
The Visual Turing Test for Scene Reconstruction

Qi Shan†, Riley Adams†, Brian Curless†, Yasutaka Furukawa∗, and Steven M. Seitz∗†
†University of Washington ∗Google

Abstract

We present the first large scale system for capturing and
rendering relightablescene reconstructions from massive
unstructured photo collections taken under different illumi-
nation conditions and viewpoints. We combine photos tak-
en from many sources, Flickr-based ground-level imagery,
oblique aerial views, and streetview, to recover models that
are significantly more complete and detailed than previous-
ly demonstrated. We demonstrate the ability to match both
the viewpoint and illumination of arbitrary input photos, en-
abling a Visual Turing Testin which photo and rendering
are viewed side-by-side and the observer has to guess which
is which. While we cannot yet fool human perception, the
gap is closing.

1. Introduction

The last few years have seen dramatic progress in the
area of 3D reconstruction from photographs, to the point
that much of the world has been reconstructed and can
be browsed in tools like Microsoft’s Photosynth, Google’s
Photo Tours, and Apple’s Flyover 3D Maps.

Yet, we are still far from being able to generate 3D geo-
metric models that look just like the real thing. Far from
it; even the best-of-breed vision-based 3D reconstruction
techniques are not good enough to support most comput-
er graphics applications (games, films, virtual tourism, etc),
and instead require extensive manual editing (in the case of
3D maps) or image-based rendering (e.g., Photosynth) to
compensate for deficiencies in the reconstructed geometry.

But what exactly does it mean to look just like the real
thing? One definition is that people should be unable to tell
apart photos from renderings. For any photo, I can produce
a scene rendering (for the same viewpoint and illumination
conditions) that appears so realistic that you can’t tell which
one is real. This is a grand challenge problem; we call it the
Visual Turing Testfor Scene Reconstruction.

While we are still far from being able to pass the Visu-
al Turing Test, it defines a useful benchmark, and a goal to
strive for in 3D reconstruction research. Achieving this goal
also necessitates two new capabilities that have not previ-
ously been demonstrated. First, we have to matchanypho-
to. This requires building a model that leveragesall avail-

able imagery, from the ground, the air, the walking paths,
and the streets. To this end, we are the first to demonstrate
models derived from Flickr photos, Streetview, and aerial
imagery, merged into one reconstruction. We employ an un-
usually large number of photos (100K+) to create our mod-
els, to ensure that they are as complete as possible. Second,
we must be able to render the scene to match the viewpoint
and illumination in any photo. The latter requires estimat-
ing not only geometry, but surface reflectance, as well as the
lighting in that particular photo. We present the first larges-
cale results on reflectance estimation and lighting matching
for Internet Photo Collections. To our best knowledge, we
are also the first to conduct a large scale Visual Turing Test
which consists of 100 randomly selected renderings, each
of which is shown in 4 resolution scales, and 142 human
test subjects.

2. Related Work

In the past few years, researchers succeeded in develop-
ing very large-scale 3D reconstruction pipelines for Internet
photo collections [4, 5] that can scale to millions of pho-
tos. These models are detailed but incomplete, containing
holes in areas of sparse coverage. In contrast, aerial-based
reconstructions in products like Google Earth and Apple’s
3D Maps provide more uniform scene coverage, but lack
the detail and resolution of ground-based models. We seek
to achieve the best of both worlds, also leveraging Google
Streetview imagery to fill gaps in coverage.

There is a large literature on the topic of reflectance and
illumination modeling in the graphics and vision commu-
nities, going back multiple decades. The vast majority of
prior work, however, assumed a controlled laboratory envi-
ronment or imposed restrictions such as fixed lighting, or
materials that do not vary over the surface. Most closely re-
lated to our work are methods that operate outside, “in the
wild,” with widely varying, unknown viewpoints, illumina-
tion, and surface material variation.

A few researchers have reconstructed depthmaps from
time-lapse webcam videos of outdoor scenes [2, 3], where
the fixed viewpoint and strong directional sun-light allow
application of photometric stereo techniques.

Internet photo collections pose additional challenges, as
both the viewpoint and illumination are unknown and vary

1

Google Earth Building Rome in a Day [4] PMVS Our reconstruction

Reference photo Rendered view Relit at sunset Sunset reference photo

Figure 1. Comparison with state of the art (top row) and results for rendering and relighting of one viewpoint (bottom row)

in each photo. Indeed, the only previous work to attempt
relighting for Internet photo collections is [8] and they pro-
vided results for only one dataset (Statue of Liberty) con-
sisting of six photos. While their lighting and reflectance
model is more sophisticated than ours, it is not scalable–it
took three hours to process the six image dataset. By us-
ing a more streamlined illumination and reflectance model,
we are able to process tens of thousands of images, while
achieving high quality visual results.

Also related is work on multi-view intrinsic image de-
composition [10]. They recover a PMVS point cloud, which
is then used to estimate per-point, per-view illumination (a
single color value to represent the combined illumination
and shading) which can be spread smoothly across each
view; they leverage multi-view constraints on the (Lamber-
tian) reflectance during estimation. This approach enables
transferring illumination from one image to another that
has many PMVS points in common, again after smoothly
spreading the illumination across the second image. How-
ever, their datasets are fairly small, typically tens of images.
Further, the method does not support general relighting, in-
stead copying sparse illumination (a per-point color) from
one image to another image, and both images must cover
roughly the same portion of the scene.

3. Preprocessing

Our pre-process consists of collecting images, recover-
ing camera poses with structure-from-motion (SfM), recov-
ering a point cloud with multi-view stereo (MVS), and re-
covering a mesh with per-vertex visibility to sets of images.

Given a landmark (e.g., the Colosseum), we download
ground-level images from Flickr [1] and obtain aerial im-
ages from Google. We augment this set with Google
Streetview images in regions that are poorly covered by
Flickr photos; these images are capture from the in-browser
Streetview rendering. We also invert the sRGB function

+

Aerial images

SfM, MVS and

Surface reconstruction

Visibility estimation

Flickr images

Cloudy image detection
Albedo and skylight estimation

from cloudy images

Lighting estimation

Per-point albedo and normal estimation

Rendering

Street-view images

+

Figure 2. Workflow overview. We highlight the key technical con-
tributions of the proposed system.

(a) (b)
Figure 3. Ensuring a uniform SfM reconstruction. (a) SfM model
from a randomly subsampled image set. (b) The final SfM model
after augmenting the image set.

typically applied to photographic imagery to put the pixel
values in a linear space.

We then recover a triangle mesh for the landmark using
freely available software. In particular, we employ Visu-
alSFM [13] to estimate camera poses, PMVS/CMVS [6, 7]
to recover a dense, oriented point cloud, and Poisson Sur-
face Reconstruction [9] to reconstruct a triangle mesh.
We remove large (typically inaccurate) “hole-fill” triangles
from the Poisson reconstruction; specifically, we filter out

all triangles with average edge length greater than20 times
the average edge length of the entire mesh. Finally, we esti-
mate a set of visible images per vertex, i.e., a set of images
in which the vertex is visible. Below, we describe the SfM
and visible image estimation steps in more detail.

3.1. SfM Reconstruction

For some datasets, the number of available images is
quite large (e.g.,140K Flickr images of the Colosseum)
with a considerable amount of overlap. Matching all the
images to each other would be quite slow. Further, photos
are typically concentrated around a small number of pop-
ular viewpoints [4], heavily oversampling those particular
regions and needlessly slowing the entire pipeline. We take
a two-step SfM approach that limits the number of images
used and encourages good coverage around the landmark.

In the first step, we randomly subsampleK images (we
useK = 1000) to give an initial subsetIK. The remaining
images form a setIR. We apply VisualSFM toIK to recov-
er camera poses and image matches; images match if they
have common SfM features. The resulting setI

1 contains
images that were matched successfully by VisualSFM.

In the second step, we augmentI
1 with another subset

I
A taken fromI

R and then re-run VisualSFM. To add im-
ages toIA (which is initially empty), we match each ofI1’s
images against the images inIR, where a match must have
a large number of features in common (≥ 300) and be geo-
metrically consistent with the initial SfM reconstruction. To
encourage good coverage, we process the images inI

1 in or-
der, starting with the images that have the fewest number of
matches, thus giving priority to sparsely covered areas. Fur-
ther, we do not consider images inI1 that are already well-
matched (having≥ 30 matches). To promote high quality
reconstruction and to control the total number of images, we
sort the images inIR according to image resolution and it-
erate through them (highest resolution first) when matching
to an image inI1, stopping after finding a fixed number of
matches (we set the number to10). After an image fromIR

is matched, it is removed fromIR and added toIA. When
finished buildingIA, we re-run a second pass of VisualSFM
onI1 ∪ I

A yielding a setI2 containing images that matched
successfully during reconstruction. Figure3 illustrates the
results on the Colosseum after the two SfM steps.

3.2. Visibility Estimation

After reconstructing a Poisson mesh and automatically
trimming out large hole-fill triangles, we estimate a set of
images inI2 that can see each vertex, i.e., one visibility set
per vertex. The original PMVS points already have a con-
servative visibility set per oriented point, a set comprised of
images that matched well at that point; we use the PMVS
points and visibility sets to bootstrap the process of estimat-
ing per-vertex visibilty.

Specifically, for each vertexv in the trimmed Poisson
mesh, we collect the30 nearest PMVS points and their vis-
ibility sets. We then select the9 images that appear most
frequently in those visibility sets. Next, we project all ver-
tices in the 7-ring neighborhood ofv (i.e., vertices within
7 edge hops fromv) into the selected images and compute
an average color at each of those vertices. We then consider
each imageI in I

2. If v is facing away fromI or if a ray
cast fromI to v hits another part of the Poisson model first,
thenI is eliminated from consideration. Otherwise, the 7-
ring neighborhood is projected intoI, and the resampled
colors fromI are compared against the average colors of
the vertices, using Normalized Cross Correlation (NCC) as
the metric. If the NCC score is higher than a threshold (0.8),
thenI is added tov’s visibility set. To accelerate the pro-
cess, we find nearest PMVS neighbors using FLANN [11]
(set for exact neighbor-finding), and we use pre-computed
z-buffers instead of ray casting for occlusion testing.

4. Lighting and Reflectance Estimation

Given the images with recovered poses and the recon-
structed mesh with per-vertex visibility sets, we estimate
lighting parameters for each image and reflectance param-
eters for each vertex. In the remainder of the section, we
present our shading model and objective function, how to
detect cloudy images (useful for bootstrapping the opti-
mization), how we optimize for the shading model parame-
ters, and finally some implementation notes.

4.1. Shading model and objective function

For the outdoor scenes we are reconstructing, we adopt
a simple but effective representation for illumination and
materials. In particular, we assume the lighting is comprised
of uniform, hemispherical sky illumination plus directional
sunlight, and we assume all materials are diffuse.

Given a pointPi (a vertex in the mesh), an imageIj , and
their associated shading parameters, the rendered pixel in-
tensityRi,j ofPi in Ij is calculated with an ambient+diffuse
shading model as follows:

Ri,j(Θ) = ai

{

f(Ni)k
sky
j +max[0, Lj ·Ni]k

sun
j δi,j

}

,(1)

Θ = {Ni, ai, Lj , k
sky
j , ksunj , δi,j}. (2)

ai andNi are the surface albedo and normal atPi, respec-
tively. kskyj andksunj are the skylight (ambient) and sun-
light (diffuse) intensities, respectively.Lj is the lighting di-
rection, parameterized in spherical coordinates. Please re-
fer to the supplementary file for additional constraints on
these variables. Note that we have not explicitly modeled
camera exposure; instead, this is a scale factor that is im-
plicitly pre-multiplied into the light intensities.δi,j models
sunlight visibility and is1 if Pi is in sunlight in imageIj ,

else it is0. f(Ni) models the ambient (skylight) occlusion,
that is, how much of the hemisphere is visible from, and
hence, illuminates the point. In principle, we can use the
input mesh model to take into account occlusions caused by
the surrounding structure as in [8]. For efficiency, we just
use the normalNi to determine hemispherical sky visibili-
ty, ignoring occluders.f(Ni) = (1 − Ni · U)/2 (derived
in [12]) whereU is the unit-length “up” direction in the
scene. Though we expect that adding sky occlusion due to
surrounding geometry could improve results, we found that
our simplified model works well in practice.

We assume, for the moment, that our images, albedos,
and lighting are grayscale; we discuss color in Section4.4.

Based on our shading equation (1), the lighting and re-
flectance estimation problem can be formulated as follows:

argmin
Θ

∑

i

∑

j∈Vi

√

R̃i,j‖Ri,j(Θ)− R̃i,j‖
2

2. (3)

R̃i,j is the observed pixel intensity of pointPi in imageIj ,
andVi is the list of image indexes in whichPi is visible,
wherei andj are indexes to points and images. Note that
the objective is simply the sum of squared differences of
image intensities between the observation and what is pre-
dicted by our shading model, weighted by the squared root
of the observed intensity. The weight is intended to give
less weight to points that may be in shadow. This weighing
scheme has proven effective, particularly in the early stage
of the optimization, where{δi,j} are all initialized to1, i.e.,
all the points are assumed to be sunlit.

4.2. Identifying Cloudy Images

Solving (3) on a large mesh with thousands of images is
a very challenging problem because optimizing it has a high
computational cost, exacerbated by the non-linearity of the
functional which gives rise to numerous local minima. To
improve both the computational efficiency and to avoid lo-
cal minima, we make use of cloudy images, which have
negligible sunlight intensity and can directly lead to esti-
mates of skylight intensities and surface albedos for points
visible in those images. (In our experiments, around15% of
photos are taken under cloudy weather and40% of all the
3D points are visible in at least one of the cloudy images.
This section describes how we identify cloudy images.

An image is identified as cloudy, if it passes at least one
of the following three tests.
• The first test is on the camera shot setting stored in-
side the EXIF tag. We compute the exposure value as
{exposure-time}{ISO-value}

{F-number}2 , and identify the image as cloudy, if
the value is modest, that is, within the range[0.05, 5.0]. A
small value typically indicates a sunny day with strong illu-
mination, while a large value indicates a night-time shot.
• The second test is on theskynessat the top portion of an
image, as inspired by Ackermann et al. [3]. Given an image,

we compute the average intensities in the RGB channels
over the top3% of the image region, and identify the image
as cloudy, if(2Bavg − Ravg −Gavg < 100) holds.
• The last test is on the ratio between the skylight and sun-
light intensities(kskyj /ksunj) after lighting estimation (i.e.,
during optimzation). An image is identified as cloudy if the
ratio is more than10.

As described in Sec.4.3, the first two tests are initially
used to identify cloudy images. After the first lighting esti-
mation, we include the third test to update cloudy images.

4.3. Algorithm

The core estimation algorithm consists of three steps: 1)
partial albedo estimation from cloudy images; 2) lighting
estimation; and 3) per-point albedo estimation (See Fig.2
for the entire algorithm flow).

Skylight and partial albedo from cloudy images

For cloudy images, the shading equation (1) does not have
a sunlight component and is simplified to

RC
i,j(Ni, ai, k

sky
j) = aif(Ni)k

sky
j . (4)

Let IC denote a set of cloudy images. We collect a set of
pointsPC that are visible in at least three cloudy images,
where estimation becomes reliable. The optimization prob-
lem (3) can similarly be reduced as follows:

argmin
{ai,k

sky

j
}

=
∑

i∈PC

∑

j∈Vi∩IC

√

R̃i,j‖R
C
i,j(ai, k

sky
j)− R̃i,j‖

2

2.

(5)
Note that the surface normalNi is technically a variable
in (5). However, we instead use the Poisson normal, be-
cause normal estimation is unreliable without the direction-
al lighting component, and the input mesh model has al-
ready fairly accurate surface normal estimates.

Lighting estimation

Even with partial surface albedo estimates, it is very expen-
sive to solve (3) by using all the points, which could number
in the tens of millions. We observe that not all the points are
necessary to estimate lighting parameters; thus, we first fo-
cus on solving lighting parameters for each image, while
operating on a small but effective set of points.

For lighting estimation, we would like to select a subset
of points (vertices) that are visible in many images, but also
achieve coverage by ensuring each image contains at least
m(= 1000) such points. After initializing the setPL with
2000 points that have the most number of visible images,
we pick an image that has less thanm visible points, and
add100 points from that image toPL. The100 points are
randomly sampled, where the sampling probability is pro-
portional to the number of visible images for each point, so

that points with more visible images are more likely to be
added. The process repeats until all the images have more
thanm points or no more points can be added.

Now, we finally solve (3), but with two modifications.
First, we use the subsampled point set. Second, we add
a damping term to bias our solution to the surface albedo
estimatẽai from (5) and the normal̃Ni in the input mesh,
giving a new objective:

argmin
Θ

∑

i∈PL

∑

j∈Vi

√

R̃i,j‖Ri,j(Θ)− R̃i,j‖
2

2

+λ1

∑

i∈PC

‖aif(Ni)− ãif(Ñi)‖
2

2. (6)

λ1 = 1 is used in our experiments. Note that the damping
term is added for pointsPC that are visible in some cloudy
images and has estimates from (5).

After solving (6), we update the cloudy image setP
C by

using the estimated lighting parameters as in Section4.2.
Then, we solve (5) and (6) in exactly the same way.

Per-point albedo and normal estimation

The final step is to fix the lighting parameters{Lj, k
sky
j ,

ksunj }, then solve for the remaining parameters{Ni, ai,
δi,j}, which can be optimized for each point independently:

argmin
{Ni,ai,δi,j}

∑

j∈Vi

√

R̃i,j‖Ri,j(Θ)− R̃i,j‖
2

2

+λ1

∑

i∈PC

‖aif(Ni)− ãif(Ñi)‖
2

2 + wi‖Ni − Ñi‖
2

2. (7)

The last term arises from the observation that when a point
is visible only in a few images, normal and albedo estima-
tion become very noisy. In this case, since the surface nor-
mal estimation from the input mesh model is fairly accu-
rate, we add a damping term on the surface normal itself,
while adaptively weighing the term based on the amount of
available image information for that point. Note thatÑi is
the surface normal in the input mesh. The definition of the
per-point weightwi is given in the supplementary materi-
al. Note that our system optimizes surface normals. It
contributes a modest improvement in capturing the lighting
variation in the input images.

4.4. Implementation details

Here we describe several implementation details. First,
we employ the Matlab functionlsqnonlinto solve all of the
the optimization problems.

Second,δi,j is a binary variable and cannot be optimized
easily. δi,j is initialized to be1 at the beginning. When
δi,j is a free variable in an optimization problem, we solve
it in three steps: 1) Fixδi,j and solve the other parameters
with lsqnonlin; 2) Solveδi,j while fixing the others for each

Colosseum San Marco Square
Figure 4. Two datasets used in our experiments, where the recon-
structions are rendered from aerial viewpoints with albedocolors
without additional lighting effects. Top: Colosseum. Bottom: San
Marco Square.

point independently (a simple binary decision); and 3) Fix
δi,j again and solve the other parameters bylsqnonlin.

Finally, the albedosai and lighting intensities,kskyj and
ksunj , are all color values. In practice, when sunlight direc-
tionLj is not a free variable, we simply solve the optimiza-
tion problem in each color channel independently. WhenLj

is a free variable in an optimization, we first map the colors
to grayscale (luminance) to solve the problem, then solve
the same problem again in each color channel independent-
ly while fixing the lighting direction.

Poisson Surface Reconstruction [9] converts a PMVS
point cloud into a triangle mesh, where the output mesh
resolution can be controlled by a parameter (depth). We
noticed that increasing this parameter (and hence resolu-
tion) too much introduces surface artifacts, however, we
still want to match the texture resolution of the mesh to that
of the input images for optimal rendering. Therefore, we
use a modest parameter fordepth, in particular,12 for the
San Marcos Square and13 for the Colosseum. Then, we
simply apply the triangle subdivision – split a triangle into
four smaller ones – to increase the mesh resolution, where
the surface subdivision is adopted in two ways in our sys-
tem. First, we subdivide the entire mesh once uniformly to
increase its resolution. Second, regions of interest, which
are specified by drawing rectangles on images, are subdi-
vided by three times to increase resolution locally.

Lastly, inaccurate geometry at the top of the structure of-
ten projects to sky pixels in the input images. Since sky
pixels are usually much brighter, the estimated albedos be-
come very high and cause visible artifacts in the render-
ing. To address this, we adopt a simple thresholding method
that removes mesh vertices that have near upward normals
and have high albedo values. More concretely, we drop a
mesh vertex, if the associated surface normal is within 9 de-
grees from the up-direction, and the estimated albedo value
is more than255× 2 in any of the three color channels.

5. Experimental Results

This section presents the first large scale 3D reconstruc-
tions with lighting and reflectance models from community

Dataset

Colosseum

San Marco

Flickr

MVS
points

Mesh
vertices

Running time [hour]

Visibility
estimation

Lighting
estimation

Per-point albedo

estimation

14k

140k

2,687

3,267

Street-
view

Aerial

Input Images
Images
after SfM

14

033

77 10m 27m

23m

20

23

~ 1

~ 1

3

434m

Table 1. Statistics of our datasets.

photo collections mixed with aerial and streetview imagery.
Figure4 shows the two datasets used in our experiments,
where some statistics are given in Table1. The computa-
tional time is collected by running the system on a cluster
of 80 cores. The visibility and the per-point albedo estima-
tion processes distribute workload to all 80 cores while the
lighting estimation process runs on a single core. Figure4
shows albedo renderings. Note that in the Colosseum mod-
el rendering, the points on the Colosseum are mostly recon-
structed from ground level images, thus are much denser
than the points on the rest of the city. The rest of the city
is mostly created from aerial images that are taken within a
short period of time. Since there is not much lighting varia-
tion in the aerial images, shadows on the ground are baked
into the albedo.

5.1. Visual Turing Test

We conducted a series of Visual Turing Tests to evalu-
ate the realism of our renderings using Amazon Mechanical
Turk. We present a pair of images, one real and one ren-
dered, from the same viewpoint and illumination condition,
then ask the subject to specify which is “more realistic”.

The results of the Visual Turing Tests depend on the im-
age resolution. Simply put, the higher the image resolution,
the easier it is to detect small imperfections in the recon-
structed model. Therefore, we conducted tests for four dif-
ferent image resolutions, in particular, when the longer side
of an image is 100, 200, 400, and 600 pixels in length.

We chose one hundred randomly selected Flickr photos
as reference views. Each view is presented in four reso-
lution levels; hence, there are in total four hundred image
pairs in the study. Each image pair is shown to twenty test
subjects. Low resolution images are sent to workers prior
to high resolution images for the same viewpoint, to avoid
having the high-res results (which are easier for subjects to
get right) pollute the low-res tests. Some of the image pairs
are shown in Figure5, where the real photos are on the left
and our rendered images are on the right. Note that we don’t
feed the estimated shadow map into the rendering process
as it contains shadows from foreground occluders. The sky
is rendered with a simple sky dome texture mapping.

Visual Turing Test results are provided in Figure6a,
where thex-axis corresponds to the hundred examples, and
the y-axis is the probability, in which our renderings suc-
ceeded on the test, that is, fooled the subjects. Examples
are sorted along thex axis in the ascending order of the
success rate in the100 pixel resolution. Clearly, the proba-
bility of picking a rendered image is higher at lower resolu-

100 200 400 600

0
.0

0
.2

0
.4

0
.6

0
.8

Resolution (pixels)

P
ro

b
a
b
ili

ty
 o

f
p
ic

ki
n
g
 o

u
r

re
n
d
e
re

d
 im

a
g
e

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

Image ID

P
ro

b
a
b
ili

ty
 o

f
p
ic

k
in

g
 o

u
r

re
n
d
e
re

d
 i
m

a
g
e

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Resolution 100

Resolution 200

Resolution 400

Resolution 600

Worker ID (# of workers = 142)

N
u

m
b

e
r

o
f

jo
b

s

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

(b) (c)

(a)

Figure 6. Statistics of the Visual Turing Test. Please zoom in for
a better visualization of the plot. (a) Per-image average. (b) Per
resolution level statistics. (c) Worker plots.

tion. Indeed, a handful of low-res rendered images actually
passed the Visual Turing Test, meaning that the majority of
the subjects believed our renderings are more realistic than
the photos. The average success rate at the four resolutions
are0.3455, 0.16, 0.0735, and0.034, respectively. More-
over,30% of the subjects were fooled on almost half of the
low-res tests, which suggests that passing the low-res Visu-
al Turing Test is perhaps a goal within reach for 3D recon-
struction research. Interestingly, there are a couple view-
points in which subjects had trouble identifying real photos
even for the highest resolution.

Figure6b summarizes the statistics of the success rates
(y-axis) over the hundred examples for the four resolution
levels (x-axis). For each resolution, the five horizontal
markings correspond to the minimum, lower quartile, me-
dian, upper quartile, and the maxium of the success rates.

Figure 6c illustrates how many tests (out of four hun-
dreds) are completed by each of the142 subjects. Note that
one worker participates in multiple tests, but cannot do the
same test more than once (same photo, same resolution).

Finally, there are a number of other factors (apart from
resolution) that appear to be correlated with success or fail-
ure on the Visual Turing Test. One is the presence of people
(Figure7). Subjects are much more likely to pick a photo as
more realistic if the photo contains people, which suggests
that adding people to the renderings could improve realis-
m. Visual artifacts can also give our results away. For the
right-most result in Figure7, the viewpoint is located right
behind some geometry fragments which occlude the object
of interest and cause severe artifacts.

5.2. More Evaluations

To further validate the accuracy of our lighting estima-
tion, we render images with and without shadow effects

Figure 5. Visual Turing test. In each image pair, the ground truth image is on the left and our result is on the right.

Figure 7. Typical failure cases. Bad geometry and people aretwo major causes for our method to fail the Visual Turing Test. More than
90% of test subjects pick the reference photos (left) as more realistic in every resolution level for these examples.

(Figure8). The shadows (highlighted with green ellipses)
rendered with our estimated lighting configurations match
those in the input images. The rightmost column shows the
renderings from an aerial viewpoint, illustrating the pres-
ence of large shadows cast by the tower.

An alternative solution for reproducing lighting effects
without estimating lighting and albedo is to compute av-
erage/median colors over the mesh from visible images
and applying a histogram matching to ground truth images.
However, as illustrated in Figure9, such an approach does
not produce any directional lighting effects, which is cru-
cial to visual fidelity. It also suffers from inconsistent col-
orization, because it does not properly handle widely vary-
ing viewpoints and illumination conditions that are present

Figure 9. Rendering with median color and histogram matching.
Left: input ground truth images; middle: our results; right: images
rendered from average pixel color and applying histogram match-
ing to the ground truth image. Note the lack of directional lighting
effects and color noise in red ellipses.

in Internet photo collections.
Figure10 illustrates the importance of the visibility test

in our system, which removes the influences of foreground

Reference image Our rendering without shadow Our rendering with shadow Aerial rendering with shadow

Figure 8. Validating the accuracy of our lighting estimation.

(a) (b) (c)
Figure 10. Our rendered image removes fore-ground objects.(a)
A reference photo. (b) Rendered result. (c) A close-up view of (b).

occluders that are often present in community photo collec-
tions. Our system can reveal structure behind occluders as
if they are lit under the same illumination conditions. Fig-
ure10c shows a close-up view of structure where the sub-
division scheme was used to increase the mesh resolution,
which illustrates the fidelity of our reconstruction even atan
inch-scale in a city-scale 3D model.

Please see the supplementary material for more results
and details on the Visual Turing Test.

6. Conclusions and Limitations

We present a system to capture and render relightable
scene reconstructions from massive unstructured photo col-
lections consisting of Flickr photos, streetview and aerial
images. Our system captures a wide range of lighting vari-
ations and scene reflectance, and recovers fine grain texture
details. The evaluation on a large scale Visual Turing Test
demonstrates the effectiveness of our system.

As a step towards solving the grand challenge ofVisual
Turing Test, our system has notable limitations and thus a
number of areas for future work. We have not modeled am-
bient occlusion which is an important lighting effect. There
is one coupled scale ambiguity between lighting colors and
albedo values. Simple geometry might not provide enough
information for light estimation, which further introduced
ambiguity. Our system models outdoor environments un-
der the sun and sky illuminations. It would be interesting
to extend the framework to more complicated illumination
models, e.g., night-time shots.

Acknowledgment

This work was supported by funding from National Sci-
ence Foundation grant IIS-0963657, Google, Intel, Mi-
crosoft, and the UW Animation Research Labs.

References

[1] Flickr. http://www.flickr.com . 2
[2] A. Abrams, C. Hawley, and R. Pless. Heliometric stereo:

Shape from sun position. InECCV, 2012.1
[3] J. Ackermann, F. Langguth, S. Fuhrmann, and M. Goesele.

Photometric stereo for outdoor webcams. InCVPR, 2012.1,
4

[4] S. Agarwal, Y. Furukawa, N. Snavely, B. Curless, S. M.
Seitz, and R. Szeliski. Building rome in a day.Commu-
nications of the ACM, 54(14):105–112, October 2011.1, 3

[5] J.-M. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Ragu-
ram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and
M. Pollefeys. Building rome on a cloudless day. InECCV,
2010.1

[6] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. To-
wards internet-scale multi-view stereo. InCVPR, 2010.2

[7] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-
view stereopsis.TPAMI, 32(8):1362–1376, 2010.2

[8] T. Haber, C. Fuchs, P. Bekaer, H. Seidel, M. Goesele, and
H. Lensch. Relighting objects from image collections. In
CVPR, 2009.2, 4

[9] M. Kazhdan, M. Bolitho, , and H. Hoppe. Poisson surface re-
construction. InSymposium on Geometry Processing, 2006.
2, 5

[10] P. Laffont, A. Bousseau, and G. Drettakis. Coherent intrinsic
images from photo collections. InSIGGRAPH Asia, 2012.2

[11] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. InInternation-
al Conference on Computer Vision Theory and Application,
pages 331–340, 2009.3

[12] J. M. Snyder. Area light sources for real-time graphics. Tech-
nical Report MSR-TR-96-11, Microsoft Research, 1996.4

[13] C. Wu. VisualSFM : A visual structure from motion system.
http://homes.cs.washington.edu/ ˜ ccwu/vsfm .
2

http://www.flickr.com
http://homes.cs.washington.edu/~ccwu/vsfm

