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Abstract

We present an end-to-end system that goes from video sequences
to high resolution, editable, dynamically controllable face models.
The capture system employs synchronized video cameras and struc-
tured light projectors to record videos of a moving face from mul-
tiple viewpoints. A novel spacetime stereo algorithm is introduced
to compute depth maps accurately and overcome over-fitting defi-
ciencies in prior work. A new template fitting and tracking proce-
dure fills in missing data and yields point correspondence across
the entire sequence without using markers. We demonstrate a data-
driven, interactive method for inverse kinematics that draws on the
large set of fitted templates and allows for posing new expressions
by dragging surface points directly. Finally, we describe new tools
that model the dynamics in the input sequence to enable new ani-
mations, created via key-framing or texture-synthesis techniques.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Stereo, Motion, Surface Fitting; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Animation

Keywords: shape recovery, facial animation, stereo matching,
shape registration, data-driven animation, expression synthesis

1 Introduction

Creating face models that look and move realistically is an impor-
tant problem in computer graphics. It is also one of the most diffi-
cult, as even the most minute changes in facial expression can reveal
complex moods and emotions. Yet, the presence of very convincing
synthetic characters in recent films makes a strong case that these
difficulties can be overcome with the aid of highly skilled anima-
tors. Because of the sheer amount of work required to create such
models, however, there is a clear need for more automated tech-
niques.

Our objective is to create models that accurately reflect the shape
and time-varying behavior of a real person’s face from videos. For
those models, we seek real-time, intuitive controls to edit expres-
sions and create animations. For instance, dragging the corner of
the mouth up should result in a realistic expression, such as a smil-
ing face. Rather than programming these controls manually, we
wish to extract them from correlations present in the input video.
Furthermore, we wish to use these controls to generate desired an-
imations which preserve the captured dynamics of a real face. (By
“dynamics,” we mean the time-varying behavior, not the physics
per se.)

Creating human face models from images is by now a proven ap-
proach, with stunning results (e.g., [Blanz and Vetter 1999]). How-

ever, the problem of accurately modeling facial expressions and
other dynamic behavior is still in its infancy. Modeling facial dy-
namics is essential for creating animations, but it is more difficult
to achieve due in part to limitations in current shape capture tech-
nology. In particular, laser-scanners and most other high-resolution
shape capture techniques do not operate effectively on fast moving
scenes (a transition to a smile can occur in a fraction of a second).
Furthermore, the problem of creating animation tools that exploit
captured models of 3D facial dynamics has yet to be explored.

In this paper, we present a novel, end-to-end system for produc-
ing a sequence of high-resolution, time-varying face models using
off-the-shelf hardware, and describe tools that use these models for
editing and animation. This paper makes several specific techni-
cal contributions. First, we introduce a novel, globally consistent
spacetime stereo technique to derive high-quality depth maps from
structured light video sequences. Next, we propose a new surface
fitting and tracking procedure in which the depth maps are com-
bined with optical flow to create face models with vertex correspon-
dence. Once acquired, this sequence of models can be interactively
manipulated to create expressions using a data-driven inverse kine-
matics technique we call faceIK. FaceIK blends the models in a way
that is automatically adaptive to the number of user-specified con-
trols. We also describe a representation called a face graph which
encodes the dynamics of the face sequence. The graph can be tra-
versed to create desired animations. While our animation results
do not match the artistry of what an expert animator can produce,
our approach makes it simple for untrained users to produce face
animations.

1.1 Related work

Modeling and synthesizing faces is an active research field in com-
puter graphics and computer vision. Here we review three topics
most related to our work: reconstructing moving faces from im-
ages, constraint-based face editing, and data-driven face animation.
Other related work is discussed throughout the paper, as appropri-
ate.

Reconstructing moving faces from images Very few
shape-capture techniques work effectively for rapidly moving
scenes. Among the few exceptions are depth-from-defocus [Na-
yar et al. 1996] and stereo [Faugeras 1993]. Structured light stereo
methods have shown particularly promising results for capturing
depth maps of moving faces [Proesmans et al. 1996; Huang et al.
2003]. Using projected light patterns to provide dense surface
texture, these techniques compute pixel correspondences to derive
depth maps for each time instant independently. Products based
on these techniques are commercially available.1 Recent spacetime
stereo methods [Zhang et al. 2003a; Davis et al. 2003] additionally
integrate information over time to achieve better results. In particu-
lar, Zhang et al. [2003a] demonstrate how temporal information can
be exploited for dynamic scenes. Compared to these previous struc-
tured light stereo methods the shape capture technique presented
in this paper produces higher resolution shape models with lower
noise.

While the aforementioned shape-capture techniques yield spatially
and temporally dense depth maps, a key limitation is that they do

1For example, www.3q.com and www.eyetronics.com.



not capture motion, i.e., point correspondence over time, making it
difficult to repose or reanimate the captured faces. 3D face tracking
techniques address this problem by computing the deformation of
a deformable 3D face model to fit a sequence of images [Essa et al.
1996; Pighin et al. 1999; Basu et al. 1998; DeCarlo and Metaxas
2002; Blanz et al. 2003] or 3D marker positions [Guenter et al.
1998]. Blanz and Vetter [1999] construct particularly high qual-
ity models, represented as linear subspaces of laser-scanned head
shapes. Although subspace models are flexible, they fail to recon-
struct shapes that are outside the subspace. In order to handle ex-
pression variation, Blanz and Vetter [2003] laser-scanned faces un-
der different expressions, a time-consuming process that requires
the subject to hold each expression for tens of seconds. A problem
with existing face tracking methods in general is that the templates
have relatively few degrees of freedom, making it difficult to cap-
ture fine-scale dimples and folds which vary from one individual to
another and are important characteristic features. We instead work
with a generic high resolution template with thousands of degrees
of freedom to capture such fine-grain features. This approach is re-
lated to the work of Allen et al.[2003] for fitting templates to human
body data, except that they rely on markers to provide partial corre-
spondence for each range scan, whereas we derive correspondence
information almost entirely from images.

An interesting alternative to traditional template-based tracking is
to compute the deformable template and the motion directly from
the image sequence. Torresani et al. [2001] and Brand [2001] re-
cover non-rigid structure from a single video assuming the shape
lies within a linear subspace. Although these methods are promis-
ing and work from regular video streams, they produce relatively
low-resolution results, compared to, e.g., structured light stereo.

Direct 3D face editing Following Parke’s pioneering
work [1972] on blendable face models, most face editing systems
are based on specifying blending weights to linearly combine a set
of template faces. These weights can be computed indirectly from
user-specified constraints [Pighin et al. 1999; Joshi et al. 2003] or
fit directly to images [Blanz and Vetter 1999].

Our faceIK tool, as a general expression editing interface, is sim-
ilar to the one in [Joshi et al. 2003]. However, Joshi et al. [2003]
segment a face into a region hierarchy a priori, which decouples
the natural correlation between different parts of the face. Zhang
et al. [2003b] address this problem with a hierarchical PCA tech-
nique in which user edits may propagate between regions. Our
faceIK method instead maintains the correlation across the whole
face and only decouples it — automatically and adaptively — as
the user introduces more constraints.

Data-driven 3D face animation A focus of our work is to
use captured models of human face dynamics to drive animatable
face models. Several previous authors explored performance-based
methods for animating faces, using either video of an actor [Blanz
et al. 2003; Chai et al. 2003], or speech [Bregler et al. 1997; Brand
1999; Ezzat et al. 2002] to drive the animation. These techniques
can be considered data-driven in that they are based on a sequence
of example faces.

Other researchers have explored data-driven animation techniques
in the domains of human figure motion [Li et al. 2002; Arikan and
Forsyth 2002; Kovar et al. 2002; Lee et al. 2002] and video sprites
[Schödl and Essa 2002]. We adapt ideas from these other domains
to devise 3D face animation tools.

1.2 System overview
Our system takes as input 6 synchronized video streams (4
monochrome and 2 color) running at 60 frames-per-second (fps),
and outputs a 20 fps sequence of high-resolution 3D meshes that

color cameras
monochrome cameras

projectors

Figure 1: Our face capture rig consists of six video cameras and two
data projectors. The two monochrome cameras on the left constitute
one stereo pair, and the two on the right constitute a second stereo
pair. The projectors provide stripe pattern textures for high quality
shape estimation. The color cameras record video streams used for
optical flow and surface texture.

capture face geometry, color, and motion, for our data-driven edit-
ing and animation techniques. The videos are recorded by a camera
rig shown in Figure 1. Three of the cameras capture the left side of
the face, and the other three capture the right side.

To facilitate depth computation, we use two video projectors that
project gray-scale random stripe patterns onto the face. The pro-
jectors send a “blank” pattern every three frames, which is used to
compute both color texture maps and time correspondence informa-
tion (optical flow). We will refer to these as “non-pattern” frames.
All of the components are off-the-shelf.2

The following sections describe the stages in the pipeline from the
input streams to high-resolution editable and animatable face mod-
els. Section 2 introduces the spacetime stereo method to recover
time-varying depths maps from the left and right stereo pairs. Sec-
tion 3 presents a procedure that fits a time-varying mesh to the depth
maps while optimizing its vertex motion to be consistent with op-
tical flow. Section 4 describes how this mesh sequence is used for
expression editing using faceIK. Section 5 describes two animation
tools that use a face graph to model the dynamics present in the
captured face sequence.

2 From videos to depth maps

In this section, we present a novel method to recover time-varying
depth maps from two synchronized video streams. The method ex-
ploits time-varying structured light patterns that are projected onto
the face using a standard video projector. We first provide a brief
review of traditional stereo matching and prior work in spacetime
stereo, to motivate our new approach.

2.1 Binocular stereo matching
There exists an extensive literature on stereo matching algorithms
which take as input two images and compute a depth map as output
(for a good overview, see [Scharstein and Szeliski 2002]). The key
problem is to compute correspondences between points in the left
and right image, by searching for pixels of similar intensity or color.
Once the correspondence is known, depth values (i.e., distance from
the camera) are readily computed [Faugeras 1993]. Generally, the
images are assumed to be rectified after calibration,3 so that the
motion is purely horizontal and can be expressed by a 1D disparity
function.

2We use Basler A301f/fc IEEE1394 cameras, synchronized and running
at 60fps, and NEC LT260K projectors.

3We calibrate our stereo pairs using Bouguet’s software[2001].
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Figure 2: Illustration of spacetime stereo. Two stereo image
streams are captured from fixed cameras. The images are shown
spatially offset at three different times, for illustration purposes. For
a moving surface, a rectangular window in the left view maps to a
warped window in the right view. The best affine warp of each
spacetime window along epipolar lines is computed for stereo cor-
respondence.

More precisely, given two rectified images Il(x,y) and Ir(x,y) we
wish to compute a disparity function given by d(x,y). For a pixel
Il(x0,y0) in the left image, there is often more than one pixel with
similar color in the right image. To resolve this ambiguity, most
stereo algorithms match small windows W0 around (x0,y0), assum-
ing that the disparity function is locally nearly constant. Mathe-
matically, this matching process involves minimizing the following
error function:

E(d0) = ∑
(x,y)∈W0

e(Il(x,y), Ir(x−d0,y)) (1)

where d0 is shorthand notation for d(x0,y0) and e(p,q) is a similar-
ity metric between pixels from two cameras. The size and shape of
the window W0 is a free parameter, with larger windows resulting in
smooth depth maps and smaller windows yielding more detailed but
also noisier reconstructions.4 e(a,b) can simply be the squared dif-
ference of color differences. We use the “gain-bias” metric [Baker
et al. 2003] to compensate for radiometric difference between cam-
eras.

2.2 Spacetime stereo

Given two sequences of images, Il(x,y, t) and Ir(x,y, t), a time-
varying disparity map d(x,y, t) may be computed by applying the
above stereo matching procedure to each pair of frames indepen-
dently. However, the results tend to be noisy, low-resolution (Fig-
ure 3(c,d,g,h)), and contain temporal flicker as the shape changes
discontinuously from one frame to the next (see the accompanying
video). More accurate and stable results are possible by generaliz-
ing stereo matching into the temporal domain.

The basic idea, as originally proposed by Zhang et al. [2003a] and
Davis et al. [2003], is to assume that disparity is nearly constant
over a 3D spacetime window W0×T0 around (x0,y0, t0), and solve

4Some methods allow window size to vary, and compute sizes automat-
ically [Kanade and Okutomi 1994].

for d(x0,y0, t0) by minimizing the following error function

E(d0) = ∑
t∈T0

∑
(x,y)∈W0

e(Il(x,y, t), Ir(x−d0,y, t)) (2)

where T0 may be chosen to be anywhere from a few frames to the
whole sequence, depending on how fast the scene is moving. As
shown in [Zhang et al. 2003a], assuming locally constant disparity
introduces reconstruction artifacts for oblique or moving surfaces.
To model such surfaces more accurately, Zhang et al. [2003a] in-
stead approximate the disparity variation linearly within the space-
time window as

d(x,y, t) ≈ d̃0(x,y, t)
def
=

d0 +dx0
· (x− x0)+dy0

· (y− y0)+dt0 · (t − t0)
(3)

where [dx0
,dy0

,dt0 ]
T is the gradient of the disparity function at

(x0,y0, t0). They solve for d0 together with [dx0
,dy0

,dt0 ]
T by mini-

mizing the following error function:

E(d0,dx0
,dy0

,dt0) = ∑
t∈T0

∑
(x,y)∈W0

e(Il(x,y, t), Ir(x− d̃0,y, t)) (4)

Under this linearity assumption, a 3D window W0×T0 in Il maps
to a sheared window in Ir, as shown in Figure 2. Consequently,
[Zhang et al. 2003a] developed an approach to minimize Eq. (4)
by searching for the best matching sheared window at each pixel
independently. The resulting depth maps are both higher-resolution
and more stable than those produced using standard stereo matching
as shown in Figure 3(e,i) and the companion video.

2.3 Globally consistent spacetime stereo
In practice, spacetime stereo produces significantly improved depth
maps for moderately-fast moving human shapes. However, it also
produces significant ridging artifacts, both evident in the original
work [Zhang et al. 2003a] and clearly visible in Figure 3(e). Our
analysis indicates that these artifacts are due primarily to the fact
that Eq. (4) is minimized for each pixel independently, without tak-
ing into account constraints between neighboring pixels. Specifi-
cally, computing a disparity map with N pixels introduces 4N un-
knowns: N disparities and 3N disparity gradients. While this for-
mulation results in a system that is convenient computationally, it
is clearly over-parameterized, since the 3N disparity gradients are a
function of the N disparities. Indeed, the estimated disparity gra-
dients may not agree with the estimated disparities. For exam-
ple, dx(x,y, t) may be quite different from 1

2 (d(x + 1,y, t)− d(x−
1,y, t)), because dx(x,y, t), d(x + 1,y, t), d(x− 1,y, t) are indepen-
dently estimated for each pixel. This inconsistency between dis-
parities and disparity gradients results in inaccurate depth maps as
shown in Figure 3(e,i).

To overcome this inconsistency problem, we reformulate spacetime
stereo as a global optimization problem that computes the dispar-
ity function, while taking into account gradient constraints between
pixels that are adjacent in space and time. Given image sequences
Il(x,y, t) and Ir(x,y, t), the desired disparity function d(x,y, t) mini-
mizes

Γ({d(x,y, t)}) = ∑
x,y,t

E(d,dx,dy,dt) (5)

subject to the following constraints5

dx(x,y, t) = 1
2 (d(x+1,y, t)−d(x−1,y, t))

dy(x,y, t) = 1
2 (d(x,y+1, t)−d(x,y−1, t))

dt(x,y, t) = 1
2 (d(x,y, t +1)−d(x,y, t −1))

(6)

5At spacetime volume boundaries, we use forward or backward differ-
ences instead of central differences.
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Figure 3: Comparison of four different stereo matching algorithms. (a,b) Five consecutive frames from a pair of stereo videos. The third
frames are non-pattern frames. (c) Reconstructed face at the third frame using traditional stereo matching with a [15×15] window. The result
is noisy due to the lack of color variation on the face. (d) Reconstructed face at the second frame using stereo matching with a [15×15]
window. The result is much better because the projected stripes provide texture. However, certain face details are smoothed out due to the
need for a large spatial window. (e) Reconstructed face at the third frame using local spacetime stereo matching with a [9×5×5] window.
Even though the third frame has little intensity variation, spacetime stereo recovers more detailed shapes by considering neighboring frames
together. However, it also yields noticeable striping artifacts due to the over-parameterization of the depth map. (f) Reconstructed face at the
third frame using our new global spacetime stereo matching with a [9×5×5] window. The new method removes most of the striping artifacts
while preserving the shape details. (g-j) Closeup comparison of the four algorithms around the nose and the corner of the mouth.

Eq. (5) defines a nonlinear least squares problem with linear
constraints. We solve this problem using the Gauss-Newton
method [Nocedal and Wright 1999] with a change of variables.
To explain our approach, we use D to denote the concatenation of
d(x,y, t) for every (x,y, t) into a column vector. Dx, Dy, and Dt are
defined similarly, by concatenating values of dx(x,y, t), dy(x,y, t),
and dt(x,y, t), respectively. Given an initial value of D, Dx, Dy, and
Dt , we compute the gradient b and local Hessian J of Eq. (5) using
Gauss-Newton approximation. Then, the optimal updates δD, δDx,
δDy, and δDt are given by

J







δD
δDx
δDy
δDt






= −b (7)

Since Eqs. (6) are linear constraints, we represent them by matrix
multiplication:

Dx = GxD Dy = GyD Dt = GtD (8)

where Gx,Gy, and Gt are sparse matrices encoding the finite differ-

ence operations. For example, suppose d(x,y, t) is the i’th compo-
nent of D, then the only nonzero columns in row i of Gx are j and j′
which correspond to d(x + 1,y, t) and d(x− 1,y, t) and take values
of 0.5 and −0.5, respectively. Substituting Eq. (8) into Eq. (7), we
obtain the optimal update δD by solving
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b (9)

where I is an identity matrix of the same dimension as D. We ini-
tialize D using dynamic programming with the spacetime window
metric Eq. (2)6, as described in [Zhang et al. 2003a], and set Dx, Dy,
and Dt to be zero. Then we iteratively solve Eq. (9) and re-compute
J and b, until convergence. Figure 3(f,j) shows the resulting im-
provement when employing this new spacetime stereo method.

6When using dynamic programming for initialization, we use a [1×3]
image window for frame-by-frame matching and a [1×3×3] window for
spacetime matching.
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Figure 4: Illustration of the error metric of a vertex used in template fitting. (a) s is a vertex on the template mesh and d is its displacement
vector. Let h be the intersection of the depth map, shown as a surface, and the line from optical center to s + d. s + d−h is the difference
vector between s+d and the depth map. (b) A plot of Tukey’s Biweight robust estimator. (c) dt+1 and dt are the displacements for a vertex
s on the template mesh at frame t and t + 1, respectively. U = dt+1 −dt is the vertex motion from frame t to t + 1. The projection of U in
the image plane, π(U), should be the same as the optical flow u. ‖π(U)−u‖ is used as a metric for consistency between vertex motion and
optical flow.

2.3.1 Scalable implementation

Although Dx, Dy, Dt , and J are very sparse, solving Eq. (9) using
the conjugate gradient method [Press et al. 1993] over the whole
video is not practical; a 10-second video of 640×480 resolution
at 60Hz comprises nearly 180 millions depth variables! To apply
global spacetime stereo matching over a long video, we divide the
video into a 3D (X,Y,T) array of 80×80×90 blocks that are op-
timized in sequence. When optimizing a particular block, we treat
as boundary conditions the disparity values in its adjacent blocks
that have already been optimized. To speed up the procedure, we
distribute the computation over multiple machines while ensuring
that adjacent blocks are not optimized simultaneously. While many
traversal orders are possible, we found that the following simple
strategy suffices: We first optimize blocks with odd T values, and
distribute blocks with different T values to different CPU’s. On
each CPU, we traverse the blocks from left to right and top to bot-
tom. We then repreat the same procedure for blocks with even T

values. Our prototype implementation takes 2 to 3 minutes to com-
pute a depth map on a 2.8GHz CPU and each depth map contains
approximately 120K depth points.

3 Shape registration

In this section, we present a novel method for computing a sin-
gle time-varying mesh that closely approximates the depth map se-
quences while optimizing the vertex motion to be consistent with
optical flow between color frames. We start by fitting a template
mesh to the pair of depth maps captured in the first non-pattern
frame, initialized with a small amount of user guidance. We then
track the template mesh through other non-pattern frames in the se-
quence automatically and without the need for putting markers on
the subject’s face.

3.1 Template fitting

Let M = (V,E) be an N-vertex triangle mesh representing a tem-
plate face, with vertex set V = {sn} and edge set E = {(n1,n2)}.
Let {h j(x,y)}

2
j=1 be the two depth maps at frame 1, as shown in

Figure 5(a,b,c). Given the relative pose between these depth maps,7
we wish to solve for a displacement dn for each vertex such that the
displaced mesh M1, with vertex set {sn + dn}, optimally fits the
depth maps. Our fitting metric has two terms: a depth matching
term, Es, and a regularization term Er.

The depth matching term Es measures the difference between the
depths of vertices of M1 as seen from each camera’s viewpoint and
the corresponding values recorded in each depth map. Specifically,

Es({dn}) =
2

∑
j=1

N

∑
n=1

wn, jρ(
[

sn +dn −hn, j

]

z j

,σs) (10)

where hn, j ∈ R3 is the intersection of the depth map h j(x,y) and
the line from the j’th camera’s optical center to sn + dn, as shown
in Figure 4(a); [·]z j

is the z component of a 3-d vector in the j’th
camera’s coordinate system; ρ(·,σs) is Tukey’s biweight robust es-
timator, shown in Figure 4(b); and wn, j is a weight factor governing
the influence of the j’th depth map on the template mesh. In ex-
periments, we set σs = 20, which essentially rejects potential depth
map correspondences that are over 20mm away from the template
mesh. For wn, j , we use the product of the depth map confidence,
computed as in [Curless and Levoy 1996], and the dot product of
the normals at hn, j and sn + dn (clamped above 0). Note that, in
practice, we do not need to intersect a line of sight with a surface
to compute each hn, j . Instead, we project each displaced template
point into the depth map h j(x,y) and perform bilinear interpolation
of depth map values to measure depth differences.

In general, the shape matching objective function is under-
constrained. For instance, template surface points after being dis-
placed could bunch together in regions while still matching the
depth maps closely. Further, the depth maps do not completely
cover the face, and so the template can deform without penalty
where there is no data. Thus, we add a regularization term Er that
penalizes large displacement differences between neighboring ver-

7We obtain the relative pose between depth maps using the rigid regis-
tration tool provided in Scanalyze [2002].
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Figure 5: Illustration of the template fitting process. (a) A face template. (b-c) Depth maps from two viewpoints at the first frame. A few
corresponding shape feature positions are manually identified on both the face template and the first two depth maps. (d) The template after
initial global warp using the feature correspondence. (e) Initial mesh after fitting the warped template to the first two depth maps, without
using the feature correspondence. The initial mesh is colored red for regions with unreliable depth or optical flow estimation. (f-j) Selected
meshes after tracking the initial mesh through the whole sequence, using both depth maps and optical flows. The process is marker-less and
automatic. (k-o) The projection of a set of vertices from the selected meshes on the image plane, shown as green dots, to verify that the vertex
motion is consistent with visual motion. Note that the subject had no markers on his face during capture; the green dots are overlaid on the
original images purely for visualization purposes.

tices on the template mesh. Specifically,

Er({dn}) = ∑
(n1,n2)∈E

‖dn1
−dn2

‖2/‖sn1
− sn2

‖2 (11)

To fit the template mesh M to the depth maps at frame 0, we mini-
mize a weighted sum of Eqs. (10) and (11)

Φ = Es +αEr (12)

with α = 2.0 in our experiments.

We minimize Eq. (12) using the Gauss-Newton method. We ini-
tialize the optimization by manually aligning the template with
the depth maps. Specifically, we select several corresponding fea-
ture positions on both the template mesh and the depth maps (Fig-
ure 5(a,b,c)). Next, from these feature correspondences, we solve
for an over-constrained global affine transformation to deform the

mesh. Finally, we interpolate the residual displacements at the fea-
ture positions over the whole surface using a normalized radial basis
function [Broomhead and Lowe 1988] as we do for vertex blend-
ing coefficients in Section 4.2. After the initial warp, the selected
feature correspondences are no longer used for template fitting. As
shown in Figure 5(d), the initial alignment does not have to be pre-
cise in order to lead to an accurate final fitting result, as illustrated
in Figure 5(e).

3.2 Template tracking
Given the mesh M1 at the first frame, we would now like to de-
form it smoothly through the rest of the sequence such that the
shape matches the depth maps and the vertex motions match the
optical flow computed for the non-pattern frames of the color im-
age streams. Let {Ik(x,y, t)}

2
k=1 be color image sequences from

two view points with pattern frames removed. We first compute
optical flow uk(x,y, t) for each sequence using Black and Anan-



dan’s method [1993]. The flow uk(x,y, t) represents the motion
from frame t to t + 1 in the k’th image plane. We measure the
consistency of the optical flow and the vertex inter-frame motion
Un,t = dn,t+1 − dn,t , called scene flow in [Vedula et al. 1999], by
the following metric:

Em({dn,t+1}) =
2

∑
k=1

N

∑
n=1

ρ(‖πk(Un,t)−un,t,k‖,σm) (13)

where πk(Un,t) is the image projection of Un,t in the k’th image
plane and un,t,k is the value of optical flow uk(x,y, t) at the cor-
responding location, shown in Figure 4(c); ρ(·,σm) is the same
Tukey’s biweight robust estimator as in Eq. (10), with σm = 20 pix-
els.

Starting from M1, we recursively compute Mt+1 given Mt by opti-
mizing a weighted sum of Eq. (12) and Eq. (13):

Ψ = Es +αEr +βEm (14)

with α = 2.0 and β = 0.5 in our experiments.

Our mesh tracking method is fully automatic without requiring
markers to be placed on the subject’s face. In Figure 5(f-o), sam-
ple results for mesh tracking are shown in gray shaded rendering.
The companion video shows the full sequence both as gray-shaded
and color-textured rendering. Each face model has roughly 16K
vertices and template tracking takes less than 1 minute per frame.

4 FaceIK

In this section we describe a real-time technique for editing a face to
produce new expressions. The key property of the technique is that
it exploits correlations in a set of input meshes to propagate user
edits to other parts of the face. So, for instance, pulling up on one
corner of the mouth causes the entire face to smile. This problem is
analogous to the inverse kinematics (IK) problem in human figure
animation in which the goal is to compute the pose of a figure that
satisfies one or more user-specified constraints. We therefore call it
faceIK.

Our approach is based on the idea of representing faces as a lin-
ear combination of basis shapes. While linear combinations have
been widely used in face modeling [Cootes et al. 1995; Blanz and
Vetter 1999; Pighin et al. 1998], the problem of generating reason-
able faces using only one constraint (e.g., the corner of the mouth),
or just a few, is more difficult because the problem is severely un-
derconstrained. One solution is to compute the coefficients which
maximize their likelihood with respect to the data, using princi-
ple component analysis (PCA) [Blanz and Vetter 1999; Allen et al.
2003]. The maximum likelihood criterion works well for modeling
face variations under similar expressions and human body varia-
tions under similar poses. However, applying PCA to facial expres-
sions does not produce good results unless the face is segmented a
priori into separate regions, e.g., eyes, nose, and mouth [Blanz and
Vetter 1999; Joshi et al. 2003; Zhang et al. 2003b]. Segmenting
faces into regions decouples the natural correlation between differ-
ent parts of a face. In practice, the appropriate segmentation is not
obvious until run-time when the user decides what expressions to
create. For example, to create an asymmetric expression, the left
and right sides of the face must be decoupled. As discussed in
Section 4.2, under- or over-segmenting the face can result in unde-
sirable editing behavior. We instead describe a method that avoids
these problems by adaptively segmenting the face into soft regions
based on user edits. These regions are independently modeled us-
ing the captured face sequence, and then they are blended into a

single expression. We could model these regions using PCA; how-
ever, because they are formed by user edits, we would then have to
compute principal components, a costly operation, at run-time for
each region. To address this problem, we introduce a fast method,
proximity-based weighting (PBW), to model the regions. We start
by describing how to use PBW to model the entire face as a single
region.

4.1 Proximity-based weighting
Suppose we are given as input F meshes, each with N vertices.
We use sn, f to denote the n’th vertex in mesh f . Let {pl}

L
l=1 be

user specified 3D constraints, requiring that vertex l should be at
position pl ; we call these constraints control points.8 We seek a set
of blend coefficients c f such that for every l,

F

∑
f =1

c f sl, f = pl and
F

∑
f =1

c f = 1 (15)

Because the number of constraints L is generally far fewer than
the number of meshes F , we advocate weighting example faces
based on proximity to the desired expression, i.e., nearby faces are
weighted more heavily, a scheme we call proximity based weight-
ing. Specifically, we penalize meshes whose corresponding vertices
are far from the control points by minimizing

g(c) =
F

∑
f =1

φ(‖s̄ f − p̄‖)c2
f (16)

where c = [c1 c2 . . . cF ]T, s̄ f = [sT1, f sT2, f . . . sTL, f 1]T, p̄ =

[pT1 pT2 . . . pTL 1]T, and φ(·) is a monotonically increasing func-
tion. In our experiments, we simply use φ(r) = 1 + r. Notice that
‖s̄ f − p̄‖ equals the Euclidean distance between the control points
and corresponding vertices in mesh f . Minimizing Eq. (16) subject
to Eq. (15) encourages small weights for faraway meshes, and can
be solved in closed-form as:

c f =
1

φ f
s̄Tf a (17)

where φ f = φ(‖s̄ f − p̄‖) and a = (
F
∑

f =1

1
φ f

s̄ f s̄Tf )
−1p̄.

4.1.1 Screen-space constraints

Rather than requiring that constraints be specified in 3D, it is often
more natural to specify where the projection of a mesh point should
move to. Given a set of user-specified 2D constraints {ql}

L
l=1,

Eq. (16) is modified as follows

g(c) =
F

∑
f =1

φ(‖π(s̄ f )− q̄‖)c2
f (18)

such that

π(
F

∑
f =1

c f sl, f ) = ql and
F

∑
f =1

c f = 1 (19)

where π(·) is the image projection operator, q̄ = [qT1 qT2 . . . qTL 1]T,

and π(s̄ f )
def
= [π(s1, f )

T π(s2, f )
T . . . π(sL, f )

T 1]T. Since π is in

8We assume the L constraints are for the first L mesh vertices, to simplify
notation without loss of generality.



(a) (b) (c) (d) (e)

Figure 6: Advantages of adaptive face segmentation with faceIK. Many face editing techniques pre-segment a face into regions (e.g., mouth,
nose, eyes) and model each region separately with PCA. (a) Three symmetric control points are used to create a symmetric smile by applying
PCA on the mouth region to compute the maximum likelihood (ML) shape. (b) When the control points become asymmetric, ML behaves
poorly, since all input mouth shapes are roughly symmetric. (c) For the same control point positions, faceIK creates an asymmetric smile by
dividing the mouth into three soft regions (indicated by color variations) and blending the influence of each control point. Each control point
influences its region using PBW in real-time. By contrast, using PCA would require computing principal components, a costly operation, at
run-time for each new region. (d) With the same control vertices as in (c), if the point on the lower lip is moved by itself, the mouth opens
unnaturally, because the two control points on the mouth corners decouple their correlation to the lower lip. (e) With only one control point on
the lower lip, the mouth opens more naturally. These comparisons indicate that it is more desirable to adaptively segment a face into regions
based on user edits, rather than a priori.

(a) (b) (c) (d) (e)

Figure 7: A faceIK editing session. From left to right, we show the creation of a complex expression by adding control points one at a time,
starting from neutral.

general nonlinear, we approximate Eq. (19) by

F

∑
f =1

c f π(sl, f ) = ql and
F

∑
f =1

c f = 1 (20)

This approximation works well in our experience, and minimizing
Eq. (18) subject to Eq. (20) yields the closed-form solution:

c f =
1

φ f
π(s̄ f )

Ta (21)

where φ f = φ(‖π(s̄ f )− q̄‖) and a = (
F
∑

f =1

1
φ f

π(s̄ f )π(s̄ f )
T)−1q̄.

4.2 Local influence maps
The faceIK method presented so far assumes that the entire face is
created by linear interpolation of nearby meshes. However, this as-
sumption is too limiting, since, for example, an asymmetric smile
cannot be generated from a data set that contains only symmetric
smiles. We therefore propose a method to blend different face re-
gions by defining an influence map for each control point. Specifi-
cally, we give each control point greater influence on nearby mesh
points, and then blend the influences over the entire mesh to allow
for a broader range of expressions that do not exist in the input data.

Accordingly, for each of the L control points, we compute a set
of blending coefficients cl whose components sum to 1, by mini-
mizing Eq. (16) or Eq. (18). This process is done independently
for each control point. The resulting L meshes are then blended
together, using normalized radial basis functions [Broomhead and

Lowe 1988] to define spatially-varying weights. Specifically, we
set the blending coefficient for vertex sn as follows

c(sn) =
L

∑
l=1

B(sn,sl)ĉl (22)

where B(sn,sl) =
exp(−‖sn−sl‖

2/r2
l )

L
∑

l′=1
exp(−‖sn−sl′‖

2/r2
l′
)

with rl = min
l′ 6=l

‖sl − sl′‖. We

prove in the appendix that the components of c(sn) sum to 1 given

that
L
∑

l=1
B(sn,sl) = 1. For each vertex sn, we use c(sn) to blend

corresponding vertices in the mesh data set.

Figure 6 shows the advantage of using local influence maps to adap-
tively segment the face based on user-interaction, rather than spec-
ifying regions a priori. The main observation is that the optimal
set of regions depends on the desired edit; for instance, generat-
ing an asymmetric smile from a set of roughly symmetric faces re-
quires decoupling the left and right sides of the mouth. However,
an edit that opens the mouth is more easily obtained without this
decoupling. Our PBW scheme supports the adaptive segmentation
in real-time.

Figure 7 shows a sequence of edits that leads from a neutral face
to a complex expression. As shown in the accompanying video,
our faceIK tool runs in real time, providing interactive direct-
manipulation editing.



Figure 8: Illustration of linear interpolation (top row) vs. data driven interpolation (bottom row), with the first and last columns as key frames.
Linear interpolation makes the mouth and the eyes move synchronously, which looks less realistic when played as an animation. Data driven
interpolation, instead, first purses the mouth, then squints the eyes, and finally opens the mouth. The sequential nature of the data-driven
interpolation for this example arose naturally because that is the way the real subject behaved.

5 Data-driven animation

Producing realistic animations of the human face is extremely chal-
lenging, as subtle differences in dynamics and timing can have a
major perceptual effect. In this section, we exploit the facial dy-
namics captured in our reconstructed 3D face sequences to create
tools for face animation. In particular we describe two such tools,
one for producing random infinite face sequences, and another for
data-driven interpolation of user-specified key frames.

Before introducing these tools, we first describe our model of face
dynamics using a graph representation. Our approach adapts related
graph techniques used in video textures [Schödl et al. 2000] and
character animation [Kovar et al. 2002; Arikan and Forsyth 2002;
Lee et al. 2002] to the domain of face animation.

5.1 Face graphs
Let M1, . . . ,MF be a sequence of face meshes. We represent face
dynamics using a fully connected graph with F nodes correspond-
ing to the faces; we call this the face graph. The weight of the
edge between nodes i and j specifies the cost of a transition from
Mi to M j in an animation sequence. This cost should respect the
dynamics present in the input sequence, balanced with a desire for
continuity. Given two frames Mi and M j in the input sequence, we
define the weight w of edge (i, j) as

w(i, j) = dist(Mi+1,M j)+λdist(Mi,M j) (23)

where dist is a distance metric between meshes. (We use the L2
norm, summed over all the vertices.) The first term prefers fol-
lowing the input sequence, while the second term penalizes large
jumps.

5.2 Random walks through face space
Video textures [Schödl et al. 2000] generates non-repeating image
sequences of arbitrary length. The same technique can be used to
generate random, continuously-varying face animations. To do so
we simply perform a random walk through the face graph. As in
[Schödl et al. 2000], we define the probability of a transition from

mesh Mi to mesh M j to be Pi j = e−w(i, j)/σ , normalizing so that
the sum of Pi j over all j is 1. The parameter σ is used to define
the frequency of transitions between different parts of the input se-
quence; lower values create animations that closely follow the input
sequence, whereas higher values promote more random behavior.

As in [Schödl et al. 2000], we disguise transitions between two
meshes that are not consecutive in the input sequence by a weighted
blend of the two subsequences across the transition. Results are
shown in the companion video.

5.2.1 Animation with regions

A limitation of the method described so far is that the frames com-
posing the animation are constrained to lie within the set of in-
put meshes. We therefore generalize this approach by defining re-
gions on the face, animating the regions separately using the above
method, and then blending the results into a single animation.

Rather than grouping the vertices of the meshes into disjoint re-
gions, we create “soft” regions using control points to define a set of
weights for each vertex, as described in Section 4.2. The influence
maps are taken into account in the computation of the cost graph by
defining d(Mi,M j) to be weighted sum-of-squared distance, with
per-vertex weights defined by the influence map.

The companion video shows an animation generated from this
method using two control points. While a majority of the result-
ing sequence looks natural and compelling, it also contains some
unnatural frames and transitions, due to the fact that different parts
of the face are animated independently.

5.3 Data-driven keyframe animation
While the random walk technique produces animation very easily,
it does not provide a mechanism for user control. However, the
same concepts may be used to support traditional keyframe ani-
mations, in which in-between frames are automatically generated
from user-specified constraint frames. The in-between frames are
generated using a data-driven interpolation method, which seeks to
follow minimum-cost paths through the graph [Kovar et al. 2002;
Arikan and Forsyth 2002; Lee et al. 2002; Schödl and Essa 2002].



Suppose that an animator has a sequence of meshes available, and
wants to animate a transition between two expressions that appear
in the sequence. In the simplest case, the expressions comprise the
endpoints of a subsequence of the input sequence. More gener-
ally, the interpolation must blend two or more noncontiguous sub-
sequences.

To find a path between two keyframes Mi and M j , we construct the
graph defined above, then search for the shortest path connecting
Mi and M j using Dijkstra’s algorithm [Kozen 1992]. The result is
a sequence of meshes. We then compute a per-vertex cubic-spline
interpolation of the mesh sequence to generate a continuous anima-
tion, which is sampled using a user-specified parameterization to
produce a desired set of in-between frames with desired timing.

5.3.1 Keyframe animation with regions

The keyframe interpolation method is extended to work with mul-
tiple regions using the same technique as described for random
walks. In particular, a separate graph is defined for each region.
Optimal paths on each graph are computed independently, and the
resulting animations are blended together using the influence func-
tions to produce a composite key-frame animation. Figure 8 shows
an example keyframe animation, comparing our data-driven inter-
polation to traditional linear interpolation. We have also created a
forty three second animation (shown in the companion video) using
our data-driven technique. The animation uses nineteen keyframes,
and each keyframe has three control points.

6 Discussion and future work

We have presented an end-to-end system that takes several video
sequences as input and generates high resolution, editable, dynam-
ically controllable face models. The capture system employs syn-
chronized video cameras and structured light projectors to capture
streams of images from multiple viewpoints. Specific technical
contributions include first a novel spacetime stereo algorithm that
overcomes over-fitting deficiencies in prior work. Second, we de-
scribed a new template fitting and tracking procedure that fills in
missing data and brings the surfaces into correspondence across the
entire sequence without the use of markers. Third, we demonstrated
a data-driven, interactive method for face editing that draws on the
large set of fitted templates and allows specification of expressions
by dragging surface points directly. Finally, we described new tools
that model the dynamics in the input sequence to enable new ani-
mations, created via key-framing or texture-synthesis techniques.

There are many important topics to explore in future work. First,
the resolution of our template mesh is only about one-eighth of the
depth maps, and we only fit the template to one-third of the depth
maps (at non-pattern frames). A natural extension of our current
work is to employ a hierarchical fitting approach to use templates
whose resolutions are comparable with the depth maps, and also
interpolate color along optical flow to obtain face models at 60Hz.

Our capture technique requires illuminating the subject’s face with
two bright projectors, and involves a relatively large rig with mul-
tiple mounted cameras. One could imagine, however, embedding
six small cameras on the sides of a monitor, and use imperceptible
structured light [Raskar et al. 1998] to make the capture process
less objectionable.

Our registration technique depends on optical flow estimation
which can be unreliable for textureless regions. Although regu-
larization helps to produce smooth meshes, we did observe some
“vertex swimming” artifacts over the textureless regions. In the fu-
ture, we hope to incorporate temporal coherence.

Our faceIK method generates natural results for control points that
are relatively near the input faces, but can produce bizarre (and even
disturbing) results for larger extrapolations. Although this behav-
ior is not surprising, the user must explore the space of faces by
trial and error. More useful would be if the tool could constrain
the edits to the range of reasonable faces, by learning a set of good
controls. Another limitation of faceIK is that, although it allows the
user to segment the face adaptively, within an animation the seg-
mentation cannot be changed. Therefore, before creating an anima-
tion, the user must specify enough control points so that any desired
keyframe can be created. This limitation did not pose a problem
when we created the animation in the accompanying video; three
controls (on both eyebrows and the lower lip) were enough to cre-
ate the expressions we wanted. However, it would be desirable to
allow the controls to vary across keyframes.

The animation tools presented in this paper are quite simple and
could be extended and improved in several ways. One limitation is
that we assume that the key frames are blends of the input frames.
Although different regions can be controlled separately, the ap-
proach does not provide good support for extrapolated faces, since
such faces may not be part of a motion sequence (i.e., there is no
natural successor frame). Another limitation is that our data-driven
interpolation technique requires a rich face sequence in order to pro-
duce natural-looking transitions between all the captured expres-
sions. If our technique fails to find a desired transition in the face
sequence, it may choose to use linear interpolation or an unnatural
backwards transition instead. In addition, eye blinks may occur at
inopportune moments, which complicates animation, and gaze di-
rection is fixed by the input sequence; more careful modeling of the
eyes, as well as insertion of teeth, would improve the quality of re-
sulting animations. Finally, more intuitive control of timing would
also help produce more realistic keyframe animations. All of these
problems are important areas for future work.

While we have focused on animating a single face, it would be inter-
esting to explore variations in dynamic behaviors among different
human faces, similar in spirit to what has been done for static shape
variations [Blanz and Vetter 1999; Allen et al. 2003].
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Appendix
In this appendix, we prove that the blending coefficients for vertex

s, c(s), sum up to 1 given that
L
∑

l=1
B(s,sl) = 1. Our proof is based

on two facts. To state the facts succinctly, we first introduce two
concepts. A vector is called normalized if its components sum to 1.
A matrix is called normalized if all of its rows are normalized.

FACT1. If an invertible square matrix A = [ai, j] is normalized, then
B = A−1 is also normalized.

PROOF. Let B = [bi, j]. B = A−1 ⇒ ∀i,∀ j,∑
k

bi,kak, j = δi, j ⇒

∀i,1 = ∑
j

δi, j = ∑
j

∑
k

bi,kak, j = ∑
k

∑
j

bi,kak, j = ∑
k

bi,k ∑
j

ak, j = ∑
k

bi,k.



FACT2. If a m by n matrix A = [ai, j] is normalized and a m dimen-
sional vector b = [bi] is normalized, then the n dimensional vector
bTA is also normalized.

PROOF. bTA = [∑
i

biai, j] ⇒ ∑
j

∑
i

biai, j = ∑
i

∑
j

biai, j = ∑
i

bi ∑
j

ai, j =

∑
i

bi = 1.

Let C = [c1 c2 . . . cL]T and Ĉ = [ĉ1 ĉ2 . . . ĉL]T. We know from
the construction of RBF that C =

[

B(sl′ ,sl)
]

Ĉ. Because both C
and

[

B(sl′ ,sl)
]

are normalized, the matrix Ĉ =
[

B(sl′ ,sl)
]−1C is

also normalized, according to FACT1 and FACT2. Again, from the
definition of RBF, we know that c(s)T = [B(s,pl)]

TĈ. Because both
vector [B(s,pl)] and matrix Ĉ are normalized, c(s), the blending
coefficient for vertex s, is also normalized.
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