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Abstract

We develop a new view-dependent level-of-detail algorithm for tri-
angle meshes with subdivision connectivity. The algorithm is more
suitable for textured meshes of arbitrary topology than existing pro-
gressive mesh-based schemes. It begins with a wavelet decompo-
sition of the mesh, and, per frame, finds a partial sum of wavelets
necessary for high-quality renderings from that frame’s viewpoint.
We present a new screen-space error metric that measures both ge-
ometric and texture deviation. In addition, wavelets that lie outside
the view frustum or in backfacing areas are eliminated. The algo-
rithm takes advantage of frame-to-frame coherence for improved
performance, and supports geomorphs for smooth transitions be-
tween levels of detail.

1 Introduction

Complex graphical environments consisting of thousands or mil-
lions of polygons are becoming commonplace. These environments
arise in computer-aided design applications, visualizations of scien-
tific data sets, and 3D photography techniques such as laser scan-
ning. Current hardware, however, is not capable of rendering many
of these large datasets at sufficiently high frame rate for interactive
applications.

While scene complexity increases with the power of acquisition and
modeling tools, the display resolution is growing slowly and will
someday reach a limit imposed by the needs of the human visual
system. As a result of this mismatch in complexity and resolution
growth, practioners often find that many polygons are being ren-
dered, unnecessarily, to a single pixel. Further, many polygons are
not visible to the user because they lie outside the viewing frustum,
or they are back-facing, or they are occluded by other polygons. In
such cases, the scene can be rendered with far fewer polygons with
no appreciable effect on the final rendered image.

Many researchers have proposed methods for reducing the com-
plexity of meshes (also known as mesh decimation) using such
schemes as re-triangulation [18], vertex removals [16], edge col-
lapses [9], and vertex clustering [15]. By constructing a set of ap-
proximating meshes, an appropriate level of detail (LOD) can be
selected based on the current viewpoint [6, 5, 3].

More recently, researchers have developed methods for continu-
ous transformations between levels of detail, the most prevalent of
which is the progressive mesh method introduced by Hoppe [7].
Such transformations enable a more powerful form of LOD con-
struction that allow the mesh simplification to vary over the sur-
face of an object, selecting a coarse level of detail for invisible re-
gions of an object, and finer detail for visible areas, particularly
along silhouettes. For instance, when rendering a fly-over of a ter-
rain, these systems can finely tessellate regions close to the camera
and coarsely tessellate areas far away from the camera or outside
its view frustum. Xia and Varshney [20] and Hoppe [8][10] de-
scribe view-dependent LOD frameworks built atop modifications of

Figure 1 View-dependent refinement of a base mesh using a para-
metric error metric ensures that the simplified mesh (right) not only
approximates the high resolution geometry (left) but also that sur-
face texture is not distorted.

Hoppe’s progressive mesh representation. Luebke and Erikson [14]
describe an alternate method based on a vertex clustering simplifi-
cation algorithm that can change the topology of the triangle mesh,
though the progressive mesh framework tends to yield higher qual-
ity renderings.

The progressive mesh approach does, however, have some short-
comings. First, the algorithm is intended to work on static meshes
and, because it does not in general yield a smooth mapping among
the levels in the hierarchy, is not immediately suited to such opera-
tions as mesh editing, signal processing over surfaces, and anima-
tion. Second, texture-mapping is only supported when the surface
is parameterized prior to simplification, a separate, complex step
in itself. Third, during rendering of texture-mapped surfaces, addi-
tional machinery is necessary to minimize texture distortion [3]. Fi-
nally, during view-dependent refinement, coarsening operations are
difficult to implement due to dependencies in the hierarchy [10].

An attractive alternative to progressive meshes is to represent a sur-
face in a multiresolution framework based on four-to-one subdivi-
sions, such as the one described by Lounsbery et al. [13]. Meshes of
this type have a restricted connectivity known as subdivision con-
nectivity. These multiresolution meshes have been demonstrated
to admit powerful editing operations such as those described by
Zorin et al. [21]. Further, when starting with high resolution geom-
etry, Eck et al. [5] and Lee et al. [11] have demonstrated methods
for constructing the subdivision hierarchies while simultaneously
building low-distortion parameterizations which can be tuned to re-
spect prevalent geometric features during construction.

Several researchers have demonstrated methods for efficient render-
ing of these multiresolution meshes. Certain et al. [2] demonstrate
progressive refinement of meshes and texture maps independently,



though viewpoint is not taken into account. Zorin et al. [21] demon-
strate view-independent level of detail. Wood et al. [19] introduce
a framework for continuous, view-dependent LOD of subdivision
connectivity meshes, but provide only sparse details or analysis.

In this paper, we describe in detail a method that fills the gap in
this important area of geometric representation and modeling. In
particular, our contributions are:

� A view-dependent refinement scheme with detail varying over
the surface of multiresolution subdivision-connectivity sur-
faces. The scheme includes adaptive simplification based on:

– Frustum culling

– Backface culling

– A screen space error metric with inherent texture distor-
tion reduction

� An improved metric for screen space error

� Support of overlapping, coarsening, run-time geomorphs

The remainder of this paper is organized as follows. We begin by
reviewing the technique of [8], which is most similar to our algo-
rithm. Next, we summarize the mathematical basis of mesh pa-
rameterization and multiresolution analysis and describe how this
analysis leads to a view-dependent algorithm. We then present the
qualitative and quantitative results of our implementation and con-
clude with a discussion of future work.

2 View-dependent LOD for progressive meshes

A progressive mesh [7] is an ordered family of approximations of
a triangle mesh represented by a coarse base mesh and a sequence
of vertex split operations. The sequence is constructed by repeat-
edly applying the inverse operation, edge collapse, starting with the
original, highest resolution, mesh. Consequently, starting with the
base mesh and applying the entire stream of vertex splits in order
will yield the original mesh.

Xia and Varshney [20] and Hoppe [8] refined the progressive mesh
representation to support selective level of detail. Vertices in the
mesh are organized into a forest of trees in which each tree root is a
vertex in the base mesh and the children of any given vertex are the
vertices formed by applying the vertex split operation to it. A cut
through the forest represents a possible refinement of the mesh. In
particular, the cut through the root vertices of the forest represents
the base mesh, and the cut through the leaf nodes represents the
original, highest resolution mesh.

Hoppe’s view-dependent, LOD algorithm operates incrementally
from frame to frame. The mesh in each frame is represented as a list
of active vertices along a cut through the forest. Prior to rendering a
frame from a new viewpoint, the active list of vertices is traversed,
and a refinement function is evaluated to query whether each ver-
tex in the list should be split or its parent edge collapsed, based on
the new viewpoint. This process moves the cut up or down, and
the mesh is incrementally modified by performing the correspond-
ing vertex split and edge collapse operations. Finally, the modified
mesh is rendered.

The refinement function selects a desired refinement state for a ver-
tex based on three view-dependent criteria. First, areas of the mesh
that lie completely outside the view frustum are coarsened. Second,
areas of the mesh that face away from the viewer are also coarsened.
Finally, a screen-space error bound is enforced.

To reduce the “popping” effect of switching between levels of de-
tail, Hoppe [7] introduces geomorphs, a technique for smoothly in-
terpolating between successive meshes in a progressive mesh hier-
archy. Hoppe [8] notes that geomorphs can be used to smooth tran-
sitions in a view-dependent level-of-detail framework and in later
work [10] he first incorporates run-time geomorphs in the context
of terrain fly-throughs. Geomorphs of vertex splits are handled in
a straightforward manner. Geomorphs of edge collapses, however,
present greater difficulty, as “overlaps” or dependencies can arise
and require a parent to be geomorphed at the same time as its child.
To avoid such difficulties, he requires the children to be geomor-
phed and collapsed before beginning the geomorph of the parent.

3 View-dependent LOD for
subdivision-connectivity meshes

In this section, we describe a new algorithm for view-dependent
level-of-detail of triangle meshes with subdivision connectiv-
ity. Our method relies on multiresolution analysis of triangle
meshes [12, 17, 2], ensuring a smooth mapping between meshes
generated at different levels of detail. We describe a screen-space
error metric that measures texture deviation as well as geometric
deviation. Like the earlier work on progressive mesh schemes [8],
our algorithm operates incrementally, taking advantage of temporal
coherence, and it supports geomorphs for smooth transitions be-
tween meshes generated in different frames, including overlapping
coarsening geomorphs.

3.1 Decoupling color from geometry

We define a colored mesh to be a triangular mesh M
�

IR3, together
with an RGB-valued function M � Color.

Representing a colored mesh as a textured surface requires a pa-
rameterization of M. For acquired surfaces with arbitrary topology,
a parameterization is typically generated using a scheme such as
those described in Eck et al. [5] or Lee et al. [11]. Those schemes
construct a homeomorphism (or parameterization)

� : K0
� M

�
IR3 ,

where the base complex K0 is an abstract simplicial surface, con-
sisting of a relatively small number of faces. The composition

cRGB : K0 �� � M � � Color

transfers the color function to the base complex K0, whose faces
can then be viewed as texture domains [2]. Notice that we can tex-
ture map the image of any map �

approx : K0 � IR3 approximating
� , provided only that it is piecewise linear with respect to a re-
finement of the triangulation of K0. Furthermore, although we dis-
cuss only colored meshes, the extension to other surface properties
(e.g., BRDF’s, normals, transparency) is straightforward.

3.2 Multiresolution Analysis

Our construction of the approximation �
approx is based on multires-

olution analysis. Let K j denote the triangulation of K0 obtained by
applying j four-to-one subdivisions of each face of K0. Notice that
the vertices of K j consist of the vertices of K j � 1 together with addi-
tional vertices located at the midpoints of the edges of K j � 1. These
vertices are called edge vertices at level j. The vertices of K j are
arranged in the following hierarchy: v0

i denotes a vertex of K0 and
vj

e denotes the edge vertex at level j centered on the edge e of K j � 1.
Points of M are indicated with bold face: vj

a = � (vj
a).



For each integer j we let

� j : K0 � � IR3

be the unique piecewise linear map with respect to the triangulation
Kj such that � j(v) = � (v) for each vertex v of K j. Because the
sequence � j converges uniformly to � , the sequence of increasingly
fine meshes Mj = � j(K0)

�
IR3 converges to M (see Figure 2).

PSfrag replacementsK0 K1 K2

� 0 � 1 � 2

M0 M1 M2

Figure 2 To generate successive levels of detail, apply four-to-one
subdivisions and perturb the new vertices to their final positions.

The map � 0 is the coarsest level approximation of � . For each
integer j � 0, we view � j as a perturbation of its predecessor � j � 1.
More formally, � j has the expansion

� j = � j � 1 +
�

e

sj
e �� j

e , (1)

where the summation is over the edges of K j, �� j
e denotes the piece-

wise linear “hat function” that assumes the value 1 at the edge ver-
tex vj

e and the value 0 at every other vertex of K j (Figure 3).

Repeated application of (1) yields the lazy wavelet expansion [2]

� = � 0 + ��
j=1

�
e � Edges(Kj � 1)

sj
e �� j

e ,

Other wavelet bases, such as the k-disk wavelets [17], are more
nearly orthogonal; however, for the purposes of a view-dependent
level-of-detail scheme, orthogonality is less important than the
speed offered by the simplicity of the lazy wavelet expansion. As
rendering speed is dependent on the number of triangles in an ex-
pansion and not the number of wavelets, the simple triangulation of
a lazy wavelet is desirable.

In practice, we truncate the infinite sum at level J, where J is chosen
so that the error � � � � J � is below a user-specified threshold. In
other words we assume that � = � J and, consequently, that M =
MJ .

3.3 Adaptation criteria

Our goal is the following: at each frame t, we wish to find an ap-
proximation �

t to � that generates a convincing image given the
viewpoint parameters. We call the process of computing �

t the
adaptation stage. In addition, we need an efficient method of ren-
dering the resulting mesh, a process we call the rendering stage. We
describe those two stages in more detail in the next two subsections.

We may now restate the problem in terms of the lazy wavelet ex-
pansion. At each frame t, we wish to find a small subset Ut of the
index set

S = � (e, j) : e 	 Edges(K j � 1), j 
 J �

K0 K1

�� 1
i

� 0 � K0 
 � � 0 + s1
i �� 1

i � � K0 

Figure 3 Adding a lazy wavelet. Top left: the base domain. Top
right: domain after one subdivision, showing a hat function at level
1. Bottom left: the coarsest geometric mesh. Bottom right: the mesh
with added correction term.

such that

�
t = � 0 +

�
(e,j) � Ut

sj
e �� j

e

Our criteria for including an index (e, j) in Ut consists of three tests:
(i) a view-frustum test, which excludes indices for which the support
of �� j

e is outside the view frustum, (ii) a back-facing test, which
excludes indices for which the image of the support of the wavelet
is back-facing, and (iii) a screen-error test that ensures small screen
error in regions of high curvature or and along silhouettes, where
high geometric detail is needed. Tests (i) and (ii) are nearly identical
to those of Hoppe [8], with the exception that the areas of the mesh
tested correspond to the support of our hat functions rather than
the neighborhood of vertices and their descendants; test (iii) differs
more substantially from the corresponding test described by Hoppe.
Our test (iii) will implicitly measure not just geometric error but
the deviation of surface properties (e.g., texture distortion), and we
employ a tighter bounding volume to measure screen space error.

3.3.1 View-frustum test

To test that the support of �� j
e does not lie completely outside the

view frustum, we pre-compute the radius rj
e of the smallest sphere,

centered around the point vj
e 	 M that bounds the � -image of the

support of �� j
e . We include the index (e, j) if any part of the sphere

lies within the view frustum.

Notice that an index (e, j) satisfies the view-frustum test (and is in-
cluded) if its support contains the support of a finer level wavelet�� k

f , and (f , k) satisfies the test.

3.3.2 Back-facing test

To determine if the image of the support of a wavelet is back-facing,
we pre-compute the Gauss map (field of unit normals) of M over
the support of each wavelet and find a bounding cone of normals
centered around the normal to M at each point vj

e. We include (e, j)
in Ut if the vector from vj

e to the viewpoint makes an angle of less
than ��� 2 with some vector in the cone.

Notice, again, that an index (e, j) is front-facing (and included in
Ut) if its support contains the support of a finer level wavelet �� k

f ,
and (f , k) is front-facing.



3.3.3 Screen-error test

We want to approximate the map � sufficiently well that the error
between the original map � and the approximation �

t at time t, pro-
jected into screen space, is bounded by a user-specified value. Our
test is based on the parametric error, � � �

t. The parametric error
does not measure the difference between a point on the approximate
geometry and the closest point on the true geometry. Instead it mea-
sures the difference between a point on the approximation and the
corresponding point on the true geometry. Therefore it accounts for
the deviation of surface features like texture.

To pre-compute the parametric error, we have to make an assump-
tion about the set Ut. Suppose that (f , k) is in Ut and that the support
of �� k

f is contained in the support of �� j
e . Then we also include its

“ancestor” (e, j) in Ut.

We also will order our tests, so that we will not test (f , k) unless we
have already included all of its ancestors. With these assumptions
in place, we can pre-compute the parametric error that results from
excluding (e, j) from Ut. At a point p in K0 the error Eparam(p) is
given by

Eparam(p) = � (p) � �
t(p) = � (p) � � j � 1(p) . (2)

The error E resulting from excluding (e, j) is the union of the para-
metric errors for all p in the support of �� j

e . Because both � and
� j � 1 are piecewise linear on KJ , this set is contained in the convex
hull of the set � Eparam(v) � where v ranges over the vertices of KJ in
the support of �� j

e . We use this set for following computation of a
bounding box around the error E.

To accelerate this test, we bound E by a normal-aligned spheroid,
and test the size of the spheroid’s projection onto screen space. The
spheroid is determined by the normal to M at vj

e, the length of its
normal-aligned radius aj

e, and the length bj
e or its radius in the di-

rection orthogonal to the normal. (Figure 4(b)).

Hoppe [8] uses as a bounding volume a sphere attached to two
normal-aligned cones (Figure 4(a)). Most of the geometric devia-
tion is likely to be normal to the surfaces; hence, the normal-aligned
cones allow the volume to enclose longer error vectors while keep-
ing a relatively small screen-space footprint. We could compute the
optimal major axis but that would require extra storage if we are
already storing normal information. The shape is also fairly cheap
to project into screen space. A spheroid generally provides a tighter
bounding volume around error vectors than Hoppe’s shape. For ex-
ample, consider the simple case of a single error vector deviating
15 degrees from the normal. As shown in Figure 4 the Hoppe-style
bounding shape can be considerably larger than the spheroid. Our
experiments (Section 4) demonstrate a smaller but consistent ad-
vantage for the spheroid.

We define the screen space error to be radius of the smallest circle
containing the projection of the bounding spheroid onto the viewing
screen, measured as a fraction of the size 2 cot( � � 2) of the view-
port, where � is the field-of-view angle. We want the screen space
error to be less than a user-specified, screen-space tolerance � . We
ensure this by including the index (e, j) if the diameter of the screen-
space projection of the bounding spheroid is greater than 2 � .
Our computation of aj

e and bj
e for a particular wavelet �� j

i is similar
to the computation in [8]. Given the set E of error vectors, we first
determine the ratio using the expression

aj
e

bj
e

=
max
ek � E

� ek � n̂j
e



max
ek � E

�
ek � n̂j

e

� (3)

(a)

e
n̂

(b)

e
n̂bj

eaj
e

Figure 4 Bounding shapes constructed around a single error vector
e, pointing 15 degrees from the unit normal n̂. (a) Hoppe [8]. (b)
Spheroid.

where n̂j
e is the unit normal at the vertex vj

e. We then scale the
spheroid so it bounds the vectors in E.

To test an index (e, j) for inclusion in Ut, we compare the diameter
of the screen-space projection to the screen-space tolerance. More
precisely, given the center of projection qt at time t, the screen-
space tolerance � (as a fraction of viewport size), and the field-of-
view angle � , we include (e, j) and all of its ancestors in Ut if either

� j
e

�
vj

e
� qt
� 2 + � j

e
� � vj

e
� qt � � n̂i � 2 ��� � vj

e
� qt
� 4 (4)

or

� bj
e � 2 �	� � vj

e
� qt
� 2 (5)

where

� j
i = � aj

e � 2
, � j

i = � bj
e � 2

� � aj
e � 2

, � = 4 � 2 cot2 � �
2 � .

The quantities � j
i and � j

i are pre-computed per wavelet, and � is
computed once per frame. With suitable combining of common
subexpressions, the computation of expressions (4) and (5) requires
one more floating-point multiply than the computation of the cor-
responding expression for Hoppe’s bounding shape. The derivation
of those expressions is in Appendix A.

For some applications, such as bump mapping or surface light
fields, geometric or texture distortion in the interior of an object’s
image is often less noticeable than low-resolution silhouettes [19].
Therefore, it is sometimes desirable to use a lower tolerance near
the silhouettes than in the interiors. We test whether a wavelet may
contribute to the silhouette by examining the cone of normals we
pre-computed for the back-facing test, and determining if it spans
directions that are both front- and back-facing [14]. Any wavelet
that may contribute to the silhouette is tested against the more strin-
gent silhouette tolerance; others are tested against the less stringent
interior tolerance.

3.4 Incremental adaptation

Because the set S can be very large, an exhaustive search of S, eval-
uating the inclusion criterion for each member, is not feasible. In-
stead, we exploit the hierarchical structure of wavelets to organize
the set S into an acyclic, directed dependency graph G and use an
incremental adaptation algorithm.

To give a formal definition of G, define an element (j + 1, e 
 ) 	 S to
be a child of (j, e) 	 S if the support of �� j+1

e � is completely contained



in the support of �� j
e . In this case we say that �� j

e is the parent of�� j+1
e � . The set S, together with the parent-child relation forms the

directed graph G (see Figure 5). Vertices of G may have zero, one,
or two parents, and up to six children. Observe that (f , k) is the
descendent of (e, j) at a coarser level if and only if the support of�� k

f is contained in the support of �� j
e .

K1

�� 1
e

K2

�� 2
f

(e, 1)

(f , 2)

level 1 wavelets:

level 2 wavelets:

Figure 5 Wavelet parents and children. Wavelet e (top left) at level
1 is a parent of wavelet f (top right) at level 2. Bottom: a portion of
the dependency graph G.

Recall that in formulating our screen-error test, we made the as-
sumption that every ancestor of an element of Ut is also an ele-
ment of Ut, we call this assumption the closure condition. As il-
lustrated in Figure 3.4(a), Ut is completely determined by the (gen-
erally smaller) subset Ct

�
Ut of all vertices of KJ that are either

terminal vertices of G or have a child not contained in Ut. We call
Ct the cut set of Ut.

Observe that the set of indices satisfying the view-frustum test also
satisfy the closure condition. Suppose that the support of �� k

b is
contained in the support of �� j

a , and that (k, b) satisfied the view-
frustum test. Then the bounding sphere centered at vk

b intersects
the view-frustum. Because the bounding sphere associated to �� k

b

is contained in the bounding sphere associated to �� j
a , (j, a) also

satisfies the view-frustum test. A similar argument, based on the
cone of normal, shows that the set of indices satisfying the back-
facing test is closed.

This suggests an incremental algorithm for computing Ut: Begin
with the cut defining Ut � 1. Find Ut by traversing the cut Ct � 1, mov-
ing it up or down according to the three adaptation tests for the view
parameters. A wavelet is a candidate for addition to Ut only if both
its parents are in Ut, and a wavelet is a candidate for removal from
Ut only if none of its children are in Ut. In our implementation, we
begin by setting U0 to be the empty set—that is, �

0 = � 0.

level 1 wavelets:
level 2 wavelets:

...

level J wavelets:

(a) (b)

Figure 6 Left: The cut Ct (solid line) through the graph G sepa-
rates wavelets in Ut (dark) from those not in Ut (light). Right: The
adaptation stage moves the cut according to the view parameters of
the next frame. Wavelets added and removed (shown with a line and
dot) are geomorphed.

In the worst case, the above algorithm tests every wavelet in S.
However, for an interactive application, the viewpoint typically
does not change much from frame to frame. Consequently, Ut �
Ut � 1, implying that very few wavelets need to be tested per frame.

3.5 Runtime construction of the geomorph

To alleviate the “popping” effect that can accompany a transition
between meshes at different levels of detail, Hoppe [7] proposes
smoothly interpolating between the two meshes, a process he calls
geomorphing. In [10] he demonstrates geomorphs constructed at
runtime in a progressive mesh-based, view-dependent LOD frame-
work. Our framework, based on the lazy wavelet decomposition,
also supports geomorphs. To smoothly add or subtract a correction
term sj

e �� j
e between frames t0 and tn, we scale it according to the

expressions:

t � t0

tn
� t0

sj
e �� j

e or
tn

� t
tn

� t0
sj

e �� j
e , (6)

respectively. We implement geomorphing by simulating a set of
concurrent processes, each managing one running geomorph. Dur-
ing each pass through the algorithm, all currently running geo-
morphs are advanced. When a geomorph is completed, its “pro-
cess” is removed from the set.

During the adaptation algorithm, as the cut moves up and down,
wavelets are added to and removed from the set Ut (Figure 3.4(b)).
When a wavelet is added to the set, a new process is created to
smoothly add the wavelet to the geometry via a geomorph; sim-
ilarly, when a wavelet is removed, a new process is created to
smoothly remove the wavelet.

Note that, since wavelets can be added and removed independently
of each other, geomorphs can overlap in both space and time; that
is, a wavelet and some of its descendants may be geomorphing si-
multaneously. It is also possible for a wavelet to be in the midst of
a geomorph when it is added or removed. For example, a wavelet
may be added to Ut, causing a geomorph to start, and then it may
be removed before the geomorph has completed. In such a case,
the removal geomorph will start at the current state of the older
geomorph.

Deciding the proper length and speed of geomorph advancement
is still an open problem. In our implementation, every geomorph
lasts a user-specified number of frames. We have found that geo-
morphs that last approximately a second give good results. It may
be possible to obtain better results by causing the geomorph length
to depend on the magnitude of the coefficient of the wavelet being
introduced.

The proper geomorph length may also depend on the type of mo-
tion being applied to the viewpoint. If the viewpoint is stationary
or nearly stationary relative to the object, popping will be notice-
able; thus, geomorphs should proceed relatively slowly. The visual
effect of changes in the level of detail will be less noticeable when
the object is being moved or rotated rapidly relative to the viewer,
and faster geomorphs will be possible. Our current implementation
includes a crude correction for object motion, scaling geomorph
speed linearly with the rotation and translation speed of the view-
point, using user-specified constants. A more principled approach
should understand the perceptual properties of geomorphs in tan-
dem with object motion

In other cases, geomorphs are not necessary at all. If a wavelet is
added or removed on the basis of the view frustum or back-facing
criteria, the effect of a geomorph will not be visible [10]. We set
the geomorph length to zero in those cases.
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Figure 7 Removing T-vertices. Left: coarse mesh. Center: mesh after adding two wavelets (T-vertices are circled). Right: T-vertices eliminated.

3.6 Rendering

The rendering stage of the algorithm must take the mesh generated
for a frame t, and output a series of triangle specifications to pass to
the graphics pipeline. The mesh M t = �

t(K
0) is determined by the

current subset Ut, plus the state of running geomorphs. Our algo-
rithm iterates over the triangles in M0. For each triangle considered,
it checks whether the triangle should be subdivided to support the
current approximation. If so, the algorithm recursively considers
each triangle formed by performing a four-to-one subdivision of
the triangle. Otherwise, the triangle is drawn with vertex positions
set according to �

t.

Because constructing M t will typically require non-uniform subdi-
vision, “T-vertices” will often be present (Figure 7). Such vertices
will only appear along the edges forming the boundary of the sup-
port of a wavelet; thus the actual position of the vertex will be at
the midpoint of its edge. But slight cracks may still appear due to
roundoff errors. We eliminate those cracks using a recursive trian-
gle cutting algorithm. Before drawing a triangle, we test each edge
to see if the triangle across the edge is subdivided. If so, we cut the
triangle in half by adding a vertex at the midpoint of the edge, and
recursively test each half.

4 Results

We tested our algorithm using three models: a synthetic model
of a sphere generated by five recursive four-to-one subdivisions
of the octahedron, an acquired model of a small fish statue, and
an acquired model of a small elephant statue. The objects were
scanned using a laser range scanner, and were constructed trian-
gle mesh models using the volumetric method of [4]. We then pa-
rameterized the surfaces using the MAPS algorithm described by
Lee et al. [11]. The parameterization was then used to generate
subdivision connectivity remeshings of each model. The fish was
remeshed uniformly by applying four recursive subdivisions. The
elephant remesh used a higher error tolerance, and was subdivided
three times.

To evaluate the performance of our algorithm, we recorded the
movements in an interactive viewing session with each of the three
test meshes. In each case, the session included rotating the mesh at
a distance in which the entire mesh lay in the view port, followed
by zooming in for a closeup view. We then reproduced each session
under a variety of settings, recording the number of triangles in the
resulting mesh, the number of wavelets in Ut and the time taken to
render each frame. The results are illustrated in Figures 8 and 9.

Figure 8 shows performance using a synthetic sphere of 8192 faces
generated using five uniform 4-1 subdivisions of an octahedron.
The screen-space error tolerance was set such that the error at the
silhouette matched the error in the full model. The interior error
was set higher by a factor of 7. Figure 8(a) shows the number of
faces generated by the adaptation algorithm over time, compared
with the total number of faces in the full model. Note that the face
count drops off at the end when the camera moves in for a close-up,
allowing much of the model to be simplified due to the view frustum

test. Figure 8(b) shows the “wall clock” time taken to render each
frame, in milliseconds, both for the full model and for the adapted
model. The fraction of the LOD rendering time used for the adapta-
tion algorithm is shown as “overhead.” Times were recorded on an
SGI O2 with a 175 MHz MIPS R10000 with the standard graphics
hardware.

Figure 8(c) and (d) show results for an acquired model, a fish statue.
The base mesh of 199 triangles was subdivided four times for a final
model consisting of 50,944 triangles. Figure 8(c) shows face count,
and Figure 8(d) shows rendering times on the SGI O2.

Figure 9 demonstrates the effect of using a spheroid bounding shape
versus the shape proposed by [8]. Face counts and render times
improve noticeably when viewing at a distance. During closeups,
however, the view frustum test takes on greater importance than the
screen space error test; consequently, the difference is much less
pronounced.

Figure 10 demonstrates the level-of-detail algorithm in action. The
fully tessellated sphere of 8192 triangles is decimated to 732 tri-
angles by specifying a silhouette error tolerance of 0.5 pixels and
an interior tolerance of 3.5 pixels. In (c), we see the same adapted
sphere mesh and the original view frustum from a viewpoint above
the original, demonstrating the effect of the three different tests.
Regions facing away from the camera or outside the view frustum
are significantly coarsened, and a strip of small triangles is clearly
visible along the silhouette of the mesh.

Figure 11 shows a scanned elephant model rendered using adaptive
refinement (using surface light field rendering [19] instead of sim-
ple texture mapping). There are no signs of texture distortion and
regions outside of the view frustum are highly simplified. Figure 12
compares an adaptively refined mesh with coarse and fine uniform
subdivision. The fish base mesh contains 199 triangles, the adap-
tive mesh contains 3943 triangles (using a silhouette tolerance of 2
pixels and an interior tolerance of 10 pixels), and the three-times
subdivided model contains 12,736 faces. Figures 12 (d), (e) and
(f) show the same three meshes with texture applied. Note that the
polygonal silhouettes are clearly noticeable in the coarse model al-
though the interior appears plausible. The adapted model and the
finely tessellated model appear nearly indistinguishable with tex-
ture applied.

5 Summary and future work

We have presented a theoretical framework and a practical im-
plementation of view-dependent level-of-detail for triangle meshes
with subdivision connectivity, based on a lazy wavelet analysis.
Meshes with this restricted connectivity can be readily generated
from surfaces of arbitrary topology using existing surface param-
eterization algorithms. We implement the same basic capabilities
provided with existing progressive mesh-based schemes, includ-
ing several view-dependent tests, incremental adaptation and run-
time generation of geomorphs augmented with more geomorphing
features and better bounds on screen-space error. Our method ex-
tends the practicality of view-dependent LOD to subdivision con-



nectivity meshes. It also is the first demonstration of adaptive view-
dependent LOD for textured meshes of arbitrary topology.

There are several areas for future work. Some features of [8] were
not implemented in our system: runtime generation of triangle
strips and regulation of the screen-space error tolerance to maintain
a constant frame rate. The restricted connectivity of our meshes
may make highly efficient generation of triangle strips possible.

Additionally, this work should be extended to interact well with
other common applications of subdivision connectivity meshes, in-
cluding multiresolution mesh editing and animation. The level of
detail appropriate for a particular viewpoint includes all of the de-
tail necessary to directly edit the mesh rendered from that viewpoint
in a reasonable manner, analogous to multiresolution painting [1].
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A Derivation of error

We want the screen projection of the parametric error to be less than
� . This criterion can be written

max
p � supp ���� j

e � Escrn(p) �

���Eparam(p) � vj
e � qt�

vj
e � qt

� ���
2 cot ���2 
 	 � . (7)

with qt the camera center, and for all p in the support of �� j
e , pro-

vided that both the support of �� j
e is small and the parametric error

is small relative to the distance to the camera. Or, formally:

(i)
� (p) � qt� � (p) � qt � �

vj
e

� qt� vj
e

� qt �
(ii)

� (p) � �
t(p)

vj
e

� qt

is small.

The projection into the viewing plane of the bounding ellipsiod is
an ellipse. A messy, but straight forward (in Mathematica), compu-
tation shows that the formulas for squared lengths of the semimajor
and semiminor axes are

aj
e

2
( � vj

e
� qt � 2 � bj

e
2
) � (aj

e
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e
2
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e
� qt)


 2
 � vj
e

� qt � 2 � bj
e

2 � (aj
e

2 � bj
e

2
) � n̂ � (vj

e � qt)�
vj

e � qt
� � 2 � 2

and

bj
e

2

� vj
e

� qt � 2 � bj
e

2 � � aj
e

2 � bj
e

2 � � n̂ � (vj
e � qt)�

vj
e � qt

� � 2 ,

respectively.

For (vj
e

� qt) large relative to the error, we may assume orthographic
projection, in which case, these formulas reduce to the following:
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e
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e

� qt � 2 � (aj
e
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e

2
) � n̂ � (vj

e
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 2
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e
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2
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e

� qt � 2 .
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Figure 8 (a) Face count for sphere model (left) (b) Rendering time for sphere model (right). (c) Face count for fish model. (top-left) (d)
Rendering times for fish model on SGI. (top-right).
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Figure 9 (a) Face count for different bounding shapes (b) Rendering times for different bounding shapes.

Figure 10 From left to right: (a) Full sphere model (8192 faces). (b) Adapted sphere (732 faces). (c) Adapted sphere and view frustum, shown
from alternate viewpoint.



Figure 11 From left to right: adaptive refinement of elephant model rendered with flat-shaded triangles, adaptive refinement rendered using
surface light fields [19], and the adaptive refinement shown from alternate viewpoint.

Figure 12 From left to right, top to bottom: (a) Coarse geometry (199 faces). (b) Adapted geometry (3943 faces). (c) Fine geometry (12,736
faces). (d) Coarse textured geometry. (e) Adapted textured geometry. (f) Fine textured geometry.


