving scenes.

3. Spacetime stereo metrics
In this section, we formulate the spacetime stereo problem,
and define the metrics that are used to compute correspon-
dences.

Consider a Lambertian scene observed by two synchro-
nized and pre-calibrated video cameras. Spacetime stereo
takes as input two rectified image streams Il(x, y, t) and
Ir(x, y, t). To recover the time-varying 3D structure of the
scene, we wish to estimate the disparity function d(x, y, t)
for each pixel (x, y) at each time t. Most existing stereo al-
gorithms solve for d(x, y, t) at some position and moment
(x0, y0, t0) by minimizing the following error function

E(d0) =
∑

(x,y)∈W0

e(Il(x, y, t0), Ir(x − d0, y, t0)) (1)

where d0 is shorthand notation for d(x0, y0, t0), W0 is a spa-
tial neighborhood window around (x0, y0), e(p, q) is a simi-
larity measure between pixels from two cameras, and we are
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Figure 1. Illustration of spacetime stereo. Two stereo image streams are captured from stationary sensors. The images are
shown spatially offset at three different times, for illustration purposes. For a static or quasi-static surface (a,b), the spacetime
windows are “straight”, aligned along the line of sight. For an oblique surface (b), the spacetime window is horizontally stretched
and vertically sheared. For a moving surface (c), the spacetime window is also temporally sheared, i.e., “slanted”. The best
affine warp of each spacetime window along epipolar lines is computed for stereo correspondence.

measuring disparity in the right image with respect to the left
image. Depending on the specific algorithm, the size of W0

can vary from being a single pixel to, say, a 10x10 neighbor-
hood. e(a, b) can simply be

e(p, q) = (p − q)2 (2)

in which case Eq. (1) becomes the standard sum of squared
difference (SSD). We have obtained better results in practice
by defining e(a, b) to compensate for radiometric differences
between the cameras:

e(p, q) = (s·p + o − q)2 (3)

where s and o are window dependent scale and offset con-
stants to be estimated. Other forms of e(a, b) are summa-
rized in [1]. Note that Eq. (3) is similar enough to a squared
difference metric that, after substituting into Eq. (1), we still
refer to the result as an SSD formulation.

We seek to incorporate temporal appearance variation to
improve stereo matching and generate more accurate and re-
liable depth maps. In the next two subsections, we’ll con-
sider how multiple frames can help to recover static and
nearly static shapes, and then extend the idea for moving
scenes.

3.1. Static scenes

Scenes that are geometrically static may still give rise to im-
ages that change over time. For example, the motion of the
sun causes shading variations over the course of a day. In a

laboratory setting, projected light patterns can create similar
but more controlled changes in appearance.

Suppose that the scene is static for a period of time
T0 = [t0 − ∆t, t0 + ∆t]. As illustrated in Figure 1(a), we
can extend the spatial window to a spatiotemporal window
and solve for d0 by minimizing the following sum of SSD
(SSSD) cost function:

E(d0) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x, y, t), Ir(x − d0, y, t)) (4)

This error function reduces matching ambiguity in any sin-
gle frame by simultaneously matching intensities in multiple
frames. Another advantage of the spacetime window is that
the spatial window can be shrunk and the temporal window
can be enlarged to increase matching accuracy. This princi-
ple was originally formulated as spacetime analysis in [6, 9]
for laser scanning and was applied by several researchers
[3, 13, 19] for structured light scanning. Here we are cast-
ing it in a general spacetime stereo framework.

We should point out that both Eq. (1) and Eq. (4) treat
disparity as being constant within the window W0, which
assumes the corresponding surface is fronto-parallel. For a
static but oblique surface, as shown in Figure 1(b), a more ac-
curate (first order) local approximation of the disparity func-
tion is

d(x, y, t) ≈ d̂0(x, y, t) def= d0 +dx0 · (x−x0)+dy0 · (y−y0)
(5)

where dx0 and dy0 are the partial derivatives of the dispar-
ity function with respect to spatial coordinates x and y at



(x0, y0, t0). This local spatial linearization results in the fol-
lowing SSSD cost function to be minimized:

E(d0, dx0 , dy0) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x, y, t), Ir(x − d̂0, y, t))

(6)
where d̂0 is a shorthand notation for d̂0(x, y, t), which is de-
fined in Eq. (5) in terms of (d0, dx0 , dy0) and is estimated
for each pixel. Non-zero dx0 and dy0 will cause a horizontal
stretch or shrink and vertical shear of the spacetime window
respectively, as illustrated in Figure 1(b).

3.2 Quasi-static scenes

The simple SSSD method proposed above can also be ap-
plied to an interesting class of time-varying scenes. Some
natural scenes, like water flow in Figure 5, have spatially
varying texture and motion, but an overall shape that is
roughly constant over time. Although these natural scenes
move stochastically, people tend to fuse the image stream
into a gross average shape over time. In this paper, this class
of natural scenes is refered to as quasi-static. By applying
the SSSD method from the previous section, we can com-
pute a temporally averaged disparity map which corresponds
roughly to the “mean shape” of the scene. In graphics ap-
plications where a coarse geometry is desired, one could, for
instance, use the mean shape as static geometry with time-
varying color texture mapped over the surface.

3.3. Moving scenes

Next, let’s consider the case where the object is moving in
the time interval T0 = [t0 − ∆t, t0 + ∆t], as illustrated in
Figure 1(c). Because of the object motion, the window in the
left video is deformed in the right sequence. The temporal
trajectory of window deformation in the right video is deter-
mined by the object motion and could be arbitrarily complex.
However, if the camera has a high enough frame rate relative
to the object motion and there are no changes in visibility, we
can also locally linearize the temporal disparity variation in
much the same way we linearized spatial disparity in Eq. (5).
Specifically, we take a first order approximation of disparity
variation with respect to both spatial coordinate x and y and
temporal coordinate t as

d(x, y, t) ≈ d̃0(x, y, t) def=
d0 + dx0 · (x − x0) + dy0 · (y − y0) + dt0 · (t − t0)

(7)
where dt0 is the partial derivative of disparity function with
respect to time at (x0, y0, t0). This local spatial-temporal
linearization results in the following SSSD cost function to
be minimized:

E(d0, dx0 , dy0 , dt0) =∑
t∈T0

∑
(x,y)∈W0

e(Il(x, y, t), Ir(x − d̃0, y, t))

(8)

where d̃0 is a shorthand notation for d̃0(x, y, t), which is
defined in Eq. (7) in terms of (d0, dx0 , dy0 , dt0)and is esti-
mated for each pixel at each time. Note that Eq. (7) assumes
a linear model of disparity within the spacetime window, i.e.,
(d0, dx0 , dy0 , dt0) is constant within W0 × T0.

We use the term straight window to refer to a spacetime
window whose position and shape is fixed over time, such
as the windows shown in Figure 1(a,b). If the position of the
window varies over time, we say that the spacetime window
is slanted, such as the one in the right camera in Figure 1(c).
In its current formulation, spacetime stereo requires match-
ing a straight spacetime window around each pixel (x, y) at
each time t in the left image stream to, in general, a slanted
spacetime window in the right image stream. It would be
straightforward, however, to make the metric more symmet-
ric by adding another SSSD term similar to the one in Eq.(8)
except that it would use a straight window in the right image
and a slanted one in the left.

4. Spacetime stereo matching
A wide variety of existing stereo algorithms are easily
adapted for spacetime stereo. Most stereo algorithms have
a “data term” C(xl, xr; y, t) that describes the similarity of
the pixel or region around (xl, y, t) in the left image and
(xr, y, t) in the right. To use these algorithms for spacetime
stereo, one can simply replace the data term as

C(xl, xr; y, t) = min
dx,dy,dt

E(xl − xr, dx, dy, dt) (9)

Eq. (9) can be incorporated as the cost function in most
existing stereo algorithms, e.g., window-based correlation,
dynamic programming, graph cuts, and so forth (see [15]
for a description and evaluation of these methods). For
our experiments, we used dynamic programming to compute
a pixel-accurate correspondence followed by Lucas-Kanade
flow to obtain sub-pixel disparities.

The minimization of Eq. (9) is constrained by dt = 0
for geometrically static and quasi-static scenes and by dx =
dy = 0 if local spatial disparity variation is ignored due to
insufficient spatial intensity contrast.

5. Results
We have performed several experiments to evaluate the per-
formance of spacetime analysis for static, quasi-static, and
moving scenes. In each case, we performed camera calibra-
tion using Bouguet’s calibration toolbox [2].

5.1. Static Scenes

To test the performance with static scenes, we applied vary-
ing illumination to induce appearance changes. In the first
experiment, we employed a stereo pair of synchronized
Basler A301f monochrome video cameras and projected
light onto a scene with a 60 Hz Compaq MP1800 digital pro-
jector. Spacetime stereo places no restriction on the type of



(a) Gray code
stripe intensities

t=0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
t=1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
t=2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
t=3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

(b) Modified Gray code
stripe intensities

t=0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
t=1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
t=2 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
t=3 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

Figure 2. Structured light illumination patterns. Each pattern
constists of a set of black and white vertical stripes, defined by
the sequence of zeros and ones shown above. At each time
instant, a different pattern is displayed. (a) A Gray code pat-
tern for 16 stripes. Each column is unique, but some rows con-
tain only low spatial frequencies. (b) After shuffling columns
of the Gray code, we obtain a modified pattern that still has
unique columns, but also has high spatial frequencies in each
row.

projected pattern. For instance, a hierarchical stripe (Gray
code) pattern [14], as shown in Figure 2(a) should yield good
depth maps. In practice, we obtained more accurate results
by projecting patterns with high spatial frequencies in each
frame. Intuitively, this happens because the coarse patterns,
while providing some disambiguation cues for the finer pat-
terns, give little detailed information for disparity matching.
Our approach then is to take the Gray code and shuffle the
temporal columns so that each is still unique, but each re-
sulting horizontal pattern has high frequency spatial detail
(Figure 2(b)).

Our final pattern sequence is comprised of 8 patterns, each
of which has 256 4-pixel-wide stripes. Each pattern was low-
pass filtered to obtain patterns with continuous intensity vari-
ation, resulting in more accurate per-pixel matching.

Figure 3 shows the results obtained by imaging a small
sculpture (a plaster bust of Albert Einstein) and using 10
images taken from each camera matched with a spacetime
window of 5x5x10 (5x5 pixels per frame by 10 frames).
The shaded rendering reveals details comparable to those ob-
tained with a laser range scanner. Eq. (3) is used as pixel
similarity measure in the Lucas-Kanade refinement for this
example (also in the moving hand example later).

Next, we tried a much simpler imaging system for static
shape capture using much looser structured light. For the
stereo pair, we attached a Pentax stereo adapter to a sin-
gle SONY-TRV900 camcorder. For illumination, we shined
an ordinary desk lamp through a transparency printed with
a black and white square pattern onto the subject (a teddy
bear) and moved the pattern by hand in a free-form fashion.
In this case, we captured 125 frames and tried both single
frame stereo for one of the image pairs using a 5x1 win-
dow and spacetime stereo over all frames using a 5x1x125
window. In both cases (also in the waterfall example later),

spatial disparity variation is ignored within the windows, i.e.
dx = dy = 0, and Eq. (2) is used as the pixel similarity
measure. Figure 4 shows marked improvement of spacetime
stereo over regular stereo, in addition to improvement due to
the final Lucas-Kanade subpixel refinement step.

5.2. Quasi-static objects

For a quasi-static scene, we took a sequence of 45 images of
a small but fast-moving waterfall using a Nikon Coolpix 900
still camera with the stereo adapter attached. Figure 5 shows
a comparison of the results obtained with traditional stereo
for one of the image pairs, followed by results obtained with
the same spacetime stereo reconstruction technique used for
the teddy bear example. Note how much more consistent and
complete the spacetime result is.

5.3. Moving Scenes

For moving scenes, we tried two experiments. In the first, we
projected the modified Gray code pattern onto a human hand
that is moving fairly steadily away from the stereo rig. In
this case, the disparity is changing over time, and the straight
spacetime window approach fails to reconstruct a reasonable
surface. By estimating the temporal derivative of the dispar-
ity using slanted windows, we obtain a much better recon-
struction, as shown in Figure 6.

We also tried imaging moving and deforming textured ob-
jects under more natural lighting conditions. In practice, we
found that spacetime stereo performed approximately as well
as regular stereo with larger windows. In the next section, we
offer an explanation of why we did not observe substantial
improvement with spacetime stereo in this case.

6. Discussion
In this paper, we have described a simple extension to tradi-
tional stereo that incorporates temporal information into the
stereo pair disparity estimation problem. Here we discuss
the “operating range” of the technique and suggest ideas for
future work.

For geometrically static scenes, the spacetime stereo
framework has proved effective for reconstructing shape
from changes in appearance. We’ve demonstrated results
for tightly controlled illumination changes, as well as more
loosely controlled variations, both in a laboratory setting.
The method thus represents a generic way to explore struc-
tured lighting methods with the advantage over the standard
methods being that the illumination need not be calibrated
and interreflections on the surface are not problematic as
long as the scene is diffuse. Further, the approach is general
enough to handle more natural appearance variations includ-
ing shadows sweeping across architecture and objects that
change color naturally over time (e.g., metallic patinas, food
that browns with age, ants crawling over surfaces, etc.). The



(a) (b) (c) (d)

Figure 3. Structured lighting result with modified Gray code. (a) Einstein bust under natural lighting. (b) One image taken from
the set of 10 stereo pair images. The images were taken with the bust laying on its side, but the one shown here has been rotated
90 degrees. (c) Reconstructed disparity map. (d) Shaded rendering of geometric reconstruction.

(a) (b) (c) (d)

Figure 4. Loosely structured lighting using transparency and desk lamp. (a) One out of the 125 stereo pair images. (b) Disparity
map for a traditional stereo reconstruction. (c) Disparity map for spacetime stereo after DP. (d) Same as (c) after Lucas-Kanade
refinement.

(a) (b) (c) (d)

Figure 5. Quasi-static rushing water experiment. (a) One out of the 45 stereo pair images. (b) Disparity map for a traditional
stereo reconstruction. (c) Disparity map for spacetime stereo after DP. (d) Same as (c) after Lucas-Kanade refinement.
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(d) (e) (f)

Figure 6. Moving hand under structured light. (a), (b) Two images taken from one of the cameras. The hand is moving away from
the stereo rig, which is why it is getting smaller. (c) Shaded rendering of the geometrically reconstructed model using slanted
window spacetime analysis. (d) Disparity map with straight spacetime windows. (e) Disparity map with slanted spacetime
windows. (f) Temporal derivative of disparity. Since the hand is translating at roughly a constant speed, the disparity velocity is
fairly constant over the hand.

approach should also demonstrate some small amount of im-
provement over per-frame stereo for image streams of geo-
metrically static scenes with no temporal variations, because
the influence of noise should be averaged out over time.

For quasi-static scenes, we have also demonstrated im-
provement over per-frame stereo. Instead of using our space-
time approach, one could in principle compute the disparities
per-frame and then average them together, though we would
expect a number of outliers and non-matches to complicate
this process, and it would actually be slower to execute be-
cause of the need to perform stereo matching n times for n
frames instead of only once. An area for future work would
be to try to model the statistical variation of quasi-static and
moving scenes, e.g., to model the stochastic changes in dis-
parity for a waterfall.

For dynamic scenes, our most compelling results have
been for structured light systems. In this setting, the fact that
we do not perform motion stereo analysis (i.e., 2D optical
flow in tandem with stereo) is essential, since the brightness
constancy constraint does not apply. Our results indicate that
dense structured light stereo is possible even as the subject
moves.

For dynamic scenes under more natural (smoother) and
constant illumination, we have observed less benefit with
the spacetime stereo method. Let’s consider in particular a

su
rfa

ce
 ve

loc
ity

t=2

t=1

t=0

t=2
c

t=0
a

A moving surface

t=1
bf g

image plane

c

b

f

g

a

camera

Figure 7. Trade-off between spatially narrow windows for
spacetime stereo and wide windows for traditional stereo.



scene with constant ambient lighting and with Lambertian
reflectance at each surface point. In this case, the space-
time window appears to be a trade-off between wider spatial
window and a narrower (but temporally longer) spacetime
window, as illustrated in Figure 7. The spacetime window
{a, b, c} over time t = 0, 1, 2 contains the same information
as the spatial window {f, b, g} at time t = 1 because the win-
dow f at t = 1 is the same as window a at t = 0 and window
c at t = 2 is the same as window g at t = 1. Therefore,
using a spacetime window is not always more powerful than
a purely spatial window. An existing frame by frame stereo
matching algorithm with a spatial window size {f, b, g} is
expected to have the same performance as spacetime stereo
with spacetime window {a, b, c}. An area for future work is
to formalize this reasoning and extend the adaptive window
method [10] to search for optimal spacetime windows. Fi-
nally, another interesting direction would be to adapt global
optimization methods like graph cuts [11] to compute depth
maps that are piece-wise smooth both in space and time.
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