
The Visual Turing Test for Scene Reconstruction
Supplementary Material

Qi Shan†, Riley Adams†, Brian Curless†, Yasutaka Furukawa∗, and Steven M. Seitz∗†

†University of Washington ∗Google

1. Performing the Visual Turing Test with A-
mazon Mechanical Turk

Here we provide additional details and results on the Vi-
sual Turing Test. Figure 1 shows a screen shot of the test
user interface. We randomized the order in which the ref-
erence photo and rendered result were shown to avoid posi-
tion bias (e.g., 50% of the time, the reference photo appears
above the rendered image). Figure 2 illustrates the four res-
olution levels.

Figure 1. The UI for the Visual Turing Test shown to workers on
Amazon Mechanical Turk. In this case, the top image is our ren-
dering, while the bottom one is a real photo.

We show additional typical good and bad image result-
s in Figures 3 and 4. Even with good geometry rendering,
subjects are still more likely to choose the reference photo
if people are present (e.g., the first example in Figure 4).
Figure 6(b) shows the increase in performance if we omit
photos containing people; observe that the scores are sig-

Figure 5. Black and white photos are anomalous (left real, right
rendered). 10% and 20% test subjects choose the rendered image
as more photo-realistic at the 600 resolution level. The numbers
increase to 50% and 60% at the 100 resolution level.

100 200 400 600

0.
0

0.
2

0.
4

0.
6

0.
8

Resolution (pixels)

P
ro

ba
bi

lit
y 

of
 p

ic
ki

ng
 o

ur
 r

en
de

re
d 

im
ag

e

100 200 400 600

0.
0

0.
2

0.
4

0.
6

0.
8

Resolution (pixels)

P
ro

ba
bi

lit
y 

of
 p

ic
ki

ng
 o

ur
 r

en
de

re
d 

im
ag

e

(a) On all 100 images. (b) On 75 images with no people.
Figure 6. Performance increase from omitting photos with people.

nificantly increased, compared to 6(a). In some cases, the
photos themselves may appear unrealistic; for example, 2
of the 100 randomly selected photos are black-and-white.
Subjects rate them as less realistic than the (colored) ren-
derings (Figure 5).

1



100px 200px 400px 600px
Figure 2. Test images at different resolutions. For each pair at a given resolution, the reference photo is on the left, and the rendered image
is on the right.

70%, 5% 85%, 10%65%, 15%60%, 25%
Figure 3. Additional typical good results (top real, bottom rendered). The numbers are the probabilities that our rendered image fools test
subjects at resolution levels 100 and 600, respectively.

Figure 4. Additional typical bad results (left real, right rendered). More than 90% of test subjects pick the reference photos as more realistic
in every resolution level.



2. Regularization Weight on Per-point Albedo
Estimation

For per-point albedo estimation in Section 4.3, we opti-
mize Equation 7 in the paper, reproduced here:

argmin
{Ni,ai,δi,j}

∑
j∈Vi

√
R̃i,j‖Ri,j(Θ)− R̃i,j‖22

+λ1
∑
i∈PC

‖aif(Ni)− ãif(Ñi)‖22

+wi‖Ni − Ñi‖22.

The first term is the data term measuring the image discrep-
ancy between observed pixel intensities and what is predict-
ed by our model. The second term is a regularizer based
on cloudy images; it keeps the estimated albedos for points
seen in cloudy images close to the estimates recovered by
optimizing Equation 5. Reference normals come from the
Poisson reconstruction.

In this section, we focus on the third term, a regularizer
that encourages adherence to the Poisson normals when the
weight wi is high. Ideally, we would make wi depend on
the first, image discrepancy term in the objective; i.e., when
the discrepancy is high, the normal estimation is unreliable,
and the weight should be high. Of course, we do not know
the magnitude of the image discrepancy term before actual-
ly solving Equation (7). Nonetheless, for a subset of points
PL, we have already solved Equation 6 to estimate light-
ing and thus have computed image discrepancies for those
points. Our approach is to use that information to construct
per-point weights based on just these image discrepancies.

More precisely, we first compute an average image dis-
crepancy measure dimagej for each image Ij by taking the
average of the discrepancy term over points PL

j that are in
PL and visible in Ij :

dimagej =
1

|PL
j |

∑
Pi∈PL

j

‖Ri,j(Θ)− R̃i,j‖22.

Then, we define the reliability rpointi of imagery infor-
mation at each point Pi by aggregating dimagej over Pi’s
visible images Vi:

rpointi =
∑
Ij∈Vi

√
|PL

j | exp(−κ dimagej ).

The exponentiated discrepancy measure from each image
is weighted by the square root of the number of contribut-
ing points PL

j . Note that the reliability of a point should
increase when it is visible in more images, which is also
modeled by the formula above. We used κ = 20 in our
experiments.

Finally, we normalize rpointi so that its mean is 1.0 over
the entire point set to give a normalized reliability measure
r̂pointi , and we then define the regularization weight wi to
be inversely proportional to r̂pointi :

wi =
λ2

r̂pointi

,

where λ2 = 0.01 in our experiments.

3. Additional Constraints on the Optimization
Here we describe additional physical, non-negativity

constraints that are imposed on our optimization problems
(Equations 3, 5, 6, 7).

• Light intensities (kskyj , ksunj ) and surface albedos (ai)
must be non-negative. Thus, we add the following con-
straints to each optimization problem:

kskyj ≥ 0, ksunj ≥ 0, ai ≥ 0.

• Each lighting direction Lj must be in the upper hemi-
sphere, i.e., must satisfy Li · U ≥ 0. We add this as a
constraint to the optimization. Note that U is the “up”
direction, which is estimated by simply taking the av-
erage of the “y-axes” of the input cameras.


