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Intercepting the GPU calls between the video game en-
gine and the graphics card using RenderDoc [1] usually re-
sults in a massive amount of information, from texture and
depth buffers to blend shape weights of the participating
human models. While it is easy to locate and extract the
color/depth buffers, the other information is more difficult
to parse. For example, the naming of the intercepted vari-
ables is not always meaningful and in order to use them
more sophisticated methods are needed [4].

In our case, the area of action (soccer field) has specific
dimensions and structure that can be used to infer informa-
tion such as camera matrices. In particular, our goal is to es-
timate the video game camera modelview matrix Mmv and
projection matrix Mproj (OpenGL/DirectX), so we can in-
vert the depth buffer that it is in Normalized Device Coordi-
nates (NDC). Below (Appendix A) we describe the method
to recover these matrices. The additional information that
we need is a) a person segmentation of the texture buffer
and b) an auxiliary camera that observes the field in world
coordinates. To find which pixels belong to the players we
use the semantic segmentation network of [7]. Then, for the
auxiliary camera we follow the same approach as in Sec.
4.1: we estimate a camera with parameters Maux that ob-
serves the soccer field that lies in the world center with y
axis 0. Note that the intrinsics and extrinsics of the aux-
iliary camera cannot be used directly for estimating Mproj

and Mmv, since they do not include the near/far plane pa-
rameters and we do not know the video game’s world sys-
tem.

Appendix A. Estimating Video Game Cameras

To estimate the camera parameters (modelview and pro-
jection matrices) of a video game image, we need its corre-
sponding NDC buffer, the auxiliary camera Maux that ob-
serves the field and the player segmentation mask.

The modelview and projection matrices in
OpenGL/DirectX are 4 × 4 and the parameters to be
estimated are the rotation vector θx, thetay, thetaz , the
translation vector tx, ty, tz and focal length, near and far
plane f, znear, zfar.

Essentially we want to find the parameters that trans-
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To estimate the OpenGL cameras we can rely on the struc-
ture of the scene: points that belong to the soccer field (and
not to players) should lie on a plane with y equals to 0.
The 3D world position of the ground pixels can be found
by intersecting the rays from the auxiliary camera’s ground
pixels towards the ground. However, if we optimize only
for the ground pixels, the znear, zfar parameters collapse, re-
sulting in wrong reconstructions for the players. In addition
to the ground constraint, we can minimize the reprojection
error of the player 3D points to the auxiliary camera.

Therefore, for a sets of world 3D points Xp with p ∈
ground and a set of 2D points (pixel location) yq with
q ∈ player, the modelview matrix Mmv and the projection
matrix Mproj are found by minimizing:
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q correspond to the NDC coordinates of
ground points p and player points q. The NDC coordinates
are found by dividing the the x and y pixel locations with
image width and height respectively; the z coordinate is the
value of the depth buffer at the specific pixel location. The
weight λ was set to 0.01.

Appendix B. Implementation Details
Training Data Our training data comes from the video
game Electronic Arts FIFA 2016. The GPU calls between
the game engine and the graphics card were obtained us-
ing RenderDoc v0.34. The playing teams were randomly
selected and the camera was set to broadcast.
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Player Analysis Detection and pose estimation was per-
formed using the code of [3] and [5] respectively. Since the
boxes can be lifted in 3D, very small or very large detec-
tions were removed. For tracking, two tracks were merged
if the distance between them is less than 50 pixels and they
are inside a frame window of 10 frames.

We observed that a multi-person pose estimator better
separates the players than bounding box overlap and it en-
ables a simple algorithm for tracking. The pose estimation
skeleton is also used for pixel-wise instance segmentation.
In experiments with heavily occluded players, we found the
pose estimator was significantly better in separating the oc-
cluded players than [6] (94% vs 65% in finding the correct
number of players)

Tracking is used for tempo-
ral smoothing in 3D, removing
jitter, and improving player seg-
mentation. The player mesh
is generated from the estimated
depth map and the player’s 3D
bounding box. Small errors in calibration or in the 2D
bounding box (the green box shown here is a few pixels
off) result in jittering of the 3D box (the assumption is that
the bottom of the box lies on the ground) which is corrected
using 3D temporal smoothing.

Ball Reconstruction Our
method does not reconstruct
the 3D position of the ball
(in some videos the ball was
added manually). Our input is a
monocular video and even with
perfect 2D tracking of the ball,
there is still ambiguity in the 3D
ball trajectory that generated the 2D track. For example, we
cannot disambiguate whether the ball is airborne moving
straight away from the camera (red) or just moving in a
straight line on the ground (blue), without incorporating
ball physics (an area of future work).

Depth Estimation Network We used the Pytorch imple-
mentation of Stacked the Hourglass network [2] with 8
stacks of 1 module. We performed optimization with the
Adam solver with 0.0001 learning rate, 0.003 weight decay
and betas were set to 0.9 and 0.999. Batch size was set to 6.
The network was trained for 300 epochs with cross entropy
loss.

We experimented with a number of network architec-
tures: encoder-decoder with skip connections, fully convo-
lutional with upsampling, and others, and we found that the
hourglass model had superior performance.

Scene Reconstruction The Soccer Hologram results

were obtained using the Microsoft HoloLens Unity SDK
and the capture of the video and images were performed us-
ing the Mixed Reality Capture from the HoloLens device.
The varying-viewpoint results were obtained using Blender,
where the reconstructed players were placed in a synthetic
stadium with predefined camera paths. No user intervention
was required for the players animation.
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